MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpmulcl Structured version   Visualization version   GIF version

Theorem mhpmulcl 22043
Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 25991 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.)
Hypotheses
Ref Expression
mhpmulcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpmulcl.y 𝑌 = (𝐼 mPoly 𝑅)
mhpmulcl.t · = (.r𝑌)
mhpmulcl.r (𝜑𝑅 ∈ Ring)
mhpmulcl.p (𝜑𝑃 ∈ (𝐻𝑀))
mhpmulcl.q (𝜑𝑄 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpmulcl (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)))

Proof of Theorem mhpmulcl
Dummy variables 𝑏 𝑑 𝑒 𝑖 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5114 . . . . . . . . 9 (𝑑 = 𝑥 → (𝑐r𝑑𝑐r𝑥))
21rabbidv 3416 . . . . . . . 8 (𝑑 = 𝑥 → {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
3 fvoveq1 7413 . . . . . . . . 9 (𝑑 = 𝑥 → (𝑄‘(𝑑f𝑒)) = (𝑄‘(𝑥f𝑒)))
43oveq2d 7406 . . . . . . . 8 (𝑑 = 𝑥 → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))) = ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))
52, 4mpteq12dv 5197 . . . . . . 7 (𝑑 = 𝑥 → (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))) = (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒)))))
65oveq2d 7406 . . . . . 6 (𝑑 = 𝑥 → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
7 mhpmulcl.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
8 eqid 2730 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
9 eqid 2730 . . . . . . . 8 (.r𝑅) = (.r𝑅)
10 mhpmulcl.t . . . . . . . 8 · = (.r𝑌)
11 eqid 2730 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
12 mhpmulcl.h . . . . . . . . 9 𝐻 = (𝐼 mHomP 𝑅)
13 mhpmulcl.p . . . . . . . . 9 (𝜑𝑃 ∈ (𝐻𝑀))
1412, 7, 8, 13mhpmpl 22038 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝑌))
15 mhpmulcl.q . . . . . . . . 9 (𝜑𝑄 ∈ (𝐻𝑁))
1612, 7, 8, 15mhpmpl 22038 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝑌))
177, 8, 9, 10, 11, 14, 16mplmul 21927 . . . . . . 7 (𝜑 → (𝑃 · 𝑄) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))))))
1817adantr 480 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑃 · 𝑄) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))))))
19 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
20 ovexd 7425 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ∈ V)
216, 18, 19, 20fvmptd4 6995 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑃 · 𝑄)‘𝑥) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
2221neeq1d 2985 . . . 4 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) ↔ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ≠ (0g𝑅)))
23 simp-4l 782 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝜑)
24 oveq2 7398 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑒 → ((ℂflds0) Σg 𝑐) = ((ℂflds0) Σg 𝑒))
2524eqeq1d 2732 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑒 → (((ℂflds0) Σg 𝑐) = 𝑀 ↔ ((ℂflds0) Σg 𝑒) = 𝑀))
2625necon3bbid 2963 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 → (¬ ((ℂflds0) Σg 𝑐) = 𝑀 ↔ ((ℂflds0) Σg 𝑒) ≠ 𝑀))
27 elrabi 3657 . . . . . . . . . . . . . . . 16 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2827ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
29 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((ℂflds0) Σg 𝑒) ≠ 𝑀)
3026, 28, 29elrabd 3664 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑀})
31 notrab 4288 . . . . . . . . . . . . . 14 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀}) = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑀}
3230, 31eleqtrrdi 2840 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀}))
33 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
347, 33, 8, 11, 14mplelf 21914 . . . . . . . . . . . . . 14 (𝜑𝑃:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
35 eqid 2730 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
3612, 35, 11, 13mhpdeg 22039 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 supp (0g𝑅)) ⊆ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀})
37 fvexd 6876 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑅) ∈ V)
3834, 36, 13, 37suppssrg 8178 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀})) → (𝑃𝑒) = (0g𝑅))
3923, 32, 38syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑃𝑒) = (0g𝑅))
4039oveq1d 7405 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))))
41 mhpmulcl.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
4241ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑅 ∈ Ring)
4316ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑄 ∈ (Base‘𝑌))
447, 33, 8, 11, 43mplelf 21914 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑄:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
45 eqid 2730 . . . . . . . . . . . . . . . 16 {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}
4611, 45psrbagconcl 21843 . . . . . . . . . . . . . . 15 ((𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
4746ad5ant24 760 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
48 elrabi 3657 . . . . . . . . . . . . . 14 ((𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4947, 48syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5044, 49ffvelcdmd 7060 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑄‘(𝑥f𝑒)) ∈ (Base‘𝑅))
5133, 9, 35, 42, 50ringlzd 20211 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
5240, 51eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
53 simp-4l 782 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝜑)
54 oveq2 7398 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑥f𝑒) → ((ℂflds0) Σg 𝑐) = ((ℂflds0) Σg (𝑥f𝑒)))
5554eqeq1d 2732 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑥f𝑒) → (((ℂflds0) Σg 𝑐) = 𝑁 ↔ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
5655necon3bbid 2963 . . . . . . . . . . . . . . 15 (𝑐 = (𝑥f𝑒) → (¬ ((ℂflds0) Σg 𝑐) = 𝑁 ↔ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁))
5746ad5ant24 760 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
5857, 48syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
59 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁)
6056, 58, 59elrabd 3664 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑁})
61 notrab 4288 . . . . . . . . . . . . . 14 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁}) = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑁}
6260, 61eleqtrrdi 2840 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁}))
637, 33, 8, 11, 16mplelf 21914 . . . . . . . . . . . . . 14 (𝜑𝑄:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6412, 35, 11, 15mhpdeg 22039 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 supp (0g𝑅)) ⊆ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁})
6563, 64, 15, 37suppssrg 8178 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥f𝑒) ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁})) → (𝑄‘(𝑥f𝑒)) = (0g𝑅))
6653, 62, 65syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑄‘(𝑥f𝑒)) = (0g𝑅))
6766oveq2d 7406 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = ((𝑃𝑒)(.r𝑅)(0g𝑅)))
6841ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑅 ∈ Ring)
6914ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑃 ∈ (Base‘𝑌))
707, 33, 8, 11, 69mplelf 21914 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑃:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
7127ad2antlr 727 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
7270, 71ffvelcdmd 7060 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑃𝑒) ∈ (Base‘𝑅))
7333, 9, 35, 68, 72ringrzd 20212 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(0g𝑅)) = (0g𝑅))
7467, 73eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
75 nn0subm 21346 . . . . . . . . . . . . . . . 16 0 ∈ (SubMnd‘ℂfld)
76 eqid 2730 . . . . . . . . . . . . . . . . 17 (ℂflds0) = (ℂflds0)
7776submbas 18748 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
7875, 77ax-mp 5 . . . . . . . . . . . . . . 15 0 = (Base‘(ℂflds0))
79 cnfld0 21311 . . . . . . . . . . . . . . . . 17 0 = (0g‘ℂfld)
8076, 79subm0 18749 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
8175, 80ax-mp 5 . . . . . . . . . . . . . . 15 0 = (0g‘(ℂflds0))
82 nn0ex 12455 . . . . . . . . . . . . . . . 16 0 ∈ V
83 cnfldadd 21277 . . . . . . . . . . . . . . . . 17 + = (+g‘ℂfld)
8476, 83ressplusg 17261 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ V → + = (+g‘(ℂflds0)))
8582, 84ax-mp 5 . . . . . . . . . . . . . . 15 + = (+g‘(ℂflds0))
86 cnring 21309 . . . . . . . . . . . . . . . . . 18 fld ∈ Ring
87 ringcmn 20198 . . . . . . . . . . . . . . . . . 18 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
8886, 87ax-mp 5 . . . . . . . . . . . . . . . . 17 fld ∈ CMnd
8976submcmn 19775 . . . . . . . . . . . . . . . . 17 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
9088, 75, 89mp2an 692 . . . . . . . . . . . . . . . 16 (ℂflds0) ∈ CMnd
9190a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (ℂflds0) ∈ CMnd)
92 reldmmhp 22031 . . . . . . . . . . . . . . . . 17 Rel dom mHomP
9392, 12, 13elfvov1 7432 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ V)
9493ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝐼 ∈ V)
9527adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
9611psrbagf 21834 . . . . . . . . . . . . . . . 16 (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑒:𝐼⟶ℕ0)
9795, 96syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒:𝐼⟶ℕ0)
9811psrbagf 21834 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑥:𝐼⟶ℕ0)
9998ad3antlr 731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥:𝐼⟶ℕ0)
10099ffnd 6692 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 Fn 𝐼)
10197ffnd 6692 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 Fn 𝐼)
102 inidm 4193 . . . . . . . . . . . . . . . . 17 (𝐼𝐼) = 𝐼
103 eqidd 2731 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑥𝑖) = (𝑥𝑖))
104 eqidd 2731 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) = (𝑒𝑖))
105100, 101, 94, 94, 102, 103, 104offval 7665 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) = (𝑖𝐼 ↦ ((𝑥𝑖) − (𝑒𝑖))))
106 simpl 482 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}))
107 breq1 5113 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑒 → (𝑐r𝑥𝑒r𝑥))
108107elrab 3662 . . . . . . . . . . . . . . . . . . . 20 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↔ (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑒r𝑥))
109108simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → 𝑒r𝑥)
110109ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑒r𝑥)
111 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑖𝐼)
112101, 100, 94, 94, 102, 104, 103ofrval 7668 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑒r𝑥𝑖𝐼) → (𝑒𝑖) ≤ (𝑥𝑖))
113106, 110, 111, 112syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) ≤ (𝑥𝑖))
11497ffvelcdmda 7059 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) ∈ ℕ0)
11599ffvelcdmda 7059 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑥𝑖) ∈ ℕ0)
116 nn0sub 12499 . . . . . . . . . . . . . . . . . 18 (((𝑒𝑖) ∈ ℕ0 ∧ (𝑥𝑖) ∈ ℕ0) → ((𝑒𝑖) ≤ (𝑥𝑖) ↔ ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0))
117114, 115, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → ((𝑒𝑖) ≤ (𝑥𝑖) ↔ ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0))
118113, 117mpbid 232 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0)
119105, 118fmpt3d 7091 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒):𝐼⟶ℕ0)
12097ffund 6695 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → Fun 𝑒)
121 c0ex 11175 . . . . . . . . . . . . . . . . . . . 20 0 ∈ V
12294, 121jctir 520 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝐼 ∈ V ∧ 0 ∈ V))
123 fsuppeq 8157 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ V ∧ 0 ∈ V) → (𝑒:𝐼⟶ℕ0 → (𝑒 supp 0) = (𝑒 “ (ℕ0 ∖ {0}))))
124122, 97, 123sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) = (𝑒 “ (ℕ0 ∖ {0})))
125 dfn2 12462 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℕ0 ∖ {0})
126125imaeq2i 6032 . . . . . . . . . . . . . . . . . 18 (𝑒 “ ℕ) = (𝑒 “ (ℕ0 ∖ {0}))
127124, 126eqtr4di 2783 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) = (𝑒 “ ℕ))
12811psrbag 21833 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ V → (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin)))
12994, 128syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin)))
13095, 129mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin))
131130simprd 495 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 “ ℕ) ∈ Fin)
132127, 131eqeltrd 2829 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) ∈ Fin)
13395elexd 3474 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 ∈ V)
134 isfsupp 9323 . . . . . . . . . . . . . . . . 17 ((𝑒 ∈ V ∧ 0 ∈ V) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin)))
135133, 121, 134sylancl 586 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin)))
136120, 132, 135mpbir2and 713 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 finSupp 0)
137 ovexd 7425 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) ∈ V)
138 0nn0 12464 . . . . . . . . . . . . . . . . 17 0 ∈ ℕ0
139138a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 0 ∈ ℕ0)
140100, 101, 94, 94offun 7670 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → Fun (𝑥f𝑒))
14111psrbagfsupp 21835 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑥 finSupp 0)
142141ad3antlr 731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 finSupp 0)
143142, 136fsuppunfi 9346 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥 supp 0) ∪ (𝑒 supp 0)) ∈ Fin)
144 0m0e0 12308 . . . . . . . . . . . . . . . . . . 19 (0 − 0) = 0
145144a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (0 − 0) = 0)
14694, 139, 99, 97, 145suppofssd 8185 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑒 supp 0)))
147143, 146ssfid 9219 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) supp 0) ∈ Fin)
148137, 139, 140, 147isfsuppd 9324 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) finSupp 0)
14978, 81, 85, 91, 94, 97, 119, 136, 148gsumadd 19860 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg (𝑒f + (𝑥f𝑒))) = (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))))
15097ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ ℕ0)
151150nn0cnd 12512 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ ℂ)
15299ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
153152nn0cnd 12512 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
154151, 153pncan3d 11543 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏))) = (𝑥𝑏))
155154mpteq2dva 5203 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑏𝐼 ↦ ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
156 fvexd 6876 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ V)
157 ovexd 7425 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑒𝑏)) ∈ V)
15897feqmptd 6932 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 = (𝑏𝐼 ↦ (𝑒𝑏)))
15999feqmptd 6932 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
16094, 152, 150, 159, 158offval2 7676 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑒𝑏))))
16194, 156, 157, 158, 160offval2 7676 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒f + (𝑥f𝑒)) = (𝑏𝐼 ↦ ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏)))))
162155, 161, 1593eqtr4d 2775 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒f + (𝑥f𝑒)) = 𝑥)
163162oveq2d 7406 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg (𝑒f + (𝑥f𝑒))) = ((ℂflds0) Σg 𝑥))
164149, 163eqtr3d 2767 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = ((ℂflds0) Σg 𝑥))
165 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁))
166164, 165eqnetrd 2993 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) ≠ (𝑀 + 𝑁))
167 oveq12 7399 . . . . . . . . . . . . . 14 ((((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = (𝑀 + 𝑁))
168167a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = (𝑀 + 𝑁)))
169168necon3ad 2939 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) ≠ (𝑀 + 𝑁) → ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁)))
170166, 169mpd 15 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
171 neorian 3021 . . . . . . . . . . 11 ((((ℂflds0) Σg 𝑒) ≠ 𝑀 ∨ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) ↔ ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
172170, 171sylibr 234 . . . . . . . . . 10 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) ≠ 𝑀 ∨ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁))
17352, 74, 172mpjaodan 960 . . . . . . . . 9 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
174173mpteq2dva 5203 . . . . . . . 8 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒)))) = (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅)))
175174oveq2d 7406 . . . . . . 7 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))))
176 ringmnd 20159 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
17741, 176syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
178177ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → 𝑅 ∈ Mnd)
179 ovex 7423 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
180179rabex 5297 . . . . . . . . 9 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
181180rabex 5297 . . . . . . . 8 {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ∈ V
18235gsumz 18770 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ∈ V) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))) = (0g𝑅))
183178, 181, 182sylancl 586 . . . . . . 7 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))) = (0g𝑅))
184175, 183eqtrd 2765 . . . . . 6 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (0g𝑅))
185184ex 412 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (0g𝑅)))
186185necon1d 2948 . . . 4 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
18722, 186sylbid 240 . . 3 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
188187ralrimiva 3126 . 2 (𝜑 → ∀𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
18912, 13mhprcl 22037 . . . 4 (𝜑𝑀 ∈ ℕ0)
19012, 15mhprcl 22037 . . . 4 (𝜑𝑁 ∈ ℕ0)
191189, 190nn0addcld 12514 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
1927, 93, 41mplringd 21939 . . . 4 (𝜑𝑌 ∈ Ring)
1938, 10, 192, 14, 16ringcld 20176 . . 3 (𝜑 → (𝑃 · 𝑄) ∈ (Base‘𝑌))
19412, 7, 8, 35, 11, 191, 193ismhp3 22036 . 2 (𝜑 → ((𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)) ↔ ∀𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁))))
195188, 194mpbird 257 1 (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  r cofr 7655   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  0cc0 11075   + caddc 11078  cle 11216  cmin 11412  cn 12193  0cn0 12449  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  SubMndcsubmnd 18716  CMndccmn 19717  Ringcrg 20149  fldccnfld 21271   mPoly cmpl 21822   mHomP cmhp 22023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-cnfld 21272  df-psr 21825  df-mpl 21827  df-mhp 22030
This theorem is referenced by:  mhppwdeg  22044
  Copyright terms: Public domain W3C validator