| Step | Hyp | Ref
| Expression |
| 1 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑑 = 𝑥 → (𝑐 ∘r ≤ 𝑑 ↔ 𝑐 ∘r ≤ 𝑥)) |
| 2 | 1 | rabbidv 3444 |
. . . . . . . 8
⊢ (𝑑 = 𝑥 → {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} = {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
| 3 | | fvoveq1 7454 |
. . . . . . . . 9
⊢ (𝑑 = 𝑥 → (𝑄‘(𝑑 ∘f − 𝑒)) = (𝑄‘(𝑥 ∘f − 𝑒))) |
| 4 | 3 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑑 = 𝑥 → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒))) = ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))) |
| 5 | 2, 4 | mpteq12dv 5233 |
. . . . . . 7
⊢ (𝑑 = 𝑥 → (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒)))) = (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) |
| 6 | 5 | oveq2d 7447 |
. . . . . 6
⊢ (𝑑 = 𝑥 → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))))) |
| 7 | | mhpmulcl.y |
. . . . . . . 8
⊢ 𝑌 = (𝐼 mPoly 𝑅) |
| 8 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 9 | | eqid 2737 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 10 | | mhpmulcl.t |
. . . . . . . 8
⊢ · =
(.r‘𝑌) |
| 11 | | eqid 2737 |
. . . . . . . 8
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 12 | | mhpmulcl.h |
. . . . . . . . 9
⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| 13 | | mhpmulcl.p |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ (𝐻‘𝑀)) |
| 14 | 12, 7, 8, 13 | mhpmpl 22148 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ (Base‘𝑌)) |
| 15 | | mhpmulcl.q |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (𝐻‘𝑁)) |
| 16 | 12, 7, 8, 15 | mhpmpl 22148 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ (Base‘𝑌)) |
| 17 | 7, 8, 9, 10, 11, 14, 16 | mplmul 22031 |
. . . . . . 7
⊢ (𝜑 → (𝑃 · 𝑄) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒))))))) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑃 · 𝑄) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒))))))) |
| 19 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 20 | | ovexd 7466 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) ∈ V) |
| 21 | 6, 18, 19, 20 | fvmptd4 7040 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑃 · 𝑄)‘𝑥) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))))) |
| 22 | 21 | neeq1d 3000 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g‘𝑅) ↔ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) ≠
(0g‘𝑅))) |
| 23 | | simp-4l 783 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝜑) |
| 24 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑒 → ((ℂfld
↾s ℕ0) Σg 𝑐) = ((ℂfld
↾s ℕ0) Σg 𝑒)) |
| 25 | 24 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑒 → (((ℂfld
↾s ℕ0) Σg 𝑐) = 𝑀 ↔ ((ℂfld
↾s ℕ0) Σg 𝑒) = 𝑀)) |
| 26 | 25 | necon3bbid 2978 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑒 → (¬ ((ℂfld
↾s ℕ0) Σg 𝑐) = 𝑀 ↔ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀)) |
| 27 | | elrabi 3687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} → 𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 28 | 27 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 29 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) |
| 30 | 26, 28, 29 | elrabd 3694 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀}) |
| 31 | | notrab 4322 |
. . . . . . . . . . . . . 14
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀}) = {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀} |
| 32 | 30, 31 | eleqtrrdi 2852 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀})) |
| 33 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 34 | 7, 33, 8, 11, 14 | mplelf 22018 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 35 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 36 | 12, 35, 11, 13 | mhpdeg 22149 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 supp (0g‘𝑅)) ⊆ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀}) |
| 37 | | fvexd 6921 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
| 38 | 34, 36, 13, 37 | suppssrg 8221 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑒 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀})) → (𝑃‘𝑒) = (0g‘𝑅)) |
| 39 | 23, 32, 38 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → (𝑃‘𝑒) = (0g‘𝑅)) |
| 40 | 39 | oveq1d 7446 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) =
((0g‘𝑅)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))) |
| 41 | | mhpmulcl.r |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 42 | 41 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑅 ∈ Ring) |
| 43 | 16 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑄 ∈ (Base‘𝑌)) |
| 44 | 7, 33, 8, 11, 43 | mplelf 22018 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑄:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 45 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} = {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} |
| 46 | 11, 45 | psrbagconcl 21947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
| 47 | 46 | ad5ant24 761 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → (𝑥 ∘f − 𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
| 48 | | elrabi 3687 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∘f −
𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} → (𝑥 ∘f − 𝑒) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → (𝑥 ∘f − 𝑒) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 50 | 44, 49 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → (𝑄‘(𝑥 ∘f − 𝑒)) ∈ (Base‘𝑅)) |
| 51 | 33, 9, 35, 42, 50 | ringlzd 20292 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → ((0g‘𝑅)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = (0g‘𝑅)) |
| 52 | 40, 51 | eqtrd 2777 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = (0g‘𝑅)) |
| 53 | | simp-4l 783 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝜑) |
| 54 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑥 ∘f − 𝑒) → ((ℂfld
↾s ℕ0) Σg 𝑐) = ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) |
| 55 | 54 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑥 ∘f − 𝑒) →
(((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁 ↔ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁)) |
| 56 | 55 | necon3bbid 2978 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝑥 ∘f − 𝑒) → (¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁 ↔ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁)) |
| 57 | 46 | ad5ant24 761 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑥 ∘f − 𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
| 58 | 57, 48 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑥 ∘f − 𝑒) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 59 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) |
| 60 | 56, 58, 59 | elrabd 3694 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑥 ∘f − 𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁}) |
| 61 | | notrab 4322 |
. . . . . . . . . . . . . 14
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁}) = {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁} |
| 62 | 60, 61 | eleqtrrdi 2852 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑥 ∘f − 𝑒) ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁})) |
| 63 | 7, 33, 8, 11, 16 | mplelf 22018 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 64 | 12, 35, 11, 15 | mhpdeg 22149 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄 supp (0g‘𝑅)) ⊆ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁}) |
| 65 | 63, 64, 15, 37 | suppssrg 8221 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∘f − 𝑒) ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁})) → (𝑄‘(𝑥 ∘f − 𝑒)) = (0g‘𝑅)) |
| 66 | 53, 62, 65 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑄‘(𝑥 ∘f − 𝑒)) = (0g‘𝑅)) |
| 67 | 66 | oveq2d 7447 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = ((𝑃‘𝑒)(.r‘𝑅)(0g‘𝑅))) |
| 68 | 41 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑅 ∈ Ring) |
| 69 | 14 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑃 ∈ (Base‘𝑌)) |
| 70 | 7, 33, 8, 11, 69 | mplelf 22018 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑃:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 71 | 27 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 72 | 70, 71 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑃‘𝑒) ∈ (Base‘𝑅)) |
| 73 | 33, 9, 35, 68, 72 | ringrzd 20293 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → ((𝑃‘𝑒)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 74 | 67, 73 | eqtrd 2777 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = (0g‘𝑅)) |
| 75 | | nn0subm 21440 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ∈
(SubMnd‘ℂfld) |
| 76 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(ℂfld ↾s ℕ0) =
(ℂfld ↾s
ℕ0) |
| 77 | 76 | submbas 18827 |
. . . . . . . . . . . . . . . 16
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
ℕ0 = (Base‘(ℂfld ↾s
ℕ0))) |
| 78 | 75, 77 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (Base‘(ℂfld
↾s ℕ0)) |
| 79 | | cnfld0 21405 |
. . . . . . . . . . . . . . . . 17
⊢ 0 =
(0g‘ℂfld) |
| 80 | 76, 79 | subm0 18828 |
. . . . . . . . . . . . . . . 16
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
0 = (0g‘(ℂfld ↾s
ℕ0))) |
| 81 | 75, 80 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ 0 =
(0g‘(ℂfld ↾s
ℕ0)) |
| 82 | | nn0ex 12532 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ∈ V |
| 83 | | cnfldadd 21370 |
. . . . . . . . . . . . . . . . 17
⊢ + =
(+g‘ℂfld) |
| 84 | 76, 83 | ressplusg 17334 |
. . . . . . . . . . . . . . . 16
⊢
(ℕ0 ∈ V → + =
(+g‘(ℂfld ↾s
ℕ0))) |
| 85 | 82, 84 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ + =
(+g‘(ℂfld ↾s
ℕ0)) |
| 86 | | cnring 21403 |
. . . . . . . . . . . . . . . . . 18
⊢
ℂfld ∈ Ring |
| 87 | | ringcmn 20279 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℂfld ∈ Ring → ℂfld ∈
CMnd) |
| 88 | 86, 87 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
ℂfld ∈ CMnd |
| 89 | 76 | submcmn 19856 |
. . . . . . . . . . . . . . . . 17
⊢
((ℂfld ∈ CMnd ∧ ℕ0 ∈
(SubMnd‘ℂfld)) → (ℂfld
↾s ℕ0) ∈ CMnd) |
| 90 | 88, 75, 89 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢
(ℂfld ↾s ℕ0) ∈
CMnd |
| 91 | 90 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (ℂfld
↾s ℕ0) ∈ CMnd) |
| 92 | | reldmmhp 22141 |
. . . . . . . . . . . . . . . . 17
⊢ Rel dom
mHomP |
| 93 | 92, 12, 13 | elfvov1 7473 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐼 ∈ V) |
| 94 | 93 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝐼 ∈ V) |
| 95 | 27 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 96 | 11 | psrbagf 21938 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑒:𝐼⟶ℕ0) |
| 97 | 95, 96 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒:𝐼⟶ℕ0) |
| 98 | 11 | psrbagf 21938 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑥:𝐼⟶ℕ0) |
| 99 | 98 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑥:𝐼⟶ℕ0) |
| 100 | 99 | ffnd 6737 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑥 Fn 𝐼) |
| 101 | 97 | ffnd 6737 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 Fn 𝐼) |
| 102 | | inidm 4227 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 103 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑥‘𝑖) = (𝑥‘𝑖)) |
| 104 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑒‘𝑖) = (𝑒‘𝑖)) |
| 105 | 100, 101,
94, 94, 102, 103, 104 | offval 7706 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) = (𝑖 ∈ 𝐼 ↦ ((𝑥‘𝑖) − (𝑒‘𝑖)))) |
| 106 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥})) |
| 107 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑒 → (𝑐 ∘r ≤ 𝑥 ↔ 𝑒 ∘r ≤ 𝑥)) |
| 108 | 107 | elrab 3692 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↔ (𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑒 ∘r ≤ 𝑥)) |
| 109 | 108 | simprbi 496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} → 𝑒 ∘r ≤ 𝑥) |
| 110 | 109 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → 𝑒 ∘r ≤ 𝑥) |
| 111 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
| 112 | 101, 100,
94, 94, 102, 104, 103 | ofrval 7709 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑒 ∘r ≤ 𝑥 ∧ 𝑖 ∈ 𝐼) → (𝑒‘𝑖) ≤ (𝑥‘𝑖)) |
| 113 | 106, 110,
111, 112 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑒‘𝑖) ≤ (𝑥‘𝑖)) |
| 114 | 97 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑒‘𝑖) ∈
ℕ0) |
| 115 | 99 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑥‘𝑖) ∈
ℕ0) |
| 116 | | nn0sub 12576 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑒‘𝑖) ∈ ℕ0 ∧ (𝑥‘𝑖) ∈ ℕ0) → ((𝑒‘𝑖) ≤ (𝑥‘𝑖) ↔ ((𝑥‘𝑖) − (𝑒‘𝑖)) ∈
ℕ0)) |
| 117 | 114, 115,
116 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → ((𝑒‘𝑖) ≤ (𝑥‘𝑖) ↔ ((𝑥‘𝑖) − (𝑒‘𝑖)) ∈
ℕ0)) |
| 118 | 113, 117 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → ((𝑥‘𝑖) − (𝑒‘𝑖)) ∈
ℕ0) |
| 119 | 105, 118 | fmpt3d 7136 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒):𝐼⟶ℕ0) |
| 120 | 97 | ffund 6740 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → Fun 𝑒) |
| 121 | | c0ex 11255 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
V |
| 122 | 94, 121 | jctir 520 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝐼 ∈ V ∧ 0 ∈
V)) |
| 123 | | fsuppeq 8200 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ V ∧ 0 ∈ V)
→ (𝑒:𝐼⟶ℕ0 → (𝑒 supp 0) = (◡𝑒 “ (ℕ0 ∖
{0})))) |
| 124 | 122, 97, 123 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 supp 0) = (◡𝑒 “ (ℕ0 ∖
{0}))) |
| 125 | | dfn2 12539 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℕ =
(ℕ0 ∖ {0}) |
| 126 | 125 | imaeq2i 6076 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑒 “ ℕ) = (◡𝑒 “ (ℕ0 ∖
{0})) |
| 127 | 124, 126 | eqtr4di 2795 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 supp 0) = (◡𝑒 “ ℕ)) |
| 128 | 11 | psrbag 21937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ V → (𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (◡𝑒 “ ℕ) ∈
Fin))) |
| 129 | 94, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (◡𝑒 “ ℕ) ∈
Fin))) |
| 130 | 95, 129 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒:𝐼⟶ℕ0 ∧ (◡𝑒 “ ℕ) ∈
Fin)) |
| 131 | 130 | simprd 495 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (◡𝑒 “ ℕ) ∈
Fin) |
| 132 | 127, 131 | eqeltrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 supp 0) ∈ Fin) |
| 133 | 95 | elexd 3504 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 ∈ V) |
| 134 | | isfsupp 9405 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 ∈ V ∧ 0 ∈ V)
→ (𝑒 finSupp 0 ↔
(Fun 𝑒 ∧ (𝑒 supp 0) ∈
Fin))) |
| 135 | 133, 121,
134 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin))) |
| 136 | 120, 132,
135 | mpbir2and 713 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 finSupp 0) |
| 137 | | ovexd 7466 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) ∈ V) |
| 138 | | 0nn0 12541 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℕ0 |
| 139 | 138 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 0 ∈
ℕ0) |
| 140 | 100, 101,
94, 94 | offun 7711 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → Fun (𝑥 ∘f −
𝑒)) |
| 141 | 11 | psrbagfsupp 21939 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑥 finSupp 0) |
| 142 | 141 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑥 finSupp 0) |
| 143 | 142, 136 | fsuppunfi 9428 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ((𝑥 supp 0) ∪ (𝑒 supp 0)) ∈ Fin) |
| 144 | | 0m0e0 12386 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0
− 0) = 0 |
| 145 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (0 − 0) =
0) |
| 146 | 94, 139, 99, 97, 145 | suppofssd 8228 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ((𝑥 ∘f − 𝑒) supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑒 supp 0))) |
| 147 | 143, 146 | ssfid 9301 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ((𝑥 ∘f − 𝑒) supp 0) ∈
Fin) |
| 148 | 137, 139,
140, 147 | isfsuppd 9406 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) finSupp 0) |
| 149 | 78, 81, 85, 91, 94, 97, 119, 136, 148 | gsumadd 19941 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((ℂfld ↾s ℕ0)
Σg (𝑒 ∘f + (𝑥 ∘f − 𝑒))) = (((ℂfld
↾s ℕ0) Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)))) |
| 150 | 97 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑒‘𝑏) ∈
ℕ0) |
| 151 | 150 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑒‘𝑏) ∈ ℂ) |
| 152 | 99 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈
ℕ0) |
| 153 | 152 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈ ℂ) |
| 154 | 151, 153 | pncan3d 11623 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → ((𝑒‘𝑏) + ((𝑥‘𝑏) − (𝑒‘𝑏))) = (𝑥‘𝑏)) |
| 155 | 154 | mpteq2dva 5242 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑏 ∈ 𝐼 ↦ ((𝑒‘𝑏) + ((𝑥‘𝑏) − (𝑒‘𝑏)))) = (𝑏 ∈ 𝐼 ↦ (𝑥‘𝑏))) |
| 156 | | fvexd 6921 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑒‘𝑏) ∈ V) |
| 157 | | ovexd 7466 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → ((𝑥‘𝑏) − (𝑒‘𝑏)) ∈ V) |
| 158 | 97 | feqmptd 6977 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 = (𝑏 ∈ 𝐼 ↦ (𝑒‘𝑏))) |
| 159 | 99 | feqmptd 6977 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑥 = (𝑏 ∈ 𝐼 ↦ (𝑥‘𝑏))) |
| 160 | 94, 152, 150, 159, 158 | offval2 7717 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) = (𝑏 ∈ 𝐼 ↦ ((𝑥‘𝑏) − (𝑒‘𝑏)))) |
| 161 | 94, 156, 157, 158, 160 | offval2 7717 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 ∘f + (𝑥 ∘f − 𝑒)) = (𝑏 ∈ 𝐼 ↦ ((𝑒‘𝑏) + ((𝑥‘𝑏) − (𝑒‘𝑏))))) |
| 162 | 155, 161,
159 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 ∘f + (𝑥 ∘f − 𝑒)) = 𝑥) |
| 163 | 162 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((ℂfld ↾s ℕ0)
Σg (𝑒 ∘f + (𝑥 ∘f − 𝑒))) = ((ℂfld
↾s ℕ0) Σg 𝑥)) |
| 164 | 149, 163 | eqtr3d 2779 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
(((ℂfld ↾s ℕ0)
Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) =
((ℂfld ↾s ℕ0)
Σg 𝑥)) |
| 165 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) |
| 166 | 164, 165 | eqnetrd 3008 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
(((ℂfld ↾s ℕ0)
Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) ≠ (𝑀 + 𝑁)) |
| 167 | | oveq12 7440 |
. . . . . . . . . . . . . 14
⊢
((((ℂfld ↾s ℕ0)
Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁) → (((ℂfld
↾s ℕ0) Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) = (𝑀 + 𝑁)) |
| 168 | 167 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((((ℂfld ↾s ℕ0)
Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁) → (((ℂfld
↾s ℕ0) Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) = (𝑀 + 𝑁))) |
| 169 | 168 | necon3ad 2953 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((((ℂfld ↾s ℕ0)
Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) ≠ (𝑀 + 𝑁) → ¬ (((ℂfld
↾s ℕ0) Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁))) |
| 170 | 166, 169 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ¬
(((ℂfld ↾s ℕ0)
Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁)) |
| 171 | | neorian 3037 |
. . . . . . . . . . 11
⊢
((((ℂfld ↾s ℕ0)
Σg 𝑒) ≠ 𝑀 ∨ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) ↔ ¬ (((ℂfld
↾s ℕ0) Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁)) |
| 172 | 170, 171 | sylibr 234 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
(((ℂfld ↾s ℕ0)
Σg 𝑒) ≠ 𝑀 ∨ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁)) |
| 173 | 52, 74, 172 | mpjaodan 961 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = (0g‘𝑅)) |
| 174 | 173 | mpteq2dva 5242 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))) = (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦
(0g‘𝑅))) |
| 175 | 174 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦
(0g‘𝑅)))) |
| 176 | | ringmnd 20240 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 177 | 41, 176 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 178 | 177 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → 𝑅 ∈ Mnd) |
| 179 | | ovex 7464 |
. . . . . . . . . 10
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 180 | 179 | rabex 5339 |
. . . . . . . . 9
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
| 181 | 180 | rabex 5339 |
. . . . . . . 8
⊢ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ∈ V |
| 182 | 35 | gsumz 18849 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ∈ V) → (𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦
(0g‘𝑅))) =
(0g‘𝑅)) |
| 183 | 178, 181,
182 | sylancl 586 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦
(0g‘𝑅))) =
(0g‘𝑅)) |
| 184 | 175, 183 | eqtrd 2777 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) =
(0g‘𝑅)) |
| 185 | 184 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) =
(0g‘𝑅))) |
| 186 | 185 | necon1d 2962 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) ≠
(0g‘𝑅)
→ ((ℂfld ↾s ℕ0)
Σg 𝑥) = (𝑀 + 𝑁))) |
| 187 | 22, 186 | sylbid 240 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g‘𝑅) → ((ℂfld
↾s ℕ0) Σg 𝑥) = (𝑀 + 𝑁))) |
| 188 | 187 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g‘𝑅) → ((ℂfld
↾s ℕ0) Σg 𝑥) = (𝑀 + 𝑁))) |
| 189 | 12, 13 | mhprcl 22147 |
. . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 190 | 12, 15 | mhprcl 22147 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 191 | 189, 190 | nn0addcld 12591 |
. . 3
⊢ (𝜑 → (𝑀 + 𝑁) ∈
ℕ0) |
| 192 | 7, 93, 41 | mplringd 22043 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Ring) |
| 193 | 8, 10, 192, 14, 16 | ringcld 20257 |
. . 3
⊢ (𝜑 → (𝑃 · 𝑄) ∈ (Base‘𝑌)) |
| 194 | 12, 7, 8, 35, 11, 191, 193 | ismhp3 22146 |
. 2
⊢ (𝜑 → ((𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)) ↔ ∀𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g‘𝑅) → ((ℂfld
↾s ℕ0) Σg 𝑥) = (𝑀 + 𝑁)))) |
| 195 | 188, 194 | mpbird 257 |
1
⊢ (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁))) |