MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpmulcl Structured version   Visualization version   GIF version

Theorem mhpmulcl 21348
Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 25253 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024.)
Hypotheses
Ref Expression
mhpmulcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpmulcl.y 𝑌 = (𝐼 mPoly 𝑅)
mhpmulcl.t · = (.r𝑌)
mhpmulcl.i (𝜑𝐼𝑉)
mhpmulcl.r (𝜑𝑅 ∈ Ring)
mhpmulcl.m (𝜑𝑀 ∈ ℕ0)
mhpmulcl.n (𝜑𝑁 ∈ ℕ0)
mhpmulcl.p (𝜑𝑃 ∈ (𝐻𝑀))
mhpmulcl.q (𝜑𝑄 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpmulcl (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)))

Proof of Theorem mhpmulcl
Dummy variables 𝑏 𝑑 𝑒 𝑖 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpmulcl.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 eqid 2739 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
3 eqid 2739 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mhpmulcl.t . . . . . . . 8 · = (.r𝑌)
5 eqid 2739 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpmulcl.h . . . . . . . . 9 𝐻 = (𝐼 mHomP 𝑅)
7 mhpmulcl.i . . . . . . . . 9 (𝜑𝐼𝑉)
8 mhpmulcl.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
9 mhpmulcl.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
10 mhpmulcl.p . . . . . . . . 9 (𝜑𝑃 ∈ (𝐻𝑀))
116, 1, 2, 7, 8, 9, 10mhpmpl 21343 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝑌))
12 mhpmulcl.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
13 mhpmulcl.q . . . . . . . . 9 (𝜑𝑄 ∈ (𝐻𝑁))
146, 1, 2, 7, 8, 12, 13mhpmpl 21343 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝑌))
151, 2, 3, 4, 5, 11, 14mplmul 21224 . . . . . . 7 (𝜑 → (𝑃 · 𝑄) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))))))
1615adantr 481 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑃 · 𝑄) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))))))
17 breq2 5079 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑐r𝑑𝑐r𝑥))
1817rabbidv 3415 . . . . . . . . 9 (𝑑 = 𝑥 → {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
19 fvoveq1 7307 . . . . . . . . . 10 (𝑑 = 𝑥 → (𝑄‘(𝑑f𝑒)) = (𝑄‘(𝑥f𝑒)))
2019oveq2d 7300 . . . . . . . . 9 (𝑑 = 𝑥 → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))) = ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))
2118, 20mpteq12dv 5166 . . . . . . . 8 (𝑑 = 𝑥 → (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))) = (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒)))))
2221oveq2d 7300 . . . . . . 7 (𝑑 = 𝑥 → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
2322adantl 482 . . . . . 6 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑑 = 𝑥) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
24 simpr 485 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
25 ovexd 7319 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ∈ V)
2616, 23, 24, 25fvmptd 6891 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑃 · 𝑄)‘𝑥) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
2726neeq1d 3004 . . . 4 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) ↔ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ≠ (0g𝑅)))
28 simp-4l 780 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝜑)
29 oveq2 7292 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑒 → ((ℂflds0) Σg 𝑐) = ((ℂflds0) Σg 𝑒))
3029eqeq1d 2741 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑒 → (((ℂflds0) Σg 𝑐) = 𝑀 ↔ ((ℂflds0) Σg 𝑒) = 𝑀))
3130necon3bbid 2982 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 → (¬ ((ℂflds0) Σg 𝑐) = 𝑀 ↔ ((ℂflds0) Σg 𝑒) ≠ 𝑀))
32 simplr 766 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
33 elrabi 3619 . . . . . . . . . . . . . . . 16 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3432, 33syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
35 simpr 485 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((ℂflds0) Σg 𝑒) ≠ 𝑀)
3631, 34, 35elrabd 3627 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑀})
37 notrab 4246 . . . . . . . . . . . . . 14 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀}) = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑀}
3836, 37eleqtrrdi 2851 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀}))
39 eqid 2739 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
401, 39, 2, 5, 11mplelf 21213 . . . . . . . . . . . . . 14 (𝜑𝑃:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
41 eqid 2739 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
426, 41, 5, 7, 8, 9, 10mhpdeg 21344 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 supp (0g𝑅)) ⊆ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀})
43 ovex 7317 . . . . . . . . . . . . . . . 16 (ℕ0m 𝐼) ∈ V
4443rabex 5257 . . . . . . . . . . . . . . 15 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
4544a1i 11 . . . . . . . . . . . . . 14 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
46 fvexd 6798 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑅) ∈ V)
4740, 42, 45, 46suppssr 8021 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀})) → (𝑃𝑒) = (0g𝑅))
4828, 38, 47syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑃𝑒) = (0g𝑅))
4948oveq1d 7299 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))))
508ad4antr 729 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑅 ∈ Ring)
5114ad4antr 729 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑄 ∈ (Base‘𝑌))
521, 39, 2, 5, 51mplelf 21213 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑄:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
53 simp-4r 781 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
54 eqid 2739 . . . . . . . . . . . . . . . 16 {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}
555, 54psrbagconcl 21146 . . . . . . . . . . . . . . 15 ((𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
5653, 32, 55syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
57 elrabi 3619 . . . . . . . . . . . . . 14 ((𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5856, 57syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5952, 58ffvelrnd 6971 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑄‘(𝑥f𝑒)) ∈ (Base‘𝑅))
6039, 3, 41ringlz 19835 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑄‘(𝑥f𝑒)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
6150, 59, 60syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
6249, 61eqtrd 2779 . . . . . . . . . 10 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
63 simp-4l 780 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝜑)
64 oveq2 7292 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑥f𝑒) → ((ℂflds0) Σg 𝑐) = ((ℂflds0) Σg (𝑥f𝑒)))
6564eqeq1d 2741 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑥f𝑒) → (((ℂflds0) Σg 𝑐) = 𝑁 ↔ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
6665necon3bbid 2982 . . . . . . . . . . . . . . 15 (𝑐 = (𝑥f𝑒) → (¬ ((ℂflds0) Σg 𝑐) = 𝑁 ↔ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁))
67 simp-4r 781 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
68 simplr 766 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
6967, 68, 55syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
7069, 57syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
71 simpr 485 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁)
7266, 70, 71elrabd 3627 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑁})
73 notrab 4246 . . . . . . . . . . . . . 14 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁}) = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑁}
7472, 73eleqtrrdi 2851 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁}))
751, 39, 2, 5, 14mplelf 21213 . . . . . . . . . . . . . 14 (𝜑𝑄:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
766, 41, 5, 7, 8, 12, 13mhpdeg 21344 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 supp (0g𝑅)) ⊆ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁})
7775, 76, 45, 46suppssr 8021 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥f𝑒) ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁})) → (𝑄‘(𝑥f𝑒)) = (0g𝑅))
7863, 74, 77syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑄‘(𝑥f𝑒)) = (0g𝑅))
7978oveq2d 7300 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = ((𝑃𝑒)(.r𝑅)(0g𝑅)))
808ad4antr 729 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑅 ∈ Ring)
8111ad4antr 729 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑃 ∈ (Base‘𝑌))
821, 39, 2, 5, 81mplelf 21213 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑃:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
8333adantl 482 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8483adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8582, 84ffvelrnd 6971 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑃𝑒) ∈ (Base‘𝑅))
8639, 3, 41ringrz 19836 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑃𝑒) ∈ (Base‘𝑅)) → ((𝑃𝑒)(.r𝑅)(0g𝑅)) = (0g𝑅))
8780, 85, 86syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(0g𝑅)) = (0g𝑅))
8879, 87eqtrd 2779 . . . . . . . . . 10 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
89 nn0subm 20662 . . . . . . . . . . . . . . . 16 0 ∈ (SubMnd‘ℂfld)
90 eqid 2739 . . . . . . . . . . . . . . . . 17 (ℂflds0) = (ℂflds0)
9190submbas 18462 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
9289, 91ax-mp 5 . . . . . . . . . . . . . . 15 0 = (Base‘(ℂflds0))
93 cnfld0 20631 . . . . . . . . . . . . . . . . 17 0 = (0g‘ℂfld)
9490, 93subm0 18463 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
9589, 94ax-mp 5 . . . . . . . . . . . . . . 15 0 = (0g‘(ℂflds0))
96 nn0ex 12248 . . . . . . . . . . . . . . . 16 0 ∈ V
97 cnfldadd 20611 . . . . . . . . . . . . . . . . 17 + = (+g‘ℂfld)
9890, 97ressplusg 17009 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ V → + = (+g‘(ℂflds0)))
9996, 98ax-mp 5 . . . . . . . . . . . . . . 15 + = (+g‘(ℂflds0))
100 cnring 20629 . . . . . . . . . . . . . . . . . 18 fld ∈ Ring
101 ringcmn 19829 . . . . . . . . . . . . . . . . . 18 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
102100, 101ax-mp 5 . . . . . . . . . . . . . . . . 17 fld ∈ CMnd
10390submcmn 19448 . . . . . . . . . . . . . . . . 17 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
104102, 89, 103mp2an 689 . . . . . . . . . . . . . . . 16 (ℂflds0) ∈ CMnd
105104a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (ℂflds0) ∈ CMnd)
1067ad3antrrr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝐼𝑉)
1075psrbagf 21130 . . . . . . . . . . . . . . . 16 (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑒:𝐼⟶ℕ0)
10883, 107syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒:𝐼⟶ℕ0)
109 simpllr 773 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1105psrbagf 21130 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑥:𝐼⟶ℕ0)
111109, 110syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥:𝐼⟶ℕ0)
112111ffnd 6610 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 Fn 𝐼)
113108ffnd 6610 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 Fn 𝐼)
114 inidm 4153 . . . . . . . . . . . . . . . . 17 (𝐼𝐼) = 𝐼
115 eqidd 2740 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑥𝑖) = (𝑥𝑖))
116 eqidd 2740 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) = (𝑒𝑖))
117112, 113, 106, 106, 114, 115, 116offval 7551 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) = (𝑖𝐼 ↦ ((𝑥𝑖) − (𝑒𝑖))))
118 simpl 483 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}))
119 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
120 breq1 5078 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑒 → (𝑐r𝑥𝑒r𝑥))
121120elrab 3625 . . . . . . . . . . . . . . . . . . . 20 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↔ (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑒r𝑥))
122121simprbi 497 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → 𝑒r𝑥)
123119, 122syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑒r𝑥)
124 simpr 485 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑖𝐼)
125113, 112, 106, 106, 114, 116, 115ofrval 7554 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑒r𝑥𝑖𝐼) → (𝑒𝑖) ≤ (𝑥𝑖))
126118, 123, 124, 125syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) ≤ (𝑥𝑖))
127108ffvelrnda 6970 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) ∈ ℕ0)
128111ffvelrnda 6970 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑥𝑖) ∈ ℕ0)
129 nn0sub 12292 . . . . . . . . . . . . . . . . . 18 (((𝑒𝑖) ∈ ℕ0 ∧ (𝑥𝑖) ∈ ℕ0) → ((𝑒𝑖) ≤ (𝑥𝑖) ↔ ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0))
130127, 128, 129syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → ((𝑒𝑖) ≤ (𝑥𝑖) ↔ ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0))
131126, 130mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0)
132117, 131fmpt3d 6999 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒):𝐼⟶ℕ0)
133108ffund 6613 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → Fun 𝑒)
134 c0ex 10978 . . . . . . . . . . . . . . . . . . . 20 0 ∈ V
135106, 134jctir 521 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝐼𝑉 ∧ 0 ∈ V))
136 frnsuppeq 8000 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉 ∧ 0 ∈ V) → (𝑒:𝐼⟶ℕ0 → (𝑒 supp 0) = (𝑒 “ (ℕ0 ∖ {0}))))
137135, 108, 136sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) = (𝑒 “ (ℕ0 ∖ {0})))
138 dfn2 12255 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℕ0 ∖ {0})
139138imaeq2i 5970 . . . . . . . . . . . . . . . . . 18 (𝑒 “ ℕ) = (𝑒 “ (ℕ0 ∖ {0}))
140137, 139eqtr4di 2797 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) = (𝑒 “ ℕ))
1415psrbag 21129 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉 → (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin)))
142106, 141syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin)))
14383, 142mpbid 231 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin))
144143simprd 496 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 “ ℕ) ∈ Fin)
145140, 144eqeltrd 2840 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) ∈ Fin)
14683elexd 3453 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 ∈ V)
147 isfsupp 9141 . . . . . . . . . . . . . . . . 17 ((𝑒 ∈ V ∧ 0 ∈ V) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin)))
148146, 134, 147sylancl 586 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin)))
149133, 145, 148mpbir2and 710 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 finSupp 0)
150112, 113, 106, 106offun 7556 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → Fun (𝑥f𝑒))
1515psrbagfsupp 21132 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑥 finSupp 0)
152109, 151syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 finSupp 0)
153152, 149fsuppunfi 9157 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥 supp 0) ∪ (𝑒 supp 0)) ∈ Fin)
154 0nn0 12257 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
155154a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 0 ∈ ℕ0)
156 0m0e0 12102 . . . . . . . . . . . . . . . . . . 19 (0 − 0) = 0
157156a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (0 − 0) = 0)
158106, 155, 111, 108, 157suppofssd 8028 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑒 supp 0)))
159153, 158ssfid 9051 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) supp 0) ∈ Fin)
160 ovexd 7319 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) ∈ V)
161 isfsupp 9141 . . . . . . . . . . . . . . . . 17 (((𝑥f𝑒) ∈ V ∧ 0 ∈ V) → ((𝑥f𝑒) finSupp 0 ↔ (Fun (𝑥f𝑒) ∧ ((𝑥f𝑒) supp 0) ∈ Fin)))
162160, 134, 161sylancl 586 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) finSupp 0 ↔ (Fun (𝑥f𝑒) ∧ ((𝑥f𝑒) supp 0) ∈ Fin)))
163150, 159, 162mpbir2and 710 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) finSupp 0)
16492, 95, 99, 105, 106, 108, 132, 149, 163gsumadd 19533 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg (𝑒f + (𝑥f𝑒))) = (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))))
165108ffvelrnda 6970 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ ℕ0)
166165nn0cnd 12304 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ ℂ)
167111ffvelrnda 6970 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
168167nn0cnd 12304 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
169166, 168pncan3d 11344 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏))) = (𝑥𝑏))
170169mpteq2dva 5175 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑏𝐼 ↦ ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
171 fvexd 6798 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ V)
172 ovexd 7319 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑒𝑏)) ∈ V)
173108feqmptd 6846 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 = (𝑏𝐼 ↦ (𝑒𝑏)))
174111feqmptd 6846 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
175106, 167, 165, 174, 173offval2 7562 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑒𝑏))))
176106, 171, 172, 173, 175offval2 7562 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒f + (𝑥f𝑒)) = (𝑏𝐼 ↦ ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏)))))
177170, 176, 1743eqtr4d 2789 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒f + (𝑥f𝑒)) = 𝑥)
178177oveq2d 7300 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg (𝑒f + (𝑥f𝑒))) = ((ℂflds0) Σg 𝑥))
179164, 178eqtr3d 2781 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = ((ℂflds0) Σg 𝑥))
180 simplr 766 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁))
181179, 180eqnetrd 3012 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) ≠ (𝑀 + 𝑁))
182 oveq12 7293 . . . . . . . . . . . . . 14 ((((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = (𝑀 + 𝑁))
183182a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = (𝑀 + 𝑁)))
184183necon3ad 2957 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) ≠ (𝑀 + 𝑁) → ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁)))
185181, 184mpd 15 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
186 neorian 3040 . . . . . . . . . . 11 ((((ℂflds0) Σg 𝑒) ≠ 𝑀 ∨ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) ↔ ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
187185, 186sylibr 233 . . . . . . . . . 10 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) ≠ 𝑀 ∨ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁))
18862, 88, 187mpjaodan 956 . . . . . . . . 9 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
189188mpteq2dva 5175 . . . . . . . 8 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒)))) = (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅)))
190189oveq2d 7300 . . . . . . 7 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))))
191 ringmnd 19802 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1928, 191syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
193192ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → 𝑅 ∈ Mnd)
19444rabex 5257 . . . . . . . 8 {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ∈ V
19541gsumz 18483 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ∈ V) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))) = (0g𝑅))
196193, 194, 195sylancl 586 . . . . . . 7 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))) = (0g𝑅))
197190, 196eqtrd 2779 . . . . . 6 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (0g𝑅))
198197ex 413 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (0g𝑅)))
199198necon1d 2966 . . . 4 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
20027, 199sylbid 239 . . 3 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
201200ralrimiva 3104 . 2 (𝜑 → ∀𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
2029, 12nn0addcld 12306 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
2031mplring 21233 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
2047, 8, 203syl2anc 584 . . . 4 (𝜑𝑌 ∈ Ring)
2052, 4ringcl 19809 . . . 4 ((𝑌 ∈ Ring ∧ 𝑃 ∈ (Base‘𝑌) ∧ 𝑄 ∈ (Base‘𝑌)) → (𝑃 · 𝑄) ∈ (Base‘𝑌))
206204, 11, 14, 205syl3anc 1370 . . 3 (𝜑 → (𝑃 · 𝑄) ∈ (Base‘𝑌))
2076, 1, 2, 41, 5, 7, 8, 202, 206ismhp3 21342 . 2 (𝜑 → ((𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)) ↔ ∀𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁))))
208201, 207mpbird 256 1 (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2107  wne 2944  wral 3065  {crab 3069  Vcvv 3433  cdif 3885  cun 3886  {csn 4562   class class class wbr 5075  cmpt 5158  ccnv 5589  cima 5593  Fun wfun 6431  wf 6433  cfv 6437  (class class class)co 7284  f cof 7540  r cofr 7541   supp csupp 7986  m cmap 8624  Fincfn 8742   finSupp cfsupp 9137  0cc0 10880   + caddc 10883  cle 11019  cmin 11214  cn 11982  0cn0 12242  Basecbs 16921  s cress 16950  +gcplusg 16971  .rcmulr 16972  0gc0g 17159   Σg cgsu 17160  Mndcmnd 18394  SubMndcsubmnd 18438  CMndccmn 19395  Ringcrg 19792  fldccnfld 20606   mPoly cmpl 21118   mHomP cmhp 21328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-ofr 7543  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-fz 13249  df-fzo 13392  df-seq 13731  df-hash 14054  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-0g 17161  df-gsum 17162  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-mhm 18439  df-submnd 18440  df-grp 18589  df-minusg 18590  df-mulg 18710  df-subg 18761  df-ghm 18841  df-cntz 18932  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-ring 19794  df-cring 19795  df-subrg 20031  df-cnfld 20607  df-psr 21121  df-mpl 21123  df-mhp 21332
This theorem is referenced by:  mhppwdeg  21349
  Copyright terms: Public domain W3C validator