![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sdom1dom | Structured version Visualization version GIF version |
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7722, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7722. (Revised by BTernaryTau, 7-Dec-2024.) |
Ref | Expression |
---|---|
0sdom1dom | ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8948 | . . 3 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5726 | . 2 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
3 | reldom 8947 | . . 3 ⊢ Rel ≼ | |
4 | 3 | brrelex2i 5726 | . 2 ⊢ (1o ≼ 𝐴 → 𝐴 ∈ V) |
5 | 0sdomg 9106 | . . 3 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
6 | n0 4341 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
7 | snssi 4806 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
8 | df1o2 8474 | . . . . . . . . . . 11 ⊢ 1o = {∅} | |
9 | 0ex 5300 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
10 | vex 3472 | . . . . . . . . . . . 12 ⊢ 𝑥 ∈ V | |
11 | en2sn 9043 | . . . . . . . . . . . 12 ⊢ ((∅ ∈ V ∧ 𝑥 ∈ V) → {∅} ≈ {𝑥}) | |
12 | 9, 10, 11 | mp2an 689 | . . . . . . . . . . 11 ⊢ {∅} ≈ {𝑥} |
13 | 8, 12 | eqbrtri 5162 | . . . . . . . . . 10 ⊢ 1o ≈ {𝑥} |
14 | endom 8977 | . . . . . . . . . 10 ⊢ (1o ≈ {𝑥} → 1o ≼ {𝑥}) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . . 9 ⊢ 1o ≼ {𝑥} |
16 | domssr 8997 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴 ∧ 1o ≼ {𝑥}) → 1o ≼ 𝐴) | |
17 | 15, 16 | mp3an3 1446 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥} ⊆ 𝐴) → 1o ≼ 𝐴) |
18 | 17 | ex 412 | . . . . . . 7 ⊢ (𝐴 ∈ V → ({𝑥} ⊆ 𝐴 → 1o ≼ 𝐴)) |
19 | 7, 18 | syl5 34 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
20 | 19 | exlimdv 1928 | . . . . 5 ⊢ (𝐴 ∈ V → (∃𝑥 𝑥 ∈ 𝐴 → 1o ≼ 𝐴)) |
21 | 6, 20 | biimtrid 241 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ → 1o ≼ 𝐴)) |
22 | 1n0 8489 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
23 | dom0 9104 | . . . . . . 7 ⊢ (1o ≼ ∅ ↔ 1o = ∅) | |
24 | 22, 23 | nemtbir 3032 | . . . . . 6 ⊢ ¬ 1o ≼ ∅ |
25 | breq2 5145 | . . . . . 6 ⊢ (𝐴 = ∅ → (1o ≼ 𝐴 ↔ 1o ≼ ∅)) | |
26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ (𝐴 = ∅ → ¬ 1o ≼ 𝐴) |
27 | 26 | necon2ai 2964 | . . . 4 ⊢ (1o ≼ 𝐴 → 𝐴 ≠ ∅) |
28 | 21, 27 | impbid1 224 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ≠ ∅ ↔ 1o ≼ 𝐴)) |
29 | 5, 28 | bitrd 279 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴)) |
30 | 2, 4, 29 | pm5.21nii 378 | 1 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ⊆ wss 3943 ∅c0 4317 {csn 4623 class class class wbr 5141 1oc1o 8460 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-suc 6364 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-1o 8467 df-en 8942 df-dom 8943 df-sdom 8944 |
This theorem is referenced by: 1sdom2 9242 sdom1OLD 9245 1sdom2dom 9249 djulepw 10189 fin45 10389 gchxpidm 10666 rankcf 10774 snct 32445 |
Copyright terms: Public domain | W3C validator |