Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnecoorneor Structured version   Visualization version   GIF version

Theorem rrx2pnecoorneor 48449
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then they are different at least at one coordinate. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pnecoorneor ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))

Proof of Theorem rrx2pnecoorneor
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
2 rrx2pnecoorneor.i . . . . . . . . 9 𝐼 = {1, 2}
32raleqi 3332 . . . . . . . 8 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖))
4 1ex 11286 . . . . . . . . 9 1 ∈ V
5 2ex 12370 . . . . . . . . 9 2 ∈ V
6 fveq2 6920 . . . . . . . . . 10 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
7 fveq2 6920 . . . . . . . . . 10 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
86, 7eqeq12d 2756 . . . . . . . . 9 (𝑖 = 1 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘1) = (𝑌‘1)))
9 fveq2 6920 . . . . . . . . . 10 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
10 fveq2 6920 . . . . . . . . . 10 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
119, 10eqeq12d 2756 . . . . . . . . 9 (𝑖 = 2 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘2) = (𝑌‘2)))
124, 5, 8, 11ralpr 4725 . . . . . . . 8 (∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
133, 12bitri 275 . . . . . . 7 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
141, 13sylibr 234 . . . . . 6 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖))
15 elmapfn 8923 . . . . . . . . . 10 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋 Fn 𝐼)
16 rrx2pnecoorneor.b . . . . . . . . . 10 𝑃 = (ℝ ↑m 𝐼)
1715, 16eleq2s 2862 . . . . . . . . 9 (𝑋𝑃𝑋 Fn 𝐼)
18 elmapfn 8923 . . . . . . . . . 10 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌 Fn 𝐼)
1918, 16eleq2s 2862 . . . . . . . . 9 (𝑌𝑃𝑌 Fn 𝐼)
2017, 19anim12i 612 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
2120adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
22 eqfnfv 7064 . . . . . . 7 ((𝑋 Fn 𝐼𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2321, 22syl 17 . . . . . 6 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2414, 23mpbird 257 . . . . 5 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → 𝑋 = 𝑌)
2524ex 412 . . . 4 ((𝑋𝑃𝑌𝑃) → (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌))
2625necon3ad 2959 . . 3 ((𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))))
27263impia 1117 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
28 neorian 3043 . 2 (((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)) ↔ ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
2927, 28sylibr 234 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {cpr 4650   Fn wfn 6568  cfv 6573  (class class class)co 7448  m cmap 8884  cr 11183  1c1 11185  2c2 12348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-2 12356
This theorem is referenced by:  rrx2pnedifcoorneor  48450  inlinecirc02p  48521
  Copyright terms: Public domain W3C validator