MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdom1dom Structured version   Visualization version   GIF version

Theorem 0sdom1dom 9272
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7754, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7754. (Revised by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
0sdom1dom (∅ ≺ 𝐴 ↔ 1o𝐴)

Proof of Theorem 0sdom1dom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relsdom 8991 . . 3 Rel ≺
21brrelex2i 5746 . 2 (∅ ≺ 𝐴𝐴 ∈ V)
3 reldom 8990 . . 3 Rel ≼
43brrelex2i 5746 . 2 (1o𝐴𝐴 ∈ V)
5 0sdomg 9143 . . 3 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
6 n0 4359 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
7 snssi 4813 . . . . . . 7 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
8 df1o2 8512 . . . . . . . . . . 11 1o = {∅}
9 0ex 5313 . . . . . . . . . . . 12 ∅ ∈ V
10 vex 3482 . . . . . . . . . . . 12 𝑥 ∈ V
11 en2sn 9080 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
129, 10, 11mp2an 692 . . . . . . . . . . 11 {∅} ≈ {𝑥}
138, 12eqbrtri 5169 . . . . . . . . . 10 1o ≈ {𝑥}
14 endom 9018 . . . . . . . . . 10 (1o ≈ {𝑥} → 1o ≼ {𝑥})
1513, 14ax-mp 5 . . . . . . . . 9 1o ≼ {𝑥}
16 domssr 9038 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o𝐴)
1715, 16mp3an3 1449 . . . . . . . 8 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o𝐴)
1817ex 412 . . . . . . 7 (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o𝐴))
197, 18syl5 34 . . . . . 6 (𝐴 ∈ V → (𝑥𝐴 → 1o𝐴))
2019exlimdv 1931 . . . . 5 (𝐴 ∈ V → (∃𝑥 𝑥𝐴 → 1o𝐴))
216, 20biimtrid 242 . . . 4 (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o𝐴))
22 1n0 8525 . . . . . . 7 1o ≠ ∅
23 dom0 9141 . . . . . . 7 (1o ≼ ∅ ↔ 1o = ∅)
2422, 23nemtbir 3036 . . . . . 6 ¬ 1o ≼ ∅
25 breq2 5152 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≼ ∅))
2624, 25mtbiri 327 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
2726necon2ai 2968 . . . 4 (1o𝐴𝐴 ≠ ∅)
2821, 27impbid1 225 . . 3 (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o𝐴))
295, 28bitrd 279 . 2 (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o𝐴))
302, 4, 29pm5.21nii 378 1 (∅ ≺ 𝐴 ↔ 1o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1776  wcel 2106  wne 2938  Vcvv 3478  wss 3963  c0 4339  {csn 4631   class class class wbr 5148  1oc1o 8498  cen 8981  cdom 8982  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-suc 6392  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-1o 8505  df-en 8985  df-dom 8986  df-sdom 8987
This theorem is referenced by:  1sdom2  9274  sdom1OLD  9277  1sdom2dom  9281  djulepw  10231  fin45  10430  gchxpidm  10707  rankcf  10815  snct  32731
  Copyright terms: Public domain W3C validator