MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpmulcl Structured version   Visualization version   GIF version

Theorem mhpmulcl 20897
Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 24784 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024.)
Hypotheses
Ref Expression
mhpmulcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpmulcl.y 𝑌 = (𝐼 mPoly 𝑅)
mhpmulcl.t · = (.r𝑌)
mhpmulcl.i (𝜑𝐼𝑉)
mhpmulcl.r (𝜑𝑅 ∈ Ring)
mhpmulcl.m (𝜑𝑀 ∈ ℕ0)
mhpmulcl.n (𝜑𝑁 ∈ ℕ0)
mhpmulcl.p (𝜑𝑃 ∈ (𝐻𝑀))
mhpmulcl.q (𝜑𝑄 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpmulcl (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)))

Proof of Theorem mhpmulcl
Dummy variables 𝑏 𝑑 𝑒 𝑖 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpmulcl.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 eqid 2758 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
3 eqid 2758 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mhpmulcl.t . . . . . . . 8 · = (.r𝑌)
5 eqid 2758 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpmulcl.h . . . . . . . . 9 𝐻 = (𝐼 mHomP 𝑅)
7 mhpmulcl.i . . . . . . . . 9 (𝜑𝐼𝑉)
8 mhpmulcl.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9 mhpmulcl.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
10 mhpmulcl.p . . . . . . . . 9 (𝜑𝑃 ∈ (𝐻𝑀))
116, 1, 2, 7, 8, 9, 10mhpmpl 20892 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝑌))
12 mhpmulcl.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
13 mhpmulcl.q . . . . . . . . 9 (𝜑𝑄 ∈ (𝐻𝑁))
146, 1, 2, 7, 8, 12, 13mhpmpl 20892 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝑌))
151, 2, 3, 4, 5, 11, 14mplmul 20779 . . . . . . 7 (𝜑 → (𝑃 · 𝑄) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))))))
1615adantr 484 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑃 · 𝑄) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))))))
17 breq2 5039 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑐r𝑑𝑐r𝑥))
1817rabbidv 3392 . . . . . . . . 9 (𝑑 = 𝑥 → {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
19 fvoveq1 7178 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑄‘(𝑑f𝑒)) = (𝑄‘(𝑥f𝑒)))
2019oveq2d 7171 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))) = ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))
2118, 20mpteq12dv 5120 . . . . . . . 8 (𝑑 = 𝑥 → (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))) = (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒)))))
2221oveq2d 7171 . . . . . . 7 (𝑑 = 𝑥 → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
2322adantl 485 . . . . . 6 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑑 = 𝑥) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
24 simpr 488 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
25 ovexd 7190 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ∈ V)
2616, 23, 24, 25fvmptd 6770 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑃 · 𝑄)‘𝑥) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
2726neeq1d 3010 . . . 4 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) ↔ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ≠ (0g𝑅)))
28 simp-4l 782 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝜑)
29 oveq2 7163 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑒 → ((ℂflds0) Σg 𝑐) = ((ℂflds0) Σg 𝑒))
3029eqeq1d 2760 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑒 → (((ℂflds0) Σg 𝑐) = 𝑀 ↔ ((ℂflds0) Σg 𝑒) = 𝑀))
3130necon3bbid 2988 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 → (¬ ((ℂflds0) Σg 𝑐) = 𝑀 ↔ ((ℂflds0) Σg 𝑒) ≠ 𝑀))
32 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
33 elrabi 3598 . . . . . . . . . . . . . . . 16 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3432, 33syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
35 simpr 488 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((ℂflds0) Σg 𝑒) ≠ 𝑀)
3631, 34, 35elrabd 3606 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑀})
37 notrab 4216 . . . . . . . . . . . . . 14 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀}) = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑀}
3836, 37eleqtrrdi 2863 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀}))
39 eqid 2758 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
401, 39, 2, 5, 11mplelf 20768 . . . . . . . . . . . . . 14 (𝜑𝑃:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
41 eqid 2758 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
426, 41, 5, 7, 8, 9, 10mhpdeg 20893 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 supp (0g𝑅)) ⊆ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀})
43 ovex 7188 . . . . . . . . . . . . . . . 16 (ℕ0m 𝐼) ∈ V
4443rabex 5205 . . . . . . . . . . . . . . 15 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
4544a1i 11 . . . . . . . . . . . . . 14 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
46 fvexd 6677 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑅) ∈ V)
4740, 42, 45, 46suppssr 7875 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀})) → (𝑃𝑒) = (0g𝑅))
4828, 38, 47syl2anc 587 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑃𝑒) = (0g𝑅))
4948oveq1d 7170 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))))
508ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑅 ∈ Ring)
5114ad4antr 731 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑄 ∈ (Base‘𝑌))
521, 39, 2, 5, 51mplelf 20768 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑄:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
53 simp-4r 783 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
54 eqid 2758 . . . . . . . . . . . . . . . 16 {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}
555, 54psrbagconcl 20701 . . . . . . . . . . . . . . 15 ((𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
5653, 32, 55syl2anc 587 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
57 elrabi 3598 . . . . . . . . . . . . . 14 ((𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5856, 57syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5952, 58ffvelrnd 6848 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑄‘(𝑥f𝑒)) ∈ (Base‘𝑅))
6039, 3, 41ringlz 19413 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑄‘(𝑥f𝑒)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
6150, 59, 60syl2anc 587 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
6249, 61eqtrd 2793 . . . . . . . . . 10 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
63 simp-4l 782 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝜑)
64 oveq2 7163 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑥f𝑒) → ((ℂflds0) Σg 𝑐) = ((ℂflds0) Σg (𝑥f𝑒)))
6564eqeq1d 2760 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑥f𝑒) → (((ℂflds0) Σg 𝑐) = 𝑁 ↔ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
6665necon3bbid 2988 . . . . . . . . . . . . . . 15 (𝑐 = (𝑥f𝑒) → (¬ ((ℂflds0) Σg 𝑐) = 𝑁 ↔ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁))
67 simp-4r 783 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
68 simplr 768 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
6967, 68, 55syl2anc 587 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
7069, 57syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
71 simpr 488 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁)
7266, 70, 71elrabd 3606 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑁})
73 notrab 4216 . . . . . . . . . . . . . 14 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁}) = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑁}
7472, 73eleqtrrdi 2863 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁}))
751, 39, 2, 5, 14mplelf 20768 . . . . . . . . . . . . . 14 (𝜑𝑄:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
766, 41, 5, 7, 8, 12, 13mhpdeg 20893 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 supp (0g𝑅)) ⊆ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁})
7775, 76, 45, 46suppssr 7875 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥f𝑒) ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁})) → (𝑄‘(𝑥f𝑒)) = (0g𝑅))
7863, 74, 77syl2anc 587 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑄‘(𝑥f𝑒)) = (0g𝑅))
7978oveq2d 7171 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = ((𝑃𝑒)(.r𝑅)(0g𝑅)))
808ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑅 ∈ Ring)
8111ad4antr 731 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑃 ∈ (Base‘𝑌))
821, 39, 2, 5, 81mplelf 20768 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑃:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
8333adantl 485 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8483adantr 484 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8582, 84ffvelrnd 6848 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑃𝑒) ∈ (Base‘𝑅))
8639, 3, 41ringrz 19414 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑃𝑒) ∈ (Base‘𝑅)) → ((𝑃𝑒)(.r𝑅)(0g𝑅)) = (0g𝑅))
8780, 85, 86syl2anc 587 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(0g𝑅)) = (0g𝑅))
8879, 87eqtrd 2793 . . . . . . . . . 10 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
89 nn0subm 20226 . . . . . . . . . . . . . . . 16 0 ∈ (SubMnd‘ℂfld)
90 eqid 2758 . . . . . . . . . . . . . . . . 17 (ℂflds0) = (ℂflds0)
9190submbas 18050 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
9289, 91ax-mp 5 . . . . . . . . . . . . . . 15 0 = (Base‘(ℂflds0))
93 cnfld0 20195 . . . . . . . . . . . . . . . . 17 0 = (0g‘ℂfld)
9490, 93subm0 18051 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
9589, 94ax-mp 5 . . . . . . . . . . . . . . 15 0 = (0g‘(ℂflds0))
96 nn0ex 11945 . . . . . . . . . . . . . . . 16 0 ∈ V
97 cnfldadd 20176 . . . . . . . . . . . . . . . . 17 + = (+g‘ℂfld)
9890, 97ressplusg 16675 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ V → + = (+g‘(ℂflds0)))
9996, 98ax-mp 5 . . . . . . . . . . . . . . 15 + = (+g‘(ℂflds0))
100 cnring 20193 . . . . . . . . . . . . . . . . . 18 fld ∈ Ring
101 ringcmn 19407 . . . . . . . . . . . . . . . . . 18 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
102100, 101ax-mp 5 . . . . . . . . . . . . . . . . 17 fld ∈ CMnd
10390submcmn 19031 . . . . . . . . . . . . . . . . 17 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
104102, 89, 103mp2an 691 . . . . . . . . . . . . . . . 16 (ℂflds0) ∈ CMnd
105104a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (ℂflds0) ∈ CMnd)
1067ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝐼𝑉)
1075psrbagf 20685 . . . . . . . . . . . . . . . 16 (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑒:𝐼⟶ℕ0)
10883, 107syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒:𝐼⟶ℕ0)
109 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1105psrbagf 20685 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑥:𝐼⟶ℕ0)
111109, 110syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥:𝐼⟶ℕ0)
112111ffnd 6503 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 Fn 𝐼)
113108ffnd 6503 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 Fn 𝐼)
114 inidm 4125 . . . . . . . . . . . . . . . . 17 (𝐼𝐼) = 𝐼
115 eqidd 2759 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑥𝑖) = (𝑥𝑖))
116 eqidd 2759 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) = (𝑒𝑖))
117112, 113, 106, 106, 114, 115, 116offval 7418 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) = (𝑖𝐼 ↦ ((𝑥𝑖) − (𝑒𝑖))))
118 simpl 486 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}))
119 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
120 breq1 5038 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑒 → (𝑐r𝑥𝑒r𝑥))
121120elrab 3604 . . . . . . . . . . . . . . . . . . . 20 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↔ (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑒r𝑥))
122121simprbi 500 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → 𝑒r𝑥)
123119, 122syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑒r𝑥)
124 simpr 488 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑖𝐼)
125113, 112, 106, 106, 114, 116, 115ofrval 7421 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑒r𝑥𝑖𝐼) → (𝑒𝑖) ≤ (𝑥𝑖))
126118, 123, 124, 125syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) ≤ (𝑥𝑖))
127108ffvelrnda 6847 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) ∈ ℕ0)
128111ffvelrnda 6847 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑥𝑖) ∈ ℕ0)
129 nn0sub 11989 . . . . . . . . . . . . . . . . . 18 (((𝑒𝑖) ∈ ℕ0 ∧ (𝑥𝑖) ∈ ℕ0) → ((𝑒𝑖) ≤ (𝑥𝑖) ↔ ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0))
130127, 128, 129syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → ((𝑒𝑖) ≤ (𝑥𝑖) ↔ ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0))
131126, 130mpbid 235 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0)
132117, 131fmpt3d 6876 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒):𝐼⟶ℕ0)
133108ffund 6506 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → Fun 𝑒)
134 c0ex 10678 . . . . . . . . . . . . . . . . . . . 20 0 ∈ V
135106, 134jctir 524 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝐼𝑉 ∧ 0 ∈ V))
136 frnsuppeq 7854 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉 ∧ 0 ∈ V) → (𝑒:𝐼⟶ℕ0 → (𝑒 supp 0) = (𝑒 “ (ℕ0 ∖ {0}))))
137135, 108, 136sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) = (𝑒 “ (ℕ0 ∖ {0})))
138 dfn2 11952 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℕ0 ∖ {0})
139138imaeq2i 5903 . . . . . . . . . . . . . . . . . 18 (𝑒 “ ℕ) = (𝑒 “ (ℕ0 ∖ {0}))
140137, 139eqtr4di 2811 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) = (𝑒 “ ℕ))
1415psrbag 20684 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉 → (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin)))
142106, 141syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin)))
14383, 142mpbid 235 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin))
144143simprd 499 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 “ ℕ) ∈ Fin)
145140, 144eqeltrd 2852 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) ∈ Fin)
14683elexd 3430 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 ∈ V)
147 isfsupp 8875 . . . . . . . . . . . . . . . . 17 ((𝑒 ∈ V ∧ 0 ∈ V) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin)))
148146, 134, 147sylancl 589 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin)))
149133, 145, 148mpbir2and 712 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 finSupp 0)
150112, 113, 106, 106offun 7423 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → Fun (𝑥f𝑒))
1515psrbagfsupp 20687 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑥 finSupp 0)
152109, 151syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 finSupp 0)
153152, 149fsuppunfi 8891 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥 supp 0) ∪ (𝑒 supp 0)) ∈ Fin)
154 0nn0 11954 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
155154a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 0 ∈ ℕ0)
156 0m0e0 11799 . . . . . . . . . . . . . . . . . . 19 (0 − 0) = 0
157156a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (0 − 0) = 0)
158106, 155, 111, 108, 157suppofssd 7882 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑒 supp 0)))
159153, 158ssfid 8783 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) supp 0) ∈ Fin)
160 ovexd 7190 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) ∈ V)
161 isfsupp 8875 . . . . . . . . . . . . . . . . 17 (((𝑥f𝑒) ∈ V ∧ 0 ∈ V) → ((𝑥f𝑒) finSupp 0 ↔ (Fun (𝑥f𝑒) ∧ ((𝑥f𝑒) supp 0) ∈ Fin)))
162160, 134, 161sylancl 589 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) finSupp 0 ↔ (Fun (𝑥f𝑒) ∧ ((𝑥f𝑒) supp 0) ∈ Fin)))
163150, 159, 162mpbir2and 712 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) finSupp 0)
16492, 95, 99, 105, 106, 108, 132, 149, 163gsumadd 19116 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg (𝑒f + (𝑥f𝑒))) = (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))))
165108ffvelrnda 6847 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ ℕ0)
166165nn0cnd 12001 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ ℂ)
167111ffvelrnda 6847 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
168167nn0cnd 12001 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
169166, 168pncan3d 11043 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏))) = (𝑥𝑏))
170169mpteq2dva 5130 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑏𝐼 ↦ ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
171 fvexd 6677 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ V)
172 ovexd 7190 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑒𝑏)) ∈ V)
173108feqmptd 6725 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 = (𝑏𝐼 ↦ (𝑒𝑏)))
174111feqmptd 6725 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
175106, 167, 165, 174, 173offval2 7429 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑒𝑏))))
176106, 171, 172, 173, 175offval2 7429 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒f + (𝑥f𝑒)) = (𝑏𝐼 ↦ ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏)))))
177170, 176, 1743eqtr4d 2803 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒f + (𝑥f𝑒)) = 𝑥)
178177oveq2d 7171 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg (𝑒f + (𝑥f𝑒))) = ((ℂflds0) Σg 𝑥))
179164, 178eqtr3d 2795 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = ((ℂflds0) Σg 𝑥))
180 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁))
181179, 180eqnetrd 3018 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) ≠ (𝑀 + 𝑁))
182 oveq12 7164 . . . . . . . . . . . . . 14 ((((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = (𝑀 + 𝑁))
183182a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = (𝑀 + 𝑁)))
184183necon3ad 2964 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) ≠ (𝑀 + 𝑁) → ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁)))
185181, 184mpd 15 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
186 neorian 3045 . . . . . . . . . . 11 ((((ℂflds0) Σg 𝑒) ≠ 𝑀 ∨ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) ↔ ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
187185, 186sylibr 237 . . . . . . . . . 10 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) ≠ 𝑀 ∨ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁))
18862, 88, 187mpjaodan 956 . . . . . . . . 9 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
189188mpteq2dva 5130 . . . . . . . 8 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒)))) = (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅)))
190189oveq2d 7171 . . . . . . 7 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))))
191 ringmnd 19380 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1928, 191syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
193192ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → 𝑅 ∈ Mnd)
19444rabex 5205 . . . . . . . 8 {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ∈ V
19541gsumz 18071 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ∈ V) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))) = (0g𝑅))
196193, 194, 195sylancl 589 . . . . . . 7 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))) = (0g𝑅))
197190, 196eqtrd 2793 . . . . . 6 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (0g𝑅))
198197ex 416 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (0g𝑅)))
199198necon1d 2973 . . . 4 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
20027, 199sylbid 243 . . 3 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
201200ralrimiva 3113 . 2 (𝜑 → ∀𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
2029, 12nn0addcld 12003 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
2031mplring 20788 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
2047, 8, 203syl2anc 587 . . . 4 (𝜑𝑌 ∈ Ring)
2052, 4ringcl 19387 . . . 4 ((𝑌 ∈ Ring ∧ 𝑃 ∈ (Base‘𝑌) ∧ 𝑄 ∈ (Base‘𝑌)) → (𝑃 · 𝑄) ∈ (Base‘𝑌))
206204, 11, 14, 205syl3anc 1368 . . 3 (𝜑 → (𝑃 · 𝑄) ∈ (Base‘𝑌))
2076, 1, 2, 41, 5, 7, 8, 202, 206ismhp3 20891 . 2 (𝜑 → ((𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)) ↔ ∀𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁))))
208201, 207mpbird 260 1 (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2951  wral 3070  {crab 3074  Vcvv 3409  cdif 3857  cun 3858  {csn 4525   class class class wbr 5035  cmpt 5115  ccnv 5526  cima 5530  Fun wfun 6333  wf 6335  cfv 6339  (class class class)co 7155  f cof 7408  r cofr 7409   supp csupp 7840  m cmap 8421  Fincfn 8532   finSupp cfsupp 8871  0cc0 10580   + caddc 10583  cle 10719  cmin 10913  cn 11679  0cn0 11939  Basecbs 16546  s cress 16547  +gcplusg 16628  .rcmulr 16629  0gc0g 16776   Σg cgsu 16777  Mndcmnd 17982  SubMndcsubmnd 18026  CMndccmn 18978  Ringcrg 19370  fldccnfld 20171   mPoly cmpl 20673   mHomP cmhp 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-addf 10659  ax-mulf 10660
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-ofr 7411  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-fz 12945  df-fzo 13088  df-seq 13424  df-hash 13746  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-0g 16778  df-gsum 16779  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-mhm 18027  df-submnd 18028  df-grp 18177  df-minusg 18178  df-mulg 18297  df-subg 18348  df-ghm 18428  df-cntz 18519  df-cmn 18980  df-abl 18981  df-mgp 19313  df-ur 19325  df-ring 19372  df-cring 19373  df-subrg 19606  df-cnfld 20172  df-psr 20676  df-mpl 20678  df-mhp 20881
This theorem is referenced by:  mhppwdeg  20898
  Copyright terms: Public domain W3C validator