MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdom1dom Structured version   Visualization version   GIF version

Theorem 0sdom1dom 9274
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7755, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7755. (Revised by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
0sdom1dom (∅ ≺ 𝐴 ↔ 1o𝐴)

Proof of Theorem 0sdom1dom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relsdom 8992 . . 3 Rel ≺
21brrelex2i 5742 . 2 (∅ ≺ 𝐴𝐴 ∈ V)
3 reldom 8991 . . 3 Rel ≼
43brrelex2i 5742 . 2 (1o𝐴𝐴 ∈ V)
5 0sdomg 9144 . . 3 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
6 n0 4353 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
7 snssi 4808 . . . . . . 7 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
8 df1o2 8513 . . . . . . . . . . 11 1o = {∅}
9 0ex 5307 . . . . . . . . . . . 12 ∅ ∈ V
10 vex 3484 . . . . . . . . . . . 12 𝑥 ∈ V
11 en2sn 9081 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥})
129, 10, 11mp2an 692 . . . . . . . . . . 11 {∅} ≈ {𝑥}
138, 12eqbrtri 5164 . . . . . . . . . 10 1o ≈ {𝑥}
14 endom 9019 . . . . . . . . . 10 (1o ≈ {𝑥} → 1o ≼ {𝑥})
1513, 14ax-mp 5 . . . . . . . . 9 1o ≼ {𝑥}
16 domssr 9039 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o𝐴)
1715, 16mp3an3 1452 . . . . . . . 8 ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o𝐴)
1817ex 412 . . . . . . 7 (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o𝐴))
197, 18syl5 34 . . . . . 6 (𝐴 ∈ V → (𝑥𝐴 → 1o𝐴))
2019exlimdv 1933 . . . . 5 (𝐴 ∈ V → (∃𝑥 𝑥𝐴 → 1o𝐴))
216, 20biimtrid 242 . . . 4 (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o𝐴))
22 1n0 8526 . . . . . . 7 1o ≠ ∅
23 dom0 9142 . . . . . . 7 (1o ≼ ∅ ↔ 1o = ∅)
2422, 23nemtbir 3038 . . . . . 6 ¬ 1o ≼ ∅
25 breq2 5147 . . . . . 6 (𝐴 = ∅ → (1o𝐴 ↔ 1o ≼ ∅))
2624, 25mtbiri 327 . . . . 5 (𝐴 = ∅ → ¬ 1o𝐴)
2726necon2ai 2970 . . . 4 (1o𝐴𝐴 ≠ ∅)
2821, 27impbid1 225 . . 3 (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o𝐴))
295, 28bitrd 279 . 2 (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o𝐴))
302, 4, 29pm5.21nii 378 1 (∅ ≺ 𝐴 ↔ 1o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2108  wne 2940  Vcvv 3480  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  1oc1o 8499  cen 8982  cdom 8983  csdm 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-suc 6390  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-1o 8506  df-en 8986  df-dom 8987  df-sdom 8988
This theorem is referenced by:  1sdom2  9276  sdom1OLD  9279  1sdom2dom  9283  djulepw  10233  fin45  10432  gchxpidm  10709  rankcf  10817  snct  32725
  Copyright terms: Public domain W3C validator