MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0f Structured version   Visualization version   GIF version

Theorem fprodn0f 15900
Description: A finite product of nonzero terms is nonzero. A version of fprodn0 15888 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodn0f.kph 𝑘𝜑
fprodn0f.a (𝜑𝐴 ∈ Fin)
fprodn0f.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodn0f.bne0 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
fprodn0f (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodn0f
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodn0f.kph . . 3 𝑘𝜑
2 difssd 4086 . . 3 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
3 eldifi 4080 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
5 eldifi 4080 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
65adantl 481 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
74, 6mulcld 11139 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ)
8 eldifsni 4741 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
98adantr 480 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
10 eldifsni 4741 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
1110adantl 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
124, 6, 9, 11mulne0d 11776 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
1312neneqd 2934 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) = 0)
14 ovex 7385 . . . . . . 7 (𝑥 · 𝑦) ∈ V
1514elsn 4590 . . . . . 6 ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0)
1613, 15sylnibr 329 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) ∈ {0})
177, 16eldifd 3909 . . . 4 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
1817adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
19 fprodn0f.a . . 3 (𝜑𝐴 ∈ Fin)
20 fprodn0f.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
21 fprodn0f.bne0 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
2221neneqd 2934 . . . . 5 ((𝜑𝑘𝐴) → ¬ 𝐵 = 0)
23 elsng 4589 . . . . . 6 (𝐵 ∈ ℂ → (𝐵 ∈ {0} ↔ 𝐵 = 0))
2420, 23syl 17 . . . . 5 ((𝜑𝑘𝐴) → (𝐵 ∈ {0} ↔ 𝐵 = 0))
2522, 24mtbird 325 . . . 4 ((𝜑𝑘𝐴) → ¬ 𝐵 ∈ {0})
2620, 25eldifd 3909 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
27 ax-1cn 11071 . . . . 5 1 ∈ ℂ
28 ax-1ne0 11082 . . . . . 6 1 ≠ 0
29 1ex 11115 . . . . . . 7 1 ∈ V
3029elsn 4590 . . . . . 6 (1 ∈ {0} ↔ 1 = 0)
3128, 30nemtbir 3025 . . . . 5 ¬ 1 ∈ {0}
32 eldif 3908 . . . . 5 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0}))
3327, 31, 32mpbir2an 711 . . . 4 1 ∈ (ℂ ∖ {0})
3433a1i 11 . . 3 (𝜑 → 1 ∈ (ℂ ∖ {0}))
351, 2, 18, 19, 26, 34fprodcllemf 15867 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (ℂ ∖ {0}))
36 eldifsni 4741 . 2 (∏𝑘𝐴 𝐵 ∈ (ℂ ∖ {0}) → ∏𝑘𝐴 𝐵 ≠ 0)
3735, 36syl 17 1 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2113  wne 2929  cdif 3895  {csn 4575  (class class class)co 7352  Fincfn 8875  cc 11011  0cc0 11013  1c1 11014   · cmul 11018  cprod 15812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-prod 15813
This theorem is referenced by:  fprodle  15905
  Copyright terms: Public domain W3C validator