MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdom1dom Structured version   Visualization version   GIF version

Theorem 0sdom1dom 9145
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7675, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7675. (Revised by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
0sdom1dom (∅ ≺ 𝐴 ↔ 1o𝐴)

Proof of Theorem 0sdom1dom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relsdom 8886 . . 3 Rel ≺
21brrelex2i 5680 . 2 (∅ ≺ 𝐴𝐴 ∈ V)
3 reldom 8885 . . 3 Rel ≼
43brrelex2i 5680 . 2 (1o𝐴𝐴 ∈ V)
5 0sdomg 9030 . . 3 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
6 n0 4306 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
7 snssi 4762 . . . . . . 7 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
8 df1o2 8402 . . . . . . . . . . 11 1o = {∅}
9 0ex 5249 . . . . . . . . . . . 12 ∅ ∈ V
10 vex 3442 . . . . . . . . . . . 12 𝑥 ∈ V
11 en2sn 8973 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
129, 10, 11mp2an 692 . . . . . . . . . . 11 {∅} ≈ {𝑥}
138, 12eqbrtri 5116 . . . . . . . . . 10 1o ≈ {𝑥}
14 endom 8911 . . . . . . . . . 10 (1o ≈ {𝑥} → 1o ≼ {𝑥})
1513, 14ax-mp 5 . . . . . . . . 9 1o ≼ {𝑥}
16 domssr 8931 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o𝐴)
1715, 16mp3an3 1452 . . . . . . . 8 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o𝐴)
1817ex 412 . . . . . . 7 (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o𝐴))
197, 18syl5 34 . . . . . 6 (𝐴 ∈ V → (𝑥𝐴 → 1o𝐴))
2019exlimdv 1933 . . . . 5 (𝐴 ∈ V → (∃𝑥 𝑥𝐴 → 1o𝐴))
216, 20biimtrid 242 . . . 4 (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o𝐴))
22 1n0 8413 . . . . . . 7 1o ≠ ∅
23 dom0 9029 . . . . . . 7 (1o ≼ ∅ ↔ 1o = ∅)
2422, 23nemtbir 3021 . . . . . 6 ¬ 1o ≼ ∅
25 breq2 5099 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≼ ∅))
2624, 25mtbiri 327 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
2726necon2ai 2954 . . . 4 (1o𝐴𝐴 ≠ ∅)
2821, 27impbid1 225 . . 3 (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o𝐴))
295, 28bitrd 279 . 2 (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o𝐴))
302, 4, 29pm5.21nii 378 1 (∅ ≺ 𝐴 ↔ 1o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3438  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  1oc1o 8388  cen 8876  cdom 8877  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-suc 6317  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-1o 8395  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by:  1sdom2  9147  1sdom2dom  9153  djulepw  10106  fin45  10305  gchxpidm  10582  rankcf  10690  snct  32670
  Copyright terms: Public domain W3C validator