MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdom1dom Structured version   Visualization version   GIF version

Theorem 0sdom1dom 9301
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7770, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7770. (Revised by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
0sdom1dom (∅ ≺ 𝐴 ↔ 1o𝐴)

Proof of Theorem 0sdom1dom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relsdom 9010 . . 3 Rel ≺
21brrelex2i 5757 . 2 (∅ ≺ 𝐴𝐴 ∈ V)
3 reldom 9009 . . 3 Rel ≼
43brrelex2i 5757 . 2 (1o𝐴𝐴 ∈ V)
5 0sdomg 9170 . . 3 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
6 n0 4376 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
7 snssi 4833 . . . . . . 7 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
8 df1o2 8529 . . . . . . . . . . 11 1o = {∅}
9 0ex 5325 . . . . . . . . . . . 12 ∅ ∈ V
10 vex 3492 . . . . . . . . . . . 12 𝑥 ∈ V
11 en2sn 9106 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
129, 10, 11mp2an 691 . . . . . . . . . . 11 {∅} ≈ {𝑥}
138, 12eqbrtri 5187 . . . . . . . . . 10 1o ≈ {𝑥}
14 endom 9039 . . . . . . . . . 10 (1o ≈ {𝑥} → 1o ≼ {𝑥})
1513, 14ax-mp 5 . . . . . . . . 9 1o ≼ {𝑥}
16 domssr 9059 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o𝐴)
1715, 16mp3an3 1450 . . . . . . . 8 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o𝐴)
1817ex 412 . . . . . . 7 (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o𝐴))
197, 18syl5 34 . . . . . 6 (𝐴 ∈ V → (𝑥𝐴 → 1o𝐴))
2019exlimdv 1932 . . . . 5 (𝐴 ∈ V → (∃𝑥 𝑥𝐴 → 1o𝐴))
216, 20biimtrid 242 . . . 4 (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o𝐴))
22 1n0 8544 . . . . . . 7 1o ≠ ∅
23 dom0 9168 . . . . . . 7 (1o ≼ ∅ ↔ 1o = ∅)
2422, 23nemtbir 3044 . . . . . 6 ¬ 1o ≼ ∅
25 breq2 5170 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≼ ∅))
2624, 25mtbiri 327 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
2726necon2ai 2976 . . . 4 (1o𝐴𝐴 ≠ ∅)
2821, 27impbid1 225 . . 3 (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o𝐴))
295, 28bitrd 279 . 2 (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o𝐴))
302, 4, 29pm5.21nii 378 1 (∅ ≺ 𝐴 ↔ 1o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  1oc1o 8515  cen 9000  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6401  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-1o 8522  df-en 9004  df-dom 9005  df-sdom 9006
This theorem is referenced by:  1sdom2  9303  sdom1OLD  9306  1sdom2dom  9310  djulepw  10262  fin45  10461  gchxpidm  10738  rankcf  10846  snct  32727
  Copyright terms: Public domain W3C validator