| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sdom1dom | Structured version Visualization version GIF version | ||
| Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7676, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7676. (Revised by BTernaryTau, 7-Dec-2024.) |
| Ref | Expression |
|---|---|
| 0sdom1dom | ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8884 | . . 3 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5678 | . 2 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
| 3 | reldom 8883 | . . 3 ⊢ Rel ≼ | |
| 4 | 3 | brrelex2i 5678 | . 2 ⊢ (1o ≼ 𝐴 → 𝐴 ∈ V) |
| 5 | 0sdomg 9028 | . . 3 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 6 | n0 4302 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 7 | snssi 4761 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
| 8 | df1o2 8400 | . . . . . . . . . . 11 ⊢ 1o = {∅} | |
| 9 | 0ex 5249 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
| 10 | vex 3441 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
| 11 | en2sn 8972 | . . . . . . . . . . . 12 ⊢ ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥}) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . . . . . . 11 ⊢ {∅} ≈ {𝑥} |
| 13 | 8, 12 | eqbrtri 5116 | . . . . . . . . . 10 ⊢ 1o ≈ {𝑥} |
| 14 | endom 8910 | . . . . . . . . . 10 ⊢ (1o ≈ {𝑥} → 1o ≼ {𝑥}) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ 1o ≼ {𝑥} |
| 16 | domssr 8930 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o ≼ 𝐴) | |
| 17 | 15, 16 | mp3an3 1452 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o ≼ 𝐴) |
| 18 | 17 | ex 412 | . . . . . . 7 ⊢ (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o ≼ 𝐴)) |
| 19 | 7, 18 | syl5 34 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
| 20 | 19 | exlimdv 1934 | . . . . 5 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
| 21 | 6, 20 | biimtrid 242 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o ≼ 𝐴)) |
| 22 | 1n0 8411 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 23 | dom0 9027 | . . . . . . 7 ⊢ (1o ≼ ∅ ↔ 1o = ∅) | |
| 24 | 22, 23 | nemtbir 3025 | . . . . . 6 ⊢ ¬ 1o ≼ ∅ |
| 25 | breq2 5099 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ≼ 𝐴 ↔ 1o ≼ ∅)) | |
| 26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 1o ≼ 𝐴) |
| 27 | 26 | necon2ai 2958 | . . . 4 ⊢ (1o ≼ 𝐴 → 𝐴 ≠ ∅) |
| 28 | 21, 27 | impbid1 225 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o ≼ 𝐴)) |
| 29 | 5, 28 | bitrd 279 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴)) |
| 30 | 2, 4, 29 | pm5.21nii 378 | 1 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 {csn 4577 class class class wbr 5095 1oc1o 8386 ≈ cen 8874 ≼ cdom 8875 ≺ csdm 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-suc 6319 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-1o 8393 df-en 8878 df-dom 8879 df-sdom 8880 |
| This theorem is referenced by: 1sdom2 9141 1sdom2dom 9147 djulepw 10093 fin45 10292 gchxpidm 10569 rankcf 10677 snct 32701 |
| Copyright terms: Public domain | W3C validator |