![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sdom1dom | Structured version Visualization version GIF version |
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7721, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7721. (Revised by BTernaryTau, 7-Dec-2024.) |
Ref | Expression |
---|---|
0sdom1dom | ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8942 | . . 3 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5731 | . 2 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
3 | reldom 8941 | . . 3 ⊢ Rel ≼ | |
4 | 3 | brrelex2i 5731 | . 2 ⊢ (1o ≼ 𝐴 → 𝐴 ∈ V) |
5 | 0sdomg 9100 | . . 3 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | n0 4345 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
7 | snssi 4810 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
8 | df1o2 8469 | . . . . . . . . . . 11 ⊢ 1o = {∅} | |
9 | 0ex 5306 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
10 | vex 3478 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
11 | en2sn 9037 | . . . . . . . . . . . 12 ⊢ ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥}) | |
12 | 9, 10, 11 | mp2an 690 | . . . . . . . . . . 11 ⊢ {∅} ≈ {𝑥} |
13 | 8, 12 | eqbrtri 5168 | . . . . . . . . . 10 ⊢ 1o ≈ {𝑥} |
14 | endom 8971 | . . . . . . . . . 10 ⊢ (1o ≈ {𝑥} → 1o ≼ {𝑥}) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ 1o ≼ {𝑥} |
16 | domssr 8991 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o ≼ 𝐴) | |
17 | 15, 16 | mp3an3 1450 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o ≼ 𝐴) |
18 | 17 | ex 413 | . . . . . . 7 ⊢ (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o ≼ 𝐴)) |
19 | 7, 18 | syl5 34 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
20 | 19 | exlimdv 1936 | . . . . 5 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
21 | 6, 20 | biimtrid 241 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o ≼ 𝐴)) |
22 | 1n0 8484 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
23 | dom0 9098 | . . . . . . 7 ⊢ (1o ≼ ∅ ↔ 1o = ∅) | |
24 | 22, 23 | nemtbir 3038 | . . . . . 6 ⊢ ¬ 1o ≼ ∅ |
25 | breq2 5151 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ≼ 𝐴 ↔ 1o ≼ ∅)) | |
26 | 24, 25 | mtbiri 326 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 1o ≼ 𝐴) |
27 | 26 | necon2ai 2970 | . . . 4 ⊢ (1o ≼ 𝐴 → 𝐴 ≠ ∅) |
28 | 21, 27 | impbid1 224 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o ≼ 𝐴)) |
29 | 5, 28 | bitrd 278 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴)) |
30 | 2, 4, 29 | pm5.21nii 379 | 1 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ⊆ wss 3947 ∅c0 4321 {csn 4627 class class class wbr 5147 1oc1o 8455 ≈ cen 8932 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-suc 6367 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-1o 8462 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: 1sdom2 9236 sdom1OLD 9239 1sdom2dom 9243 djulepw 10183 fin45 10383 gchxpidm 10660 rankcf 10768 snct 31925 |
Copyright terms: Public domain | W3C validator |