MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recextlem2 Structured version   Visualization version   GIF version

Theorem recextlem2 11589
Description: Lemma for recex 11590. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0)

Proof of Theorem recextlem2
StepHypRef Expression
1 oveq2 7276 . . . . . . . . 9 (𝐵 = 0 → (i · 𝐵) = (i · 0))
2 ax-icn 10914 . . . . . . . . . 10 i ∈ ℂ
32mul01i 11148 . . . . . . . . 9 (i · 0) = 0
41, 3eqtrdi 2795 . . . . . . . 8 (𝐵 = 0 → (i · 𝐵) = 0)
5 oveq12 7277 . . . . . . . 8 ((𝐴 = 0 ∧ (i · 𝐵) = 0) → (𝐴 + (i · 𝐵)) = (0 + 0))
64, 5sylan2 592 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + (i · 𝐵)) = (0 + 0))
7 00id 11133 . . . . . . 7 (0 + 0) = 0
86, 7eqtrdi 2795 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + (i · 𝐵)) = 0)
98necon3ai 2969 . . . . 5 ((𝐴 + (i · 𝐵)) ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
10 neorian 3040 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
119, 10sylibr 233 . . . 4 ((𝐴 + (i · 𝐵)) ≠ 0 → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
12 remulcl 10940 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
1312anidms 566 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
14 remulcl 10940 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 · 𝐵) ∈ ℝ)
1514anidms 566 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 𝐵) ∈ ℝ)
1613, 15anim12i 612 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
17 msqgt0 11478 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴))
18 msqge0 11479 . . . . . . . 8 (𝐵 ∈ ℝ → 0 ≤ (𝐵 · 𝐵))
1917, 18anim12i 612 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
2019an32s 648 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
21 addgtge0 11446 . . . . . 6 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2216, 20, 21syl2an2r 681 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
23 msqge0 11479 . . . . . . . 8 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
24 msqgt0 11478 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 0 < (𝐵 · 𝐵))
2523, 24anim12i 612 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
2625anassrs 467 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≠ 0) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
27 addgegt0 11445 . . . . . 6 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2816, 26, 27syl2an2r 681 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2922, 28jaodan 954 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3011, 29sylan2 592 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
31303impa 1108 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3231gt0ne0d 11522 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1541  wcel 2109  wne 2944   class class class wbr 5078  (class class class)co 7268  cr 10854  0cc0 10855  ici 10857   + caddc 10858   · cmul 10860   < clt 10993  cle 10994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191
This theorem is referenced by:  recex  11590
  Copyright terms: Public domain W3C validator