![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sdom1dom | Structured version Visualization version GIF version |
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7754, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7754. (Revised by BTernaryTau, 7-Dec-2024.) |
Ref | Expression |
---|---|
0sdom1dom | ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8991 | . . 3 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5746 | . 2 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
3 | reldom 8990 | . . 3 ⊢ Rel ≼ | |
4 | 3 | brrelex2i 5746 | . 2 ⊢ (1o ≼ 𝐴 → 𝐴 ∈ V) |
5 | 0sdomg 9143 | . . 3 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | n0 4359 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
7 | snssi 4813 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
8 | df1o2 8512 | . . . . . . . . . . 11 ⊢ 1o = {∅} | |
9 | 0ex 5313 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
10 | vex 3482 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
11 | en2sn 9080 | . . . . . . . . . . . 12 ⊢ ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥}) | |
12 | 9, 10, 11 | mp2an 692 | . . . . . . . . . . 11 ⊢ {∅} ≈ {𝑥} |
13 | 8, 12 | eqbrtri 5169 | . . . . . . . . . 10 ⊢ 1o ≈ {𝑥} |
14 | endom 9018 | . . . . . . . . . 10 ⊢ (1o ≈ {𝑥} → 1o ≼ {𝑥}) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ 1o ≼ {𝑥} |
16 | domssr 9038 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o ≼ 𝐴) | |
17 | 15, 16 | mp3an3 1449 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o ≼ 𝐴) |
18 | 17 | ex 412 | . . . . . . 7 ⊢ (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o ≼ 𝐴)) |
19 | 7, 18 | syl5 34 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
20 | 19 | exlimdv 1931 | . . . . 5 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
21 | 6, 20 | biimtrid 242 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o ≼ 𝐴)) |
22 | 1n0 8525 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
23 | dom0 9141 | . . . . . . 7 ⊢ (1o ≼ ∅ ↔ 1o = ∅) | |
24 | 22, 23 | nemtbir 3036 | . . . . . 6 ⊢ ¬ 1o ≼ ∅ |
25 | breq2 5152 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ≼ 𝐴 ↔ 1o ≼ ∅)) | |
26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 1o ≼ 𝐴) |
27 | 26 | necon2ai 2968 | . . . 4 ⊢ (1o ≼ 𝐴 → 𝐴 ≠ ∅) |
28 | 21, 27 | impbid1 225 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o ≼ 𝐴)) |
29 | 5, 28 | bitrd 279 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴)) |
30 | 2, 4, 29 | pm5.21nii 378 | 1 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 {csn 4631 class class class wbr 5148 1oc1o 8498 ≈ cen 8981 ≼ cdom 8982 ≺ csdm 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-suc 6392 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-1o 8505 df-en 8985 df-dom 8986 df-sdom 8987 |
This theorem is referenced by: 1sdom2 9274 sdom1OLD 9277 1sdom2dom 9281 djulepw 10231 fin45 10430 gchxpidm 10707 rankcf 10815 snct 32731 |
Copyright terms: Public domain | W3C validator |