MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdom1dom Structured version   Visualization version   GIF version

Theorem 0sdom1dom 9234
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7721, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7721. (Revised by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
0sdom1dom (∅ ≺ 𝐴 ↔ 1o𝐴)

Proof of Theorem 0sdom1dom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relsdom 8942 . . 3 Rel ≺
21brrelex2i 5731 . 2 (∅ ≺ 𝐴𝐴 ∈ V)
3 reldom 8941 . . 3 Rel ≼
43brrelex2i 5731 . 2 (1o𝐴𝐴 ∈ V)
5 0sdomg 9100 . . 3 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
6 n0 4345 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
7 snssi 4810 . . . . . . 7 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
8 df1o2 8469 . . . . . . . . . . 11 1o = {∅}
9 0ex 5306 . . . . . . . . . . . 12 ∅ ∈ V
10 vex 3478 . . . . . . . . . . . 12 𝑥 ∈ V
11 en2sn 9037 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
129, 10, 11mp2an 690 . . . . . . . . . . 11 {∅} ≈ {𝑥}
138, 12eqbrtri 5168 . . . . . . . . . 10 1o ≈ {𝑥}
14 endom 8971 . . . . . . . . . 10 (1o ≈ {𝑥} → 1o ≼ {𝑥})
1513, 14ax-mp 5 . . . . . . . . 9 1o ≼ {𝑥}
16 domssr 8991 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o𝐴)
1715, 16mp3an3 1450 . . . . . . . 8 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o𝐴)
1817ex 413 . . . . . . 7 (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o𝐴))
197, 18syl5 34 . . . . . 6 (𝐴 ∈ V → (𝑥𝐴 → 1o𝐴))
2019exlimdv 1936 . . . . 5 (𝐴 ∈ V → (∃𝑥 𝑥𝐴 → 1o𝐴))
216, 20biimtrid 241 . . . 4 (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o𝐴))
22 1n0 8484 . . . . . . 7 1o ≠ ∅
23 dom0 9098 . . . . . . 7 (1o ≼ ∅ ↔ 1o = ∅)
2422, 23nemtbir 3038 . . . . . 6 ¬ 1o ≼ ∅
25 breq2 5151 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≼ ∅))
2624, 25mtbiri 326 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
2726necon2ai 2970 . . . 4 (1o𝐴𝐴 ≠ ∅)
2821, 27impbid1 224 . . 3 (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o𝐴))
295, 28bitrd 278 . 2 (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o𝐴))
302, 4, 29pm5.21nii 379 1 (∅ ≺ 𝐴 ↔ 1o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wex 1781  wcel 2106  wne 2940  Vcvv 3474  wss 3947  c0 4321  {csn 4627   class class class wbr 5147  1oc1o 8455  cen 8932  cdom 8933  csdm 8934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-suc 6367  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-1o 8462  df-en 8936  df-dom 8937  df-sdom 8938
This theorem is referenced by:  1sdom2  9236  sdom1OLD  9239  1sdom2dom  9243  djulepw  10183  fin45  10383  gchxpidm  10660  rankcf  10768  snct  31925
  Copyright terms: Public domain W3C validator