| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodn0f | Structured version Visualization version GIF version | ||
| Description: A finite product of nonzero terms is nonzero. A version of fprodn0 15952 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodn0f.kph | ⊢ Ⅎ𝑘𝜑 |
| fprodn0f.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodn0f.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fprodn0f.bne0 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| fprodn0f | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodn0f.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | difssd 4103 | . . 3 ⊢ (𝜑 → (ℂ ∖ {0}) ⊆ ℂ) | |
| 3 | eldifi 4097 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) |
| 5 | eldifi 4097 | . . . . . . 7 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ) | |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
| 7 | 4, 6 | mulcld 11201 | . . . . 5 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ) |
| 8 | eldifsni 4757 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0) | |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0) |
| 10 | eldifsni 4757 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0) | |
| 11 | 10 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
| 12 | 4, 6, 9, 11 | mulne0d 11837 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0) |
| 13 | 12 | neneqd 2931 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) = 0) |
| 14 | ovex 7423 | . . . . . . 7 ⊢ (𝑥 · 𝑦) ∈ V | |
| 15 | 14 | elsn 4607 | . . . . . 6 ⊢ ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0) |
| 16 | 13, 15 | sylnibr 329 | . . . . 5 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) ∈ {0}) |
| 17 | 7, 16 | eldifd 3928 | . . . 4 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 19 | fprodn0f.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 20 | fprodn0f.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 21 | fprodn0f.bne0 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≠ 0) | |
| 22 | 21 | neneqd 2931 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝐵 = 0) |
| 23 | elsng 4606 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ {0} ↔ 𝐵 = 0)) | |
| 24 | 20, 23 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ {0} ↔ 𝐵 = 0)) |
| 25 | 22, 24 | mtbird 325 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝐵 ∈ {0}) |
| 26 | 20, 25 | eldifd 3928 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (ℂ ∖ {0})) |
| 27 | ax-1cn 11133 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 28 | ax-1ne0 11144 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 29 | 1ex 11177 | . . . . . . 7 ⊢ 1 ∈ V | |
| 30 | 29 | elsn 4607 | . . . . . 6 ⊢ (1 ∈ {0} ↔ 1 = 0) |
| 31 | 28, 30 | nemtbir 3022 | . . . . 5 ⊢ ¬ 1 ∈ {0} |
| 32 | eldif 3927 | . . . . 5 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0})) | |
| 33 | 27, 31, 32 | mpbir2an 711 | . . . 4 ⊢ 1 ∈ (ℂ ∖ {0}) |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (ℂ ∖ {0})) |
| 35 | 1, 2, 18, 19, 26, 34 | fprodcllemf 15931 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (ℂ ∖ {0})) |
| 36 | eldifsni 4757 | . 2 ⊢ (∏𝑘 ∈ 𝐴 𝐵 ∈ (ℂ ∖ {0}) → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) | |
| 37 | 35, 36 | syl 17 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 (class class class)co 7390 Fincfn 8921 ℂcc 11073 0cc0 11075 1c1 11076 · cmul 11080 ∏cprod 15876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-prod 15877 |
| This theorem is referenced by: fprodle 15969 |
| Copyright terms: Public domain | W3C validator |