Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnecoorneor Structured version   Visualization version   GIF version

Theorem rrx2pnecoorneor 48726
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then they are different at least at one coordinate. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pnecoorneor ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))

Proof of Theorem rrx2pnecoorneor
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
2 rrx2pnecoorneor.i . . . . . . . . 9 𝐼 = {1, 2}
32raleqi 3288 . . . . . . . 8 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖))
4 1ex 11100 . . . . . . . . 9 1 ∈ V
5 2ex 12194 . . . . . . . . 9 2 ∈ V
6 fveq2 6817 . . . . . . . . . 10 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
7 fveq2 6817 . . . . . . . . . 10 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
86, 7eqeq12d 2746 . . . . . . . . 9 (𝑖 = 1 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘1) = (𝑌‘1)))
9 fveq2 6817 . . . . . . . . . 10 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
10 fveq2 6817 . . . . . . . . . 10 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
119, 10eqeq12d 2746 . . . . . . . . 9 (𝑖 = 2 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘2) = (𝑌‘2)))
124, 5, 8, 11ralpr 4651 . . . . . . . 8 (∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
133, 12bitri 275 . . . . . . 7 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
141, 13sylibr 234 . . . . . 6 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖))
15 elmapfn 8784 . . . . . . . . . 10 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋 Fn 𝐼)
16 rrx2pnecoorneor.b . . . . . . . . . 10 𝑃 = (ℝ ↑m 𝐼)
1715, 16eleq2s 2847 . . . . . . . . 9 (𝑋𝑃𝑋 Fn 𝐼)
18 elmapfn 8784 . . . . . . . . . 10 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌 Fn 𝐼)
1918, 16eleq2s 2847 . . . . . . . . 9 (𝑌𝑃𝑌 Fn 𝐼)
2017, 19anim12i 613 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
2120adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
22 eqfnfv 6959 . . . . . . 7 ((𝑋 Fn 𝐼𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2321, 22syl 17 . . . . . 6 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2414, 23mpbird 257 . . . . 5 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → 𝑋 = 𝑌)
2524ex 412 . . . 4 ((𝑋𝑃𝑌𝑃) → (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌))
2625necon3ad 2939 . . 3 ((𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))))
27263impia 1117 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
28 neorian 3021 . 2 (((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)) ↔ ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
2927, 28sylibr 234 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  {cpr 4576   Fn wfn 6472  cfv 6477  (class class class)co 7341  m cmap 8745  cr 10997  1c1 10999  2c2 12172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-1cn 11056  ax-addcl 11058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-2 12180
This theorem is referenced by:  rrx2pnedifcoorneor  48727  inlinecirc02p  48798
  Copyright terms: Public domain W3C validator