MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodn0f Structured version   Visualization version   GIF version

Theorem fprodn0f 15340
Description: A finite product of nonzero terms is nonzero. A version of fprodn0 15328 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodn0f.kph 𝑘𝜑
fprodn0f.a (𝜑𝐴 ∈ Fin)
fprodn0f.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodn0f.bne0 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
fprodn0f (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodn0f
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodn0f.kph . . 3 𝑘𝜑
2 difssd 4113 . . 3 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
3 eldifi 4107 . . . . . . 7 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
43adantr 481 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
5 eldifi 4107 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
65adantl 482 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
74, 6mulcld 10655 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ ℂ)
8 eldifsni 4721 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
98adantr 481 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
10 eldifsni 4721 . . . . . . . . 9 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
1110adantl 482 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
124, 6, 9, 11mulne0d 11286 . . . . . . 7 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ≠ 0)
1312neneqd 3026 . . . . . 6 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) = 0)
14 ovex 7183 . . . . . . 7 (𝑥 · 𝑦) ∈ V
1514elsn 4579 . . . . . 6 ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0)
1613, 15sylnibr 330 . . . . 5 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → ¬ (𝑥 · 𝑦) ∈ {0})
177, 16eldifd 3951 . . . 4 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
1817adantl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ (ℂ ∖ {0}))) → (𝑥 · 𝑦) ∈ (ℂ ∖ {0}))
19 fprodn0f.a . . 3 (𝜑𝐴 ∈ Fin)
20 fprodn0f.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
21 fprodn0f.bne0 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ≠ 0)
2221neneqd 3026 . . . . 5 ((𝜑𝑘𝐴) → ¬ 𝐵 = 0)
23 elsng 4578 . . . . . 6 (𝐵 ∈ ℂ → (𝐵 ∈ {0} ↔ 𝐵 = 0))
2420, 23syl 17 . . . . 5 ((𝜑𝑘𝐴) → (𝐵 ∈ {0} ↔ 𝐵 = 0))
2522, 24mtbird 326 . . . 4 ((𝜑𝑘𝐴) → ¬ 𝐵 ∈ {0})
2620, 25eldifd 3951 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (ℂ ∖ {0}))
27 ax-1cn 10589 . . . . 5 1 ∈ ℂ
28 ax-1ne0 10600 . . . . . 6 1 ≠ 0
29 1ex 10631 . . . . . . 7 1 ∈ V
3029elsn 4579 . . . . . 6 (1 ∈ {0} ↔ 1 = 0)
3128, 30nemtbir 3117 . . . . 5 ¬ 1 ∈ {0}
32 eldif 3950 . . . . 5 (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ ¬ 1 ∈ {0}))
3327, 31, 32mpbir2an 707 . . . 4 1 ∈ (ℂ ∖ {0})
3433a1i 11 . . 3 (𝜑 → 1 ∈ (ℂ ∖ {0}))
351, 2, 18, 19, 26, 34fprodcllemf 15307 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (ℂ ∖ {0}))
36 eldifsni 4721 . 2 (∏𝑘𝐴 𝐵 ∈ (ℂ ∖ {0}) → ∏𝑘𝐴 𝐵 ≠ 0)
3735, 36syl 17 1 (𝜑 → ∏𝑘𝐴 𝐵 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wnf 1777  wcel 2107  wne 3021  cdif 3937  {csn 4564  (class class class)co 7150  Fincfn 8503  cc 10529  0cc0 10531  1c1 10532   · cmul 10536  cprod 15254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-fz 12888  df-fzo 13029  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-prod 15255
This theorem is referenced by:  fprodle  15345
  Copyright terms: Public domain W3C validator