MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0f Structured version   Visualization version   GIF version

Theorem fprodn0f 15964
Description: A finite product of nonzero terms is nonzero. A version of fprodn0 15952 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodn0f.kph 𝑘𝜑
fprodn0f.a (𝜑𝐴 ∈ Fin)
fprodn0f.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodn0f.bne0 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
fprodn0f (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodn0f
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodn0f.kph . . 3 𝑘𝜑
2 difssd 4103 . . 3 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
3 eldifi 4097 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
5 eldifi 4097 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
65adantl 481 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
74, 6mulcld 11201 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ)
8 eldifsni 4757 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
98adantr 480 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
10 eldifsni 4757 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
1110adantl 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
124, 6, 9, 11mulne0d 11837 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
1312neneqd 2931 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) = 0)
14 ovex 7423 . . . . . . 7 (𝑥 · 𝑦) ∈ V
1514elsn 4607 . . . . . 6 ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0)
1613, 15sylnibr 329 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) ∈ {0})
177, 16eldifd 3928 . . . 4 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
1817adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
19 fprodn0f.a . . 3 (𝜑𝐴 ∈ Fin)
20 fprodn0f.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
21 fprodn0f.bne0 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
2221neneqd 2931 . . . . 5 ((𝜑𝑘𝐴) → ¬ 𝐵 = 0)
23 elsng 4606 . . . . . 6 (𝐵 ∈ ℂ → (𝐵 ∈ {0} ↔ 𝐵 = 0))
2420, 23syl 17 . . . . 5 ((𝜑𝑘𝐴) → (𝐵 ∈ {0} ↔ 𝐵 = 0))
2522, 24mtbird 325 . . . 4 ((𝜑𝑘𝐴) → ¬ 𝐵 ∈ {0})
2620, 25eldifd 3928 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
27 ax-1cn 11133 . . . . 5 1 ∈ ℂ
28 ax-1ne0 11144 . . . . . 6 1 ≠ 0
29 1ex 11177 . . . . . . 7 1 ∈ V
3029elsn 4607 . . . . . 6 (1 ∈ {0} ↔ 1 = 0)
3128, 30nemtbir 3022 . . . . 5 ¬ 1 ∈ {0}
32 eldif 3927 . . . . 5 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0}))
3327, 31, 32mpbir2an 711 . . . 4 1 ∈ (ℂ ∖ {0})
3433a1i 11 . . 3 (𝜑 → 1 ∈ (ℂ ∖ {0}))
351, 2, 18, 19, 26, 34fprodcllemf 15931 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (ℂ ∖ {0}))
36 eldifsni 4757 . 2 (∏𝑘𝐴 𝐵 ∈ (ℂ ∖ {0}) → ∏𝑘𝐴 𝐵 ≠ 0)
3735, 36syl 17 1 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2926  cdif 3914  {csn 4592  (class class class)co 7390  Fincfn 8921  cc 11073  0cc0 11075  1c1 11076   · cmul 11080  cprod 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877
This theorem is referenced by:  fprodle  15969
  Copyright terms: Public domain W3C validator