| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodn0f | Structured version Visualization version GIF version | ||
| Description: A finite product of nonzero terms is nonzero. A version of fprodn0 15904 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodn0f.kph | ⊢ Ⅎ𝑘𝜑 |
| fprodn0f.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodn0f.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fprodn0f.bne0 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| fprodn0f | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodn0f.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | difssd 4090 | . . 3 ⊢ (𝜑 → (ℂ ∖ {0}) ⊆ ℂ) | |
| 3 | eldifi 4084 | . . . . . . 7 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ) |
| 5 | eldifi 4084 | . . . . . . 7 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ) | |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ) |
| 7 | 4, 6 | mulcld 11154 | . . . . 5 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ) |
| 8 | eldifsni 4744 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0) | |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0) |
| 10 | eldifsni 4744 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0) | |
| 11 | 10 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0) |
| 12 | 4, 6, 9, 11 | mulne0d 11790 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0) |
| 13 | 12 | neneqd 2930 | . . . . . 6 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) = 0) |
| 14 | ovex 7386 | . . . . . . 7 ⊢ (𝑥 · 𝑦) ∈ V | |
| 15 | 14 | elsn 4594 | . . . . . 6 ⊢ ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0) |
| 16 | 13, 15 | sylnibr 329 | . . . . 5 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) ∈ {0}) |
| 17 | 7, 16 | eldifd 3916 | . . . 4 ⊢ ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0})) |
| 19 | fprodn0f.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 20 | fprodn0f.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 21 | fprodn0f.bne0 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≠ 0) | |
| 22 | 21 | neneqd 2930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝐵 = 0) |
| 23 | elsng 4593 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ {0} ↔ 𝐵 = 0)) | |
| 24 | 20, 23 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ {0} ↔ 𝐵 = 0)) |
| 25 | 22, 24 | mtbird 325 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝐵 ∈ {0}) |
| 26 | 20, 25 | eldifd 3916 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (ℂ ∖ {0})) |
| 27 | ax-1cn 11086 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 28 | ax-1ne0 11097 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 29 | 1ex 11130 | . . . . . . 7 ⊢ 1 ∈ V | |
| 30 | 29 | elsn 4594 | . . . . . 6 ⊢ (1 ∈ {0} ↔ 1 = 0) |
| 31 | 28, 30 | nemtbir 3021 | . . . . 5 ⊢ ¬ 1 ∈ {0} |
| 32 | eldif 3915 | . . . . 5 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0})) | |
| 33 | 27, 31, 32 | mpbir2an 711 | . . . 4 ⊢ 1 ∈ (ℂ ∖ {0}) |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (ℂ ∖ {0})) |
| 35 | 1, 2, 18, 19, 26, 34 | fprodcllemf 15883 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (ℂ ∖ {0})) |
| 36 | eldifsni 4744 | . 2 ⊢ (∏𝑘 ∈ 𝐴 𝐵 ∈ (ℂ ∖ {0}) → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) | |
| 37 | 35, 36 | syl 17 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 {csn 4579 (class class class)co 7353 Fincfn 8879 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 ∏cprod 15828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-prod 15829 |
| This theorem is referenced by: fprodle 15921 |
| Copyright terms: Public domain | W3C validator |