MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpmulcl Structured version   Visualization version   GIF version

Theorem mhpmulcl 22036
Description: A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 25984 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.)
Hypotheses
Ref Expression
mhpmulcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpmulcl.y 𝑌 = (𝐼 mPoly 𝑅)
mhpmulcl.t · = (.r𝑌)
mhpmulcl.r (𝜑𝑅 ∈ Ring)
mhpmulcl.p (𝜑𝑃 ∈ (𝐻𝑀))
mhpmulcl.q (𝜑𝑄 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpmulcl (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)))

Proof of Theorem mhpmulcl
Dummy variables 𝑏 𝑑 𝑒 𝑖 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5111 . . . . . . . . 9 (𝑑 = 𝑥 → (𝑐r𝑑𝑐r𝑥))
21rabbidv 3413 . . . . . . . 8 (𝑑 = 𝑥 → {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
3 fvoveq1 7410 . . . . . . . . 9 (𝑑 = 𝑥 → (𝑄‘(𝑑f𝑒)) = (𝑄‘(𝑥f𝑒)))
43oveq2d 7403 . . . . . . . 8 (𝑑 = 𝑥 → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))) = ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))
52, 4mpteq12dv 5194 . . . . . . 7 (𝑑 = 𝑥 → (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))) = (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒)))))
65oveq2d 7403 . . . . . 6 (𝑑 = 𝑥 → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
7 mhpmulcl.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
8 eqid 2729 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
9 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
10 mhpmulcl.t . . . . . . . 8 · = (.r𝑌)
11 eqid 2729 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
12 mhpmulcl.h . . . . . . . . 9 𝐻 = (𝐼 mHomP 𝑅)
13 mhpmulcl.p . . . . . . . . 9 (𝜑𝑃 ∈ (𝐻𝑀))
1412, 7, 8, 13mhpmpl 22031 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝑌))
15 mhpmulcl.q . . . . . . . . 9 (𝜑𝑄 ∈ (𝐻𝑁))
1612, 7, 8, 15mhpmpl 22031 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝑌))
177, 8, 9, 10, 11, 14, 16mplmul 21920 . . . . . . 7 (𝜑 → (𝑃 · 𝑄) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))))))
1817adantr 480 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑃 · 𝑄) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑑} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑑f𝑒)))))))
19 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
20 ovexd 7422 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ∈ V)
216, 18, 19, 20fvmptd4 6992 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑃 · 𝑄)‘𝑥) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))))
2221neeq1d 2984 . . . 4 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) ↔ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ≠ (0g𝑅)))
23 simp-4l 782 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝜑)
24 oveq2 7395 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑒 → ((ℂflds0) Σg 𝑐) = ((ℂflds0) Σg 𝑒))
2524eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑒 → (((ℂflds0) Σg 𝑐) = 𝑀 ↔ ((ℂflds0) Σg 𝑒) = 𝑀))
2625necon3bbid 2962 . . . . . . . . . . . . . . 15 (𝑐 = 𝑒 → (¬ ((ℂflds0) Σg 𝑐) = 𝑀 ↔ ((ℂflds0) Σg 𝑒) ≠ 𝑀))
27 elrabi 3654 . . . . . . . . . . . . . . . 16 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2827ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
29 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((ℂflds0) Σg 𝑒) ≠ 𝑀)
3026, 28, 29elrabd 3661 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑀})
31 notrab 4285 . . . . . . . . . . . . . 14 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀}) = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑀}
3230, 31eleqtrrdi 2839 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀}))
33 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝑅) = (Base‘𝑅)
347, 33, 8, 11, 14mplelf 21907 . . . . . . . . . . . . . 14 (𝜑𝑃:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
35 eqid 2729 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
3612, 35, 11, 13mhpdeg 22032 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 supp (0g𝑅)) ⊆ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀})
37 fvexd 6873 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑅) ∈ V)
3834, 36, 13, 37suppssrg 8175 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑀})) → (𝑃𝑒) = (0g𝑅))
3923, 32, 38syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑃𝑒) = (0g𝑅))
4039oveq1d 7402 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))))
41 mhpmulcl.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
4241ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑅 ∈ Ring)
4316ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑄 ∈ (Base‘𝑌))
447, 33, 8, 11, 43mplelf 21907 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → 𝑄:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
45 eqid 2729 . . . . . . . . . . . . . . . 16 {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}
4611, 45psrbagconcl 21836 . . . . . . . . . . . . . . 15 ((𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
4746ad5ant24 760 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
48 elrabi 3654 . . . . . . . . . . . . . 14 ((𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4947, 48syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5044, 49ffvelcdmd 7057 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → (𝑄‘(𝑥f𝑒)) ∈ (Base‘𝑅))
5133, 9, 35, 42, 50ringlzd 20204 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((0g𝑅)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
5240, 51eqtrd 2764 . . . . . . . . . 10 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg 𝑒) ≠ 𝑀) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
53 simp-4l 782 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝜑)
54 oveq2 7395 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑥f𝑒) → ((ℂflds0) Σg 𝑐) = ((ℂflds0) Σg (𝑥f𝑒)))
5554eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑥f𝑒) → (((ℂflds0) Σg 𝑐) = 𝑁 ↔ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
5655necon3bbid 2962 . . . . . . . . . . . . . . 15 (𝑐 = (𝑥f𝑒) → (¬ ((ℂflds0) Σg 𝑐) = 𝑁 ↔ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁))
5746ad5ant24 760 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥})
5857, 48syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
59 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁)
6056, 58, 59elrabd 3661 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑁})
61 notrab 4285 . . . . . . . . . . . . . 14 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁}) = {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ¬ ((ℂflds0) Σg 𝑐) = 𝑁}
6260, 61eleqtrrdi 2839 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑥f𝑒) ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁}))
637, 33, 8, 11, 16mplelf 21907 . . . . . . . . . . . . . 14 (𝜑𝑄:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6412, 35, 11, 15mhpdeg 22032 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 supp (0g𝑅)) ⊆ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁})
6563, 64, 15, 37suppssrg 8175 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥f𝑒) ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑐) = 𝑁})) → (𝑄‘(𝑥f𝑒)) = (0g𝑅))
6653, 62, 65syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑄‘(𝑥f𝑒)) = (0g𝑅))
6766oveq2d 7403 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = ((𝑃𝑒)(.r𝑅)(0g𝑅)))
6841ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑅 ∈ Ring)
6914ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑃 ∈ (Base‘𝑌))
707, 33, 8, 11, 69mplelf 21907 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑃:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
7127ad2antlr 727 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
7270, 71ffvelcdmd 7057 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → (𝑃𝑒) ∈ (Base‘𝑅))
7333, 9, 35, 68, 72ringrzd 20205 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(0g𝑅)) = (0g𝑅))
7467, 73eqtrd 2764 . . . . . . . . . 10 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
75 nn0subm 21339 . . . . . . . . . . . . . . . 16 0 ∈ (SubMnd‘ℂfld)
76 eqid 2729 . . . . . . . . . . . . . . . . 17 (ℂflds0) = (ℂflds0)
7776submbas 18741 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
7875, 77ax-mp 5 . . . . . . . . . . . . . . 15 0 = (Base‘(ℂflds0))
79 cnfld0 21304 . . . . . . . . . . . . . . . . 17 0 = (0g‘ℂfld)
8076, 79subm0 18742 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
8175, 80ax-mp 5 . . . . . . . . . . . . . . 15 0 = (0g‘(ℂflds0))
82 nn0ex 12448 . . . . . . . . . . . . . . . 16 0 ∈ V
83 cnfldadd 21270 . . . . . . . . . . . . . . . . 17 + = (+g‘ℂfld)
8476, 83ressplusg 17254 . . . . . . . . . . . . . . . 16 (ℕ0 ∈ V → + = (+g‘(ℂflds0)))
8582, 84ax-mp 5 . . . . . . . . . . . . . . 15 + = (+g‘(ℂflds0))
86 cnring 21302 . . . . . . . . . . . . . . . . . 18 fld ∈ Ring
87 ringcmn 20191 . . . . . . . . . . . . . . . . . 18 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
8886, 87ax-mp 5 . . . . . . . . . . . . . . . . 17 fld ∈ CMnd
8976submcmn 19768 . . . . . . . . . . . . . . . . 17 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
9088, 75, 89mp2an 692 . . . . . . . . . . . . . . . 16 (ℂflds0) ∈ CMnd
9190a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (ℂflds0) ∈ CMnd)
92 reldmmhp 22024 . . . . . . . . . . . . . . . . 17 Rel dom mHomP
9392, 12, 13elfvov1 7429 . . . . . . . . . . . . . . . 16 (𝜑𝐼 ∈ V)
9493ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝐼 ∈ V)
9527adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
9611psrbagf 21827 . . . . . . . . . . . . . . . 16 (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑒:𝐼⟶ℕ0)
9795, 96syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒:𝐼⟶ℕ0)
9811psrbagf 21827 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑥:𝐼⟶ℕ0)
9998ad3antlr 731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥:𝐼⟶ℕ0)
10099ffnd 6689 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 Fn 𝐼)
10197ffnd 6689 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 Fn 𝐼)
102 inidm 4190 . . . . . . . . . . . . . . . . 17 (𝐼𝐼) = 𝐼
103 eqidd 2730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑥𝑖) = (𝑥𝑖))
104 eqidd 2730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) = (𝑒𝑖))
105100, 101, 94, 94, 102, 103, 104offval 7662 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) = (𝑖𝐼 ↦ ((𝑥𝑖) − (𝑒𝑖))))
106 simpl 482 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}))
107 breq1 5110 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = 𝑒 → (𝑐r𝑥𝑒r𝑥))
108107elrab 3659 . . . . . . . . . . . . . . . . . . . 20 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↔ (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑒r𝑥))
109108simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} → 𝑒r𝑥)
110109ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑒r𝑥)
111 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → 𝑖𝐼)
112101, 100, 94, 94, 102, 104, 103ofrval 7665 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑒r𝑥𝑖𝐼) → (𝑒𝑖) ≤ (𝑥𝑖))
113106, 110, 111, 112syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) ≤ (𝑥𝑖))
11497ffvelcdmda 7056 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑒𝑖) ∈ ℕ0)
11599ffvelcdmda 7056 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → (𝑥𝑖) ∈ ℕ0)
116 nn0sub 12492 . . . . . . . . . . . . . . . . . 18 (((𝑒𝑖) ∈ ℕ0 ∧ (𝑥𝑖) ∈ ℕ0) → ((𝑒𝑖) ≤ (𝑥𝑖) ↔ ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0))
117114, 115, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → ((𝑒𝑖) ≤ (𝑥𝑖) ↔ ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0))
118113, 117mpbid 232 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑖𝐼) → ((𝑥𝑖) − (𝑒𝑖)) ∈ ℕ0)
119105, 118fmpt3d 7088 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒):𝐼⟶ℕ0)
12097ffund 6692 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → Fun 𝑒)
121 c0ex 11168 . . . . . . . . . . . . . . . . . . . 20 0 ∈ V
12294, 121jctir 520 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝐼 ∈ V ∧ 0 ∈ V))
123 fsuppeq 8154 . . . . . . . . . . . . . . . . . . 19 ((𝐼 ∈ V ∧ 0 ∈ V) → (𝑒:𝐼⟶ℕ0 → (𝑒 supp 0) = (𝑒 “ (ℕ0 ∖ {0}))))
124122, 97, 123sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) = (𝑒 “ (ℕ0 ∖ {0})))
125 dfn2 12455 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℕ0 ∖ {0})
126125imaeq2i 6029 . . . . . . . . . . . . . . . . . 18 (𝑒 “ ℕ) = (𝑒 “ (ℕ0 ∖ {0}))
127124, 126eqtr4di 2782 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) = (𝑒 “ ℕ))
12811psrbag 21826 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ V → (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin)))
12994, 128syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin)))
13095, 129mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒:𝐼⟶ℕ0 ∧ (𝑒 “ ℕ) ∈ Fin))
131130simprd 495 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 “ ℕ) ∈ Fin)
132127, 131eqeltrd 2828 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 supp 0) ∈ Fin)
13395elexd 3471 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 ∈ V)
134 isfsupp 9316 . . . . . . . . . . . . . . . . 17 ((𝑒 ∈ V ∧ 0 ∈ V) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin)))
135133, 121, 134sylancl 586 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin)))
136120, 132, 135mpbir2and 713 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 finSupp 0)
137 ovexd 7422 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) ∈ V)
138 0nn0 12457 . . . . . . . . . . . . . . . . 17 0 ∈ ℕ0
139138a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 0 ∈ ℕ0)
140100, 101, 94, 94offun 7667 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → Fun (𝑥f𝑒))
14111psrbagfsupp 21828 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑥 finSupp 0)
142141ad3antlr 731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 finSupp 0)
143142, 136fsuppunfi 9339 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥 supp 0) ∪ (𝑒 supp 0)) ∈ Fin)
144 0m0e0 12301 . . . . . . . . . . . . . . . . . . 19 (0 − 0) = 0
145144a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (0 − 0) = 0)
14694, 139, 99, 97, 145suppofssd 8182 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑒 supp 0)))
147143, 146ssfid 9212 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑥f𝑒) supp 0) ∈ Fin)
148137, 139, 140, 147isfsuppd 9317 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) finSupp 0)
14978, 81, 85, 91, 94, 97, 119, 136, 148gsumadd 19853 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg (𝑒f + (𝑥f𝑒))) = (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))))
15097ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ ℕ0)
151150nn0cnd 12505 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ ℂ)
15299ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
153152nn0cnd 12505 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
154151, 153pncan3d 11536 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏))) = (𝑥𝑏))
155154mpteq2dva 5200 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑏𝐼 ↦ ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
156 fvexd 6873 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → (𝑒𝑏) ∈ V)
157 ovexd 7422 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑒𝑏)) ∈ V)
15897feqmptd 6929 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑒 = (𝑏𝐼 ↦ (𝑒𝑏)))
15999feqmptd 6929 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
16094, 152, 150, 159, 158offval2 7673 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑥f𝑒) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑒𝑏))))
16194, 156, 157, 158, 160offval2 7673 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒f + (𝑥f𝑒)) = (𝑏𝐼 ↦ ((𝑒𝑏) + ((𝑥𝑏) − (𝑒𝑏)))))
162155, 161, 1593eqtr4d 2774 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (𝑒f + (𝑥f𝑒)) = 𝑥)
163162oveq2d 7403 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg (𝑒f + (𝑥f𝑒))) = ((ℂflds0) Σg 𝑥))
164149, 163eqtr3d 2766 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = ((ℂflds0) Σg 𝑥))
165 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁))
166164, 165eqnetrd 2992 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) ≠ (𝑀 + 𝑁))
167 oveq12 7396 . . . . . . . . . . . . . 14 ((((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = (𝑀 + 𝑁))
168167a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁) → (((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) = (𝑀 + 𝑁)))
169168necon3ad 2938 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((((ℂflds0) Σg 𝑒) + ((ℂflds0) Σg (𝑥f𝑒))) ≠ (𝑀 + 𝑁) → ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁)))
170166, 169mpd 15 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
171 neorian 3020 . . . . . . . . . . 11 ((((ℂflds0) Σg 𝑒) ≠ 𝑀 ∨ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁) ↔ ¬ (((ℂflds0) Σg 𝑒) = 𝑀 ∧ ((ℂflds0) Σg (𝑥f𝑒)) = 𝑁))
172170, 171sylibr 234 . . . . . . . . . 10 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → (((ℂflds0) Σg 𝑒) ≠ 𝑀 ∨ ((ℂflds0) Σg (𝑥f𝑒)) ≠ 𝑁))
17352, 74, 172mpjaodan 960 . . . . . . . . 9 ((((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥}) → ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))) = (0g𝑅))
174173mpteq2dva 5200 . . . . . . . 8 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒)))) = (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅)))
175174oveq2d 7403 . . . . . . 7 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))))
176 ringmnd 20152 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
17741, 176syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Mnd)
178177ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → 𝑅 ∈ Mnd)
179 ovex 7420 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
180179rabex 5294 . . . . . . . . 9 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
181180rabex 5294 . . . . . . . 8 {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ∈ V
18235gsumz 18763 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ∈ V) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))) = (0g𝑅))
183178, 181, 182sylancl 586 . . . . . . 7 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ (0g𝑅))) = (0g𝑅))
184175, 183eqtrd 2764 . . . . . 6 (((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (0g𝑅))
185184ex 412 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((ℂflds0) Σg 𝑥) ≠ (𝑀 + 𝑁) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) = (0g𝑅)))
186185necon1d 2947 . . . 4 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑒 ∈ {𝑐 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑐r𝑥} ↦ ((𝑃𝑒)(.r𝑅)(𝑄‘(𝑥f𝑒))))) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
18722, 186sylbid 240 . . 3 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
188187ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁)))
18912, 13mhprcl 22030 . . . 4 (𝜑𝑀 ∈ ℕ0)
19012, 15mhprcl 22030 . . . 4 (𝜑𝑁 ∈ ℕ0)
191189, 190nn0addcld 12507 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
1927, 93, 41mplringd 21932 . . . 4 (𝜑𝑌 ∈ Ring)
1938, 10, 192, 14, 16ringcld 20169 . . 3 (𝜑 → (𝑃 · 𝑄) ∈ (Base‘𝑌))
19412, 7, 8, 35, 11, 191, 193ismhp3 22029 . 2 (𝜑 → ((𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)) ↔ ∀𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g𝑅) → ((ℂflds0) Σg 𝑥) = (𝑀 + 𝑁))))
195188, 194mpbird 257 1 (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  {csn 4589   class class class wbr 5107  cmpt 5188  ccnv 5637  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  r cofr 7652   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  0cc0 11068   + caddc 11071  cle 11209  cmin 11405  cn 12186  0cn0 12442  Basecbs 17179  s cress 17200  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  SubMndcsubmnd 18709  CMndccmn 19710  Ringcrg 20142  fldccnfld 21264   mPoly cmpl 21815   mHomP cmhp 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-cnfld 21265  df-psr 21818  df-mpl 21820  df-mhp 22023
This theorem is referenced by:  mhppwdeg  22037
  Copyright terms: Public domain W3C validator