| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sdom1dom | Structured version Visualization version GIF version | ||
| Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7711, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7711. (Revised by BTernaryTau, 7-Dec-2024.) |
| Ref | Expression |
|---|---|
| 0sdom1dom | ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8925 | . . 3 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5695 | . 2 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
| 3 | reldom 8924 | . . 3 ⊢ Rel ≼ | |
| 4 | 3 | brrelex2i 5695 | . 2 ⊢ (1o ≼ 𝐴 → 𝐴 ∈ V) |
| 5 | 0sdomg 9070 | . . 3 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 6 | n0 4316 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 7 | snssi 4772 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
| 8 | df1o2 8441 | . . . . . . . . . . 11 ⊢ 1o = {∅} | |
| 9 | 0ex 5262 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
| 10 | vex 3451 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
| 11 | en2sn 9012 | . . . . . . . . . . . 12 ⊢ ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥}) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . . . . . . 11 ⊢ {∅} ≈ {𝑥} |
| 13 | 8, 12 | eqbrtri 5128 | . . . . . . . . . 10 ⊢ 1o ≈ {𝑥} |
| 14 | endom 8950 | . . . . . . . . . 10 ⊢ (1o ≈ {𝑥} → 1o ≼ {𝑥}) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ 1o ≼ {𝑥} |
| 16 | domssr 8970 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o ≼ 𝐴) | |
| 17 | 15, 16 | mp3an3 1452 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o ≼ 𝐴) |
| 18 | 17 | ex 412 | . . . . . . 7 ⊢ (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o ≼ 𝐴)) |
| 19 | 7, 18 | syl5 34 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
| 20 | 19 | exlimdv 1933 | . . . . 5 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
| 21 | 6, 20 | biimtrid 242 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o ≼ 𝐴)) |
| 22 | 1n0 8452 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 23 | dom0 9069 | . . . . . . 7 ⊢ (1o ≼ ∅ ↔ 1o = ∅) | |
| 24 | 22, 23 | nemtbir 3021 | . . . . . 6 ⊢ ¬ 1o ≼ ∅ |
| 25 | breq2 5111 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ≼ 𝐴 ↔ 1o ≼ ∅)) | |
| 26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 1o ≼ 𝐴) |
| 27 | 26 | necon2ai 2954 | . . . 4 ⊢ (1o ≼ 𝐴 → 𝐴 ≠ ∅) |
| 28 | 21, 27 | impbid1 225 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o ≼ 𝐴)) |
| 29 | 5, 28 | bitrd 279 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴)) |
| 30 | 2, 4, 29 | pm5.21nii 378 | 1 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 {csn 4589 class class class wbr 5107 1oc1o 8427 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-suc 6338 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-1o 8434 df-en 8919 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: 1sdom2 9187 sdom1OLD 9190 1sdom2dom 9194 djulepw 10146 fin45 10345 gchxpidm 10622 rankcf 10730 snct 32637 |
| Copyright terms: Public domain | W3C validator |