![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sdom1dom | Structured version Visualization version GIF version |
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7770, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7770. (Revised by BTernaryTau, 7-Dec-2024.) |
Ref | Expression |
---|---|
0sdom1dom | ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 9010 | . . 3 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5757 | . 2 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
3 | reldom 9009 | . . 3 ⊢ Rel ≼ | |
4 | 3 | brrelex2i 5757 | . 2 ⊢ (1o ≼ 𝐴 → 𝐴 ∈ V) |
5 | 0sdomg 9170 | . . 3 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | n0 4376 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
7 | snssi 4833 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
8 | df1o2 8529 | . . . . . . . . . . 11 ⊢ 1o = {∅} | |
9 | 0ex 5325 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
10 | vex 3492 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
11 | en2sn 9106 | . . . . . . . . . . . 12 ⊢ ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥}) | |
12 | 9, 10, 11 | mp2an 691 | . . . . . . . . . . 11 ⊢ {∅} ≈ {𝑥} |
13 | 8, 12 | eqbrtri 5187 | . . . . . . . . . 10 ⊢ 1o ≈ {𝑥} |
14 | endom 9039 | . . . . . . . . . 10 ⊢ (1o ≈ {𝑥} → 1o ≼ {𝑥}) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ 1o ≼ {𝑥} |
16 | domssr 9059 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o ≼ 𝐴) | |
17 | 15, 16 | mp3an3 1450 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o ≼ 𝐴) |
18 | 17 | ex 412 | . . . . . . 7 ⊢ (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o ≼ 𝐴)) |
19 | 7, 18 | syl5 34 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
20 | 19 | exlimdv 1932 | . . . . 5 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
21 | 6, 20 | biimtrid 242 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o ≼ 𝐴)) |
22 | 1n0 8544 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
23 | dom0 9168 | . . . . . . 7 ⊢ (1o ≼ ∅ ↔ 1o = ∅) | |
24 | 22, 23 | nemtbir 3044 | . . . . . 6 ⊢ ¬ 1o ≼ ∅ |
25 | breq2 5170 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ≼ 𝐴 ↔ 1o ≼ ∅)) | |
26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 1o ≼ 𝐴) |
27 | 26 | necon2ai 2976 | . . . 4 ⊢ (1o ≼ 𝐴 → 𝐴 ≠ ∅) |
28 | 21, 27 | impbid1 225 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o ≼ 𝐴)) |
29 | 5, 28 | bitrd 279 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴)) |
30 | 2, 4, 29 | pm5.21nii 378 | 1 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 {csn 4648 class class class wbr 5166 1oc1o 8515 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-1o 8522 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: 1sdom2 9303 sdom1OLD 9306 1sdom2dom 9310 djulepw 10262 fin45 10461 gchxpidm 10738 rankcf 10846 snct 32727 |
Copyright terms: Public domain | W3C validator |