Step | Hyp | Ref
| Expression |
1 | | mhpmulcl.y |
. . . . . . . 8
⊢ 𝑌 = (𝐼 mPoly 𝑅) |
2 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑌) =
(Base‘𝑌) |
3 | | eqid 2737 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
4 | | mhpmulcl.t |
. . . . . . . 8
⊢ · =
(.r‘𝑌) |
5 | | eqid 2737 |
. . . . . . . 8
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
6 | | mhpmulcl.h |
. . . . . . . . 9
⊢ 𝐻 = (𝐼 mHomP 𝑅) |
7 | | mhpmulcl.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
8 | | mhpmulcl.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | | mhpmulcl.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
10 | | mhpmulcl.p |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ (𝐻‘𝑀)) |
11 | 6, 1, 2, 7, 8, 9, 10 | mhpmpl 21084 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ (Base‘𝑌)) |
12 | | mhpmulcl.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
13 | | mhpmulcl.q |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (𝐻‘𝑁)) |
14 | 6, 1, 2, 7, 8, 12,
13 | mhpmpl 21084 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ (Base‘𝑌)) |
15 | 1, 2, 3, 4, 5, 11,
14 | mplmul 20971 |
. . . . . . 7
⊢ (𝜑 → (𝑃 · 𝑄) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒))))))) |
16 | 15 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑃 · 𝑄) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒))))))) |
17 | | breq2 5057 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑥 → (𝑐 ∘r ≤ 𝑑 ↔ 𝑐 ∘r ≤ 𝑥)) |
18 | 17 | rabbidv 3390 |
. . . . . . . . 9
⊢ (𝑑 = 𝑥 → {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} = {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
19 | | fvoveq1 7236 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑥 → (𝑄‘(𝑑 ∘f − 𝑒)) = (𝑄‘(𝑥 ∘f − 𝑒))) |
20 | 19 | oveq2d 7229 |
. . . . . . . . 9
⊢ (𝑑 = 𝑥 → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒))) = ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))) |
21 | 18, 20 | mpteq12dv 5140 |
. . . . . . . 8
⊢ (𝑑 = 𝑥 → (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒)))) = (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) |
22 | 21 | oveq2d 7229 |
. . . . . . 7
⊢ (𝑑 = 𝑥 → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))))) |
23 | 22 | adantl 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑑 = 𝑥) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑑} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑑 ∘f − 𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))))) |
24 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
25 | | ovexd 7248 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) ∈ V) |
26 | 16, 23, 24, 25 | fvmptd 6825 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑃 · 𝑄)‘𝑥) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))))) |
27 | 26 | neeq1d 3000 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g‘𝑅) ↔ (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) ≠
(0g‘𝑅))) |
28 | | simp-4l 783 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝜑) |
29 | | oveq2 7221 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑒 → ((ℂfld
↾s ℕ0) Σg 𝑐) = ((ℂfld
↾s ℕ0) Σg 𝑒)) |
30 | 29 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑒 → (((ℂfld
↾s ℕ0) Σg 𝑐) = 𝑀 ↔ ((ℂfld
↾s ℕ0) Σg 𝑒) = 𝑀)) |
31 | 30 | necon3bbid 2978 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑒 → (¬ ((ℂfld
↾s ℕ0) Σg 𝑐) = 𝑀 ↔ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀)) |
32 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
33 | | elrabi 3596 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} → 𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
35 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) |
36 | 31, 34, 35 | elrabd 3604 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀}) |
37 | | notrab 4226 |
. . . . . . . . . . . . . 14
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀}) = {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀} |
38 | 36, 37 | eleqtrrdi 2849 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑒 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀})) |
39 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑅) =
(Base‘𝑅) |
40 | 1, 39, 2, 5, 11 | mplelf 20960 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
41 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) = (0g‘𝑅) |
42 | 6, 41, 5, 7, 8, 9, 10 | mhpdeg 21085 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 supp (0g‘𝑅)) ⊆ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀}) |
43 | | ovex 7246 |
. . . . . . . . . . . . . . . 16
⊢
(ℕ0 ↑m 𝐼) ∈ V |
44 | 43 | rabex 5225 |
. . . . . . . . . . . . . . 15
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
45 | 44 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
46 | | fvexd 6732 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
47 | 40, 42, 45, 46 | suppssr 7938 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑒 ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑀})) → (𝑃‘𝑒) = (0g‘𝑅)) |
48 | 28, 38, 47 | syl2anc 587 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → (𝑃‘𝑒) = (0g‘𝑅)) |
49 | 48 | oveq1d 7228 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) =
((0g‘𝑅)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))) |
50 | 8 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑅 ∈ Ring) |
51 | 14 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑄 ∈ (Base‘𝑌)) |
52 | 1, 39, 2, 5, 51 | mplelf 20960 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑄:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
53 | | simp-4r 784 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
54 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} = {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} |
55 | 5, 54 | psrbagconcl 20893 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
56 | 53, 32, 55 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → (𝑥 ∘f − 𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
57 | | elrabi 3596 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∘f −
𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} → (𝑥 ∘f − 𝑒) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → (𝑥 ∘f − 𝑒) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
59 | 52, 58 | ffvelrnd 6905 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → (𝑄‘(𝑥 ∘f − 𝑒)) ∈ (Base‘𝑅)) |
60 | 39, 3, 41 | ringlz 19605 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑄‘(𝑥 ∘f − 𝑒)) ∈ (Base‘𝑅)) →
((0g‘𝑅)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = (0g‘𝑅)) |
61 | 50, 59, 60 | syl2anc 587 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → ((0g‘𝑅)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = (0g‘𝑅)) |
62 | 49, 61 | eqtrd 2777 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg 𝑒) ≠ 𝑀) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = (0g‘𝑅)) |
63 | | simp-4l 783 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝜑) |
64 | | oveq2 7221 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑥 ∘f − 𝑒) → ((ℂfld
↾s ℕ0) Σg 𝑐) = ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) |
65 | 64 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑥 ∘f − 𝑒) →
(((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁 ↔ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁)) |
66 | 65 | necon3bbid 2978 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝑥 ∘f − 𝑒) → (¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁 ↔ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁)) |
67 | | simp-4r 784 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
68 | | simplr 769 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
69 | 67, 68, 55 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑥 ∘f − 𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
70 | 69, 57 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑥 ∘f − 𝑒) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
71 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) |
72 | 66, 70, 71 | elrabd 3604 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑥 ∘f − 𝑒) ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁}) |
73 | | notrab 4226 |
. . . . . . . . . . . . . 14
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁}) = {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ¬
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁} |
74 | 72, 73 | eleqtrrdi 2849 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑥 ∘f − 𝑒) ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁})) |
75 | 1, 39, 2, 5, 14 | mplelf 20960 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
76 | 6, 41, 5, 7, 8, 12,
13 | mhpdeg 21085 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄 supp (0g‘𝑅)) ⊆ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁}) |
77 | 75, 76, 45, 46 | suppssr 7938 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∘f − 𝑒) ∈ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∖ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑐) = 𝑁})) → (𝑄‘(𝑥 ∘f − 𝑒)) = (0g‘𝑅)) |
78 | 63, 74, 77 | syl2anc 587 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑄‘(𝑥 ∘f − 𝑒)) = (0g‘𝑅)) |
79 | 78 | oveq2d 7229 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = ((𝑃‘𝑒)(.r‘𝑅)(0g‘𝑅))) |
80 | 8 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑅 ∈ Ring) |
81 | 11 | ad4antr 732 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑃 ∈ (Base‘𝑌)) |
82 | 1, 39, 2, 5, 81 | mplelf 20960 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑃:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
83 | 33 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
84 | 83 | adantr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → 𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
85 | 82, 84 | ffvelrnd 6905 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → (𝑃‘𝑒) ∈ (Base‘𝑅)) |
86 | 39, 3, 41 | ringrz 19606 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑃‘𝑒) ∈ (Base‘𝑅)) → ((𝑃‘𝑒)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
87 | 80, 85, 86 | syl2anc 587 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → ((𝑃‘𝑒)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
88 | 79, 87 | eqtrd 2777 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = (0g‘𝑅)) |
89 | | nn0subm 20418 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ∈
(SubMnd‘ℂfld) |
90 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(ℂfld ↾s ℕ0) =
(ℂfld ↾s
ℕ0) |
91 | 90 | submbas 18241 |
. . . . . . . . . . . . . . . 16
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
ℕ0 = (Base‘(ℂfld ↾s
ℕ0))) |
92 | 89, 91 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (Base‘(ℂfld
↾s ℕ0)) |
93 | | cnfld0 20387 |
. . . . . . . . . . . . . . . . 17
⊢ 0 =
(0g‘ℂfld) |
94 | 90, 93 | subm0 18242 |
. . . . . . . . . . . . . . . 16
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
0 = (0g‘(ℂfld ↾s
ℕ0))) |
95 | 89, 94 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ 0 =
(0g‘(ℂfld ↾s
ℕ0)) |
96 | | nn0ex 12096 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ∈ V |
97 | | cnfldadd 20368 |
. . . . . . . . . . . . . . . . 17
⊢ + =
(+g‘ℂfld) |
98 | 90, 97 | ressplusg 16834 |
. . . . . . . . . . . . . . . 16
⊢
(ℕ0 ∈ V → + =
(+g‘(ℂfld ↾s
ℕ0))) |
99 | 96, 98 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ + =
(+g‘(ℂfld ↾s
ℕ0)) |
100 | | cnring 20385 |
. . . . . . . . . . . . . . . . . 18
⊢
ℂfld ∈ Ring |
101 | | ringcmn 19599 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℂfld ∈ Ring → ℂfld ∈
CMnd) |
102 | 100, 101 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
ℂfld ∈ CMnd |
103 | 90 | submcmn 19223 |
. . . . . . . . . . . . . . . . 17
⊢
((ℂfld ∈ CMnd ∧ ℕ0 ∈
(SubMnd‘ℂfld)) → (ℂfld
↾s ℕ0) ∈ CMnd) |
104 | 102, 89, 103 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢
(ℂfld ↾s ℕ0) ∈
CMnd |
105 | 104 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (ℂfld
↾s ℕ0) ∈ CMnd) |
106 | 7 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝐼 ∈ 𝑉) |
107 | 5 | psrbagf 20877 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑒:𝐼⟶ℕ0) |
108 | 83, 107 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒:𝐼⟶ℕ0) |
109 | | simpllr 776 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
110 | 5 | psrbagf 20877 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑥:𝐼⟶ℕ0) |
111 | 109, 110 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑥:𝐼⟶ℕ0) |
112 | 111 | ffnd 6546 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑥 Fn 𝐼) |
113 | 108 | ffnd 6546 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 Fn 𝐼) |
114 | | inidm 4133 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
115 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑥‘𝑖) = (𝑥‘𝑖)) |
116 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑒‘𝑖) = (𝑒‘𝑖)) |
117 | 112, 113,
106, 106, 114, 115, 116 | offval 7477 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) = (𝑖 ∈ 𝐼 ↦ ((𝑥‘𝑖) − (𝑒‘𝑖)))) |
118 | | simpl 486 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥})) |
119 | | simplr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) |
120 | | breq1 5056 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑒 → (𝑐 ∘r ≤ 𝑥 ↔ 𝑒 ∘r ≤ 𝑥)) |
121 | 120 | elrab 3602 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↔ (𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑒 ∘r ≤ 𝑥)) |
122 | 121 | simprbi 500 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} → 𝑒 ∘r ≤ 𝑥) |
123 | 119, 122 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → 𝑒 ∘r ≤ 𝑥) |
124 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
125 | 113, 112,
106, 106, 114, 116, 115 | ofrval 7480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑒 ∘r ≤ 𝑥 ∧ 𝑖 ∈ 𝐼) → (𝑒‘𝑖) ≤ (𝑥‘𝑖)) |
126 | 118, 123,
124, 125 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑒‘𝑖) ≤ (𝑥‘𝑖)) |
127 | 108 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑒‘𝑖) ∈
ℕ0) |
128 | 111 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → (𝑥‘𝑖) ∈
ℕ0) |
129 | | nn0sub 12140 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑒‘𝑖) ∈ ℕ0 ∧ (𝑥‘𝑖) ∈ ℕ0) → ((𝑒‘𝑖) ≤ (𝑥‘𝑖) ↔ ((𝑥‘𝑖) − (𝑒‘𝑖)) ∈
ℕ0)) |
130 | 127, 128,
129 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → ((𝑒‘𝑖) ≤ (𝑥‘𝑖) ↔ ((𝑥‘𝑖) − (𝑒‘𝑖)) ∈
ℕ0)) |
131 | 126, 130 | mpbid 235 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑖 ∈ 𝐼) → ((𝑥‘𝑖) − (𝑒‘𝑖)) ∈
ℕ0) |
132 | 117, 131 | fmpt3d 6933 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒):𝐼⟶ℕ0) |
133 | 108 | ffund 6549 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → Fun 𝑒) |
134 | | c0ex 10827 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
V |
135 | 106, 134 | jctir 524 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝐼 ∈ 𝑉 ∧ 0 ∈ V)) |
136 | | frnsuppeq 7917 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑉 ∧ 0 ∈ V) → (𝑒:𝐼⟶ℕ0 → (𝑒 supp 0) = (◡𝑒 “ (ℕ0 ∖
{0})))) |
137 | 135, 108,
136 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 supp 0) = (◡𝑒 “ (ℕ0 ∖
{0}))) |
138 | | dfn2 12103 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℕ =
(ℕ0 ∖ {0}) |
139 | 138 | imaeq2i 5927 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑒 “ ℕ) = (◡𝑒 “ (ℕ0 ∖
{0})) |
140 | 137, 139 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 supp 0) = (◡𝑒 “ ℕ)) |
141 | 5 | psrbag 20876 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ 𝑉 → (𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (◡𝑒 “ ℕ) ∈
Fin))) |
142 | 106, 141 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↔ (𝑒:𝐼⟶ℕ0 ∧ (◡𝑒 “ ℕ) ∈
Fin))) |
143 | 83, 142 | mpbid 235 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒:𝐼⟶ℕ0 ∧ (◡𝑒 “ ℕ) ∈
Fin)) |
144 | 143 | simprd 499 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (◡𝑒 “ ℕ) ∈
Fin) |
145 | 140, 144 | eqeltrd 2838 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 supp 0) ∈ Fin) |
146 | 83 | elexd 3428 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 ∈ V) |
147 | | isfsupp 8989 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑒 ∈ V ∧ 0 ∈ V)
→ (𝑒 finSupp 0 ↔
(Fun 𝑒 ∧ (𝑒 supp 0) ∈
Fin))) |
148 | 146, 134,
147 | sylancl 589 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 finSupp 0 ↔ (Fun 𝑒 ∧ (𝑒 supp 0) ∈ Fin))) |
149 | 133, 145,
148 | mpbir2and 713 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 finSupp 0) |
150 | 112, 113,
106, 106 | offun 7482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → Fun (𝑥 ∘f −
𝑒)) |
151 | 5 | psrbagfsupp 20879 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑥 finSupp 0) |
152 | 109, 151 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑥 finSupp 0) |
153 | 152, 149 | fsuppunfi 9005 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ((𝑥 supp 0) ∪ (𝑒 supp 0)) ∈ Fin) |
154 | | 0nn0 12105 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℕ0 |
155 | 154 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 0 ∈
ℕ0) |
156 | | 0m0e0 11950 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0
− 0) = 0 |
157 | 156 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (0 − 0) =
0) |
158 | 106, 155,
111, 108, 157 | suppofssd 7945 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ((𝑥 ∘f − 𝑒) supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑒 supp 0))) |
159 | 153, 158 | ssfid 8898 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ((𝑥 ∘f − 𝑒) supp 0) ∈
Fin) |
160 | | ovexd 7248 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) ∈ V) |
161 | | isfsupp 8989 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∘f −
𝑒) ∈ V ∧ 0 ∈
V) → ((𝑥
∘f − 𝑒) finSupp 0 ↔ (Fun (𝑥 ∘f − 𝑒) ∧ ((𝑥 ∘f − 𝑒) supp 0) ∈
Fin))) |
162 | 160, 134,
161 | sylancl 589 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ((𝑥 ∘f − 𝑒) finSupp 0 ↔ (Fun (𝑥 ∘f −
𝑒) ∧ ((𝑥 ∘f −
𝑒) supp 0) ∈
Fin))) |
163 | 150, 159,
162 | mpbir2and 713 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) finSupp 0) |
164 | 92, 95, 99, 105, 106, 108, 132, 149, 163 | gsumadd 19308 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((ℂfld ↾s ℕ0)
Σg (𝑒 ∘f + (𝑥 ∘f − 𝑒))) = (((ℂfld
↾s ℕ0) Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)))) |
165 | 108 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑒‘𝑏) ∈
ℕ0) |
166 | 165 | nn0cnd 12152 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑒‘𝑏) ∈ ℂ) |
167 | 111 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈
ℕ0) |
168 | 167 | nn0cnd 12152 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈ ℂ) |
169 | 166, 168 | pncan3d 11192 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → ((𝑒‘𝑏) + ((𝑥‘𝑏) − (𝑒‘𝑏))) = (𝑥‘𝑏)) |
170 | 169 | mpteq2dva 5150 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑏 ∈ 𝐼 ↦ ((𝑒‘𝑏) + ((𝑥‘𝑏) − (𝑒‘𝑏)))) = (𝑏 ∈ 𝐼 ↦ (𝑥‘𝑏))) |
171 | | fvexd 6732 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → (𝑒‘𝑏) ∈ V) |
172 | | ovexd 7248 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) ∧ 𝑏 ∈ 𝐼) → ((𝑥‘𝑏) − (𝑒‘𝑏)) ∈ V) |
173 | 108 | feqmptd 6780 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑒 = (𝑏 ∈ 𝐼 ↦ (𝑒‘𝑏))) |
174 | 111 | feqmptd 6780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → 𝑥 = (𝑏 ∈ 𝐼 ↦ (𝑥‘𝑏))) |
175 | 106, 167,
165, 174, 173 | offval2 7488 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑒) = (𝑏 ∈ 𝐼 ↦ ((𝑥‘𝑏) − (𝑒‘𝑏)))) |
176 | 106, 171,
172, 173, 175 | offval2 7488 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 ∘f + (𝑥 ∘f − 𝑒)) = (𝑏 ∈ 𝐼 ↦ ((𝑒‘𝑏) + ((𝑥‘𝑏) − (𝑒‘𝑏))))) |
177 | 170, 176,
174 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → (𝑒 ∘f + (𝑥 ∘f − 𝑒)) = 𝑥) |
178 | 177 | oveq2d 7229 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((ℂfld ↾s ℕ0)
Σg (𝑒 ∘f + (𝑥 ∘f − 𝑒))) = ((ℂfld
↾s ℕ0) Σg 𝑥)) |
179 | 164, 178 | eqtr3d 2779 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
(((ℂfld ↾s ℕ0)
Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) =
((ℂfld ↾s ℕ0)
Σg 𝑥)) |
180 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) |
181 | 179, 180 | eqnetrd 3008 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
(((ℂfld ↾s ℕ0)
Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) ≠ (𝑀 + 𝑁)) |
182 | | oveq12 7222 |
. . . . . . . . . . . . . 14
⊢
((((ℂfld ↾s ℕ0)
Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁) → (((ℂfld
↾s ℕ0) Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) = (𝑀 + 𝑁)) |
183 | 182 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((((ℂfld ↾s ℕ0)
Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁) → (((ℂfld
↾s ℕ0) Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) = (𝑀 + 𝑁))) |
184 | 183 | necon3ad 2953 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
((((ℂfld ↾s ℕ0)
Σg 𝑒) + ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒))) ≠ (𝑀 + 𝑁) → ¬ (((ℂfld
↾s ℕ0) Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁))) |
185 | 181, 184 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ¬
(((ℂfld ↾s ℕ0)
Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁)) |
186 | | neorian 3036 |
. . . . . . . . . . 11
⊢
((((ℂfld ↾s ℕ0)
Σg 𝑒) ≠ 𝑀 ∨ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁) ↔ ¬ (((ℂfld
↾s ℕ0) Σg 𝑒) = 𝑀 ∧ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) = 𝑁)) |
187 | 185, 186 | sylibr 237 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) →
(((ℂfld ↾s ℕ0)
Σg 𝑒) ≠ 𝑀 ∨ ((ℂfld
↾s ℕ0) Σg (𝑥 ∘f −
𝑒)) ≠ 𝑁)) |
188 | 62, 88, 187 | mpjaodan 959 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) ∧ 𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥}) → ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))) = (0g‘𝑅)) |
189 | 188 | mpteq2dva 5150 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒)))) = (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦
(0g‘𝑅))) |
190 | 189 | oveq2d 7229 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) = (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦
(0g‘𝑅)))) |
191 | | ringmnd 19572 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
192 | 8, 191 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Mnd) |
193 | 192 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → 𝑅 ∈ Mnd) |
194 | 44 | rabex 5225 |
. . . . . . . 8
⊢ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ∈ V |
195 | 41 | gsumz 18262 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ∈ V) → (𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦
(0g‘𝑅))) =
(0g‘𝑅)) |
196 | 193, 194,
195 | sylancl 589 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦
(0g‘𝑅))) =
(0g‘𝑅)) |
197 | 190, 196 | eqtrd 2777 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁)) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) =
(0g‘𝑅)) |
198 | 197 | ex 416 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((ℂfld ↾s ℕ0)
Σg 𝑥) ≠ (𝑀 + 𝑁) → (𝑅 Σg (𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) =
(0g‘𝑅))) |
199 | 198 | necon1d 2962 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑒 ∈ {𝑐 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑐 ∘r ≤ 𝑥} ↦ ((𝑃‘𝑒)(.r‘𝑅)(𝑄‘(𝑥 ∘f − 𝑒))))) ≠
(0g‘𝑅)
→ ((ℂfld ↾s ℕ0)
Σg 𝑥) = (𝑀 + 𝑁))) |
200 | 27, 199 | sylbid 243 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑃 · 𝑄)‘𝑥) ≠ (0g‘𝑅) → ((ℂfld
↾s ℕ0) Σg 𝑥) = (𝑀 + 𝑁))) |
201 | 200 | ralrimiva 3105 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g‘𝑅) → ((ℂfld
↾s ℕ0) Σg 𝑥) = (𝑀 + 𝑁))) |
202 | 9, 12 | nn0addcld 12154 |
. . 3
⊢ (𝜑 → (𝑀 + 𝑁) ∈
ℕ0) |
203 | 1 | mplring 20980 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
204 | 7, 8, 203 | syl2anc 587 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Ring) |
205 | 2, 4 | ringcl 19579 |
. . . 4
⊢ ((𝑌 ∈ Ring ∧ 𝑃 ∈ (Base‘𝑌) ∧ 𝑄 ∈ (Base‘𝑌)) → (𝑃 · 𝑄) ∈ (Base‘𝑌)) |
206 | 204, 11, 14, 205 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝑃 · 𝑄) ∈ (Base‘𝑌)) |
207 | 6, 1, 2, 41, 5, 7,
8, 202, 206 | ismhp3 21083 |
. 2
⊢ (𝜑 → ((𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁)) ↔ ∀𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} (((𝑃 · 𝑄)‘𝑥) ≠ (0g‘𝑅) → ((ℂfld
↾s ℕ0) Σg 𝑥) = (𝑀 + 𝑁)))) |
208 | 201, 207 | mpbird 260 |
1
⊢ (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁))) |