Proof of Theorem recextlem2
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝐵 = 0 → (i · 𝐵) = (i ·
0)) |
| 2 | | ax-icn 11193 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
| 3 | 2 | mul01i 11430 |
. . . . . . . . 9
⊢ (i
· 0) = 0 |
| 4 | 1, 3 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝐵 = 0 → (i · 𝐵) = 0) |
| 5 | | oveq12 7419 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ (i · 𝐵) = 0) → (𝐴 + (i · 𝐵)) = (0 + 0)) |
| 6 | 4, 5 | sylan2 593 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + (i · 𝐵)) = (0 + 0)) |
| 7 | | 00id 11415 |
. . . . . . 7
⊢ (0 + 0) =
0 |
| 8 | 6, 7 | eqtrdi 2787 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + (i · 𝐵)) = 0) |
| 9 | 8 | necon3ai 2958 |
. . . . 5
⊢ ((𝐴 + (i · 𝐵)) ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| 10 | | neorian 3028 |
. . . . 5
⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| 11 | 9, 10 | sylibr 234 |
. . . 4
⊢ ((𝐴 + (i · 𝐵)) ≠ 0 → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| 12 | | remulcl 11219 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ) |
| 13 | 12 | anidms 566 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ) |
| 14 | | remulcl 11219 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 · 𝐵) ∈ ℝ) |
| 15 | 14 | anidms 566 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → (𝐵 · 𝐵) ∈ ℝ) |
| 16 | 13, 15 | anim12i 613 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ)) |
| 17 | | msqgt0 11762 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴)) |
| 18 | | msqge0 11763 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → 0 ≤
(𝐵 · 𝐵)) |
| 19 | 17, 18 | anim12i 613 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) |
| 20 | 19 | an32s 652 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) |
| 21 | | addgtge0 11730 |
. . . . . 6
⊢ ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
| 22 | 16, 20, 21 | syl2an2r 685 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
| 23 | | msqge0 11763 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 0 ≤
(𝐴 · 𝐴)) |
| 24 | | msqgt0 11762 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 0 < (𝐵 · 𝐵)) |
| 25 | 23, 24 | anim12i 613 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) |
| 26 | 25 | anassrs 467 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≠ 0) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) |
| 27 | | addgegt0 11729 |
. . . . . 6
⊢ ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
| 28 | 16, 26, 27 | syl2an2r 685 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
| 29 | 22, 28 | jaodan 959 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
| 30 | 11, 29 | sylan2 593 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
| 31 | 30 | 3impa 1109 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵))) |
| 32 | 31 | gt0ne0d 11806 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0) |