MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0f Structured version   Visualization version   GIF version

Theorem fprodn0f 15916
Description: A finite product of nonzero terms is nonzero. A version of fprodn0 15904 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodn0f.kph 𝑘𝜑
fprodn0f.a (𝜑𝐴 ∈ Fin)
fprodn0f.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodn0f.bne0 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
fprodn0f (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodn0f
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodn0f.kph . . 3 𝑘𝜑
2 difssd 4090 . . 3 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
3 eldifi 4084 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
5 eldifi 4084 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
65adantl 481 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
74, 6mulcld 11154 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ)
8 eldifsni 4744 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
98adantr 480 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
10 eldifsni 4744 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
1110adantl 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
124, 6, 9, 11mulne0d 11790 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
1312neneqd 2930 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) = 0)
14 ovex 7386 . . . . . . 7 (𝑥 · 𝑦) ∈ V
1514elsn 4594 . . . . . 6 ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0)
1613, 15sylnibr 329 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) ∈ {0})
177, 16eldifd 3916 . . . 4 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
1817adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
19 fprodn0f.a . . 3 (𝜑𝐴 ∈ Fin)
20 fprodn0f.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
21 fprodn0f.bne0 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
2221neneqd 2930 . . . . 5 ((𝜑𝑘𝐴) → ¬ 𝐵 = 0)
23 elsng 4593 . . . . . 6 (𝐵 ∈ ℂ → (𝐵 ∈ {0} ↔ 𝐵 = 0))
2420, 23syl 17 . . . . 5 ((𝜑𝑘𝐴) → (𝐵 ∈ {0} ↔ 𝐵 = 0))
2522, 24mtbird 325 . . . 4 ((𝜑𝑘𝐴) → ¬ 𝐵 ∈ {0})
2620, 25eldifd 3916 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
27 ax-1cn 11086 . . . . 5 1 ∈ ℂ
28 ax-1ne0 11097 . . . . . 6 1 ≠ 0
29 1ex 11130 . . . . . . 7 1 ∈ V
3029elsn 4594 . . . . . 6 (1 ∈ {0} ↔ 1 = 0)
3128, 30nemtbir 3021 . . . . 5 ¬ 1 ∈ {0}
32 eldif 3915 . . . . 5 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0}))
3327, 31, 32mpbir2an 711 . . . 4 1 ∈ (ℂ ∖ {0})
3433a1i 11 . . 3 (𝜑 → 1 ∈ (ℂ ∖ {0}))
351, 2, 18, 19, 26, 34fprodcllemf 15883 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (ℂ ∖ {0}))
36 eldifsni 4744 . 2 (∏𝑘𝐴 𝐵 ∈ (ℂ ∖ {0}) → ∏𝑘𝐴 𝐵 ≠ 0)
3735, 36syl 17 1 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  cdif 3902  {csn 4579  (class class class)co 7353  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029   · cmul 11033  cprod 15828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-prod 15829
This theorem is referenced by:  fprodle  15921
  Copyright terms: Public domain W3C validator