MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recextlem2 Structured version   Visualization version   GIF version

Theorem recextlem2 11322
Description: Lemma for recex 11323. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0)

Proof of Theorem recextlem2
StepHypRef Expression
1 oveq2 7164 . . . . . . . . 9 (𝐵 = 0 → (i · 𝐵) = (i · 0))
2 ax-icn 10647 . . . . . . . . . 10 i ∈ ℂ
32mul01i 10881 . . . . . . . . 9 (i · 0) = 0
41, 3eqtrdi 2809 . . . . . . . 8 (𝐵 = 0 → (i · 𝐵) = 0)
5 oveq12 7165 . . . . . . . 8 ((𝐴 = 0 ∧ (i · 𝐵) = 0) → (𝐴 + (i · 𝐵)) = (0 + 0))
64, 5sylan2 595 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + (i · 𝐵)) = (0 + 0))
7 00id 10866 . . . . . . 7 (0 + 0) = 0
86, 7eqtrdi 2809 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + (i · 𝐵)) = 0)
98necon3ai 2976 . . . . 5 ((𝐴 + (i · 𝐵)) ≠ 0 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
10 neorian 3045 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
119, 10sylibr 237 . . . 4 ((𝐴 + (i · 𝐵)) ≠ 0 → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
12 remulcl 10673 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
1312anidms 570 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
14 remulcl 10673 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 · 𝐵) ∈ ℝ)
1514anidms 570 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 𝐵) ∈ ℝ)
1613, 15anim12i 615 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ))
17 msqgt0 11211 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴))
18 msqge0 11212 . . . . . . . 8 (𝐵 ∈ ℝ → 0 ≤ (𝐵 · 𝐵))
1917, 18anim12i 615 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
2019an32s 651 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵)))
21 addgtge0 11179 . . . . . 6 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 < (𝐴 · 𝐴) ∧ 0 ≤ (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2216, 20, 21syl2an2r 684 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
23 msqge0 11212 . . . . . . . 8 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
24 msqgt0 11211 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 0 < (𝐵 · 𝐵))
2523, 24anim12i 615 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
2625anassrs 471 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≠ 0) → (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵)))
27 addgegt0 11178 . . . . . 6 ((((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐴) ∧ 0 < (𝐵 · 𝐵))) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2816, 26, 27syl2an2r 684 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
2922, 28jaodan 955 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3011, 29sylan2 595 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 + (i · 𝐵)) ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
31303impa 1107 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → 0 < ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3231gt0ne0d 11255 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5036  (class class class)co 7156  cr 10587  0cc0 10588  ici 10590   + caddc 10591   · cmul 10593   < clt 10726  cle 10727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924
This theorem is referenced by:  recex  11323
  Copyright terms: Public domain W3C validator