Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnecoorneor Structured version   Visualization version   GIF version

Theorem rrx2pnecoorneor 48701
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then they are different at least at one coordinate. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pnecoorneor ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))

Proof of Theorem rrx2pnecoorneor
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
2 rrx2pnecoorneor.i . . . . . . . . 9 𝐼 = {1, 2}
32raleqi 3297 . . . . . . . 8 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖))
4 1ex 11170 . . . . . . . . 9 1 ∈ V
5 2ex 12263 . . . . . . . . 9 2 ∈ V
6 fveq2 6858 . . . . . . . . . 10 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
7 fveq2 6858 . . . . . . . . . 10 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
86, 7eqeq12d 2745 . . . . . . . . 9 (𝑖 = 1 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘1) = (𝑌‘1)))
9 fveq2 6858 . . . . . . . . . 10 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
10 fveq2 6858 . . . . . . . . . 10 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
119, 10eqeq12d 2745 . . . . . . . . 9 (𝑖 = 2 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘2) = (𝑌‘2)))
124, 5, 8, 11ralpr 4664 . . . . . . . 8 (∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
133, 12bitri 275 . . . . . . 7 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
141, 13sylibr 234 . . . . . 6 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖))
15 elmapfn 8838 . . . . . . . . . 10 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋 Fn 𝐼)
16 rrx2pnecoorneor.b . . . . . . . . . 10 𝑃 = (ℝ ↑m 𝐼)
1715, 16eleq2s 2846 . . . . . . . . 9 (𝑋𝑃𝑋 Fn 𝐼)
18 elmapfn 8838 . . . . . . . . . 10 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌 Fn 𝐼)
1918, 16eleq2s 2846 . . . . . . . . 9 (𝑌𝑃𝑌 Fn 𝐼)
2017, 19anim12i 613 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
2120adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
22 eqfnfv 7003 . . . . . . 7 ((𝑋 Fn 𝐼𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2321, 22syl 17 . . . . . 6 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2414, 23mpbird 257 . . . . 5 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → 𝑋 = 𝑌)
2524ex 412 . . . 4 ((𝑋𝑃𝑌𝑃) → (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌))
2625necon3ad 2938 . . 3 ((𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))))
27263impia 1117 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
28 neorian 3020 . 2 (((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)) ↔ ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
2927, 28sylibr 234 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {cpr 4591   Fn wfn 6506  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  1c1 11069  2c2 12241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-2 12249
This theorem is referenced by:  rrx2pnedifcoorneor  48702  inlinecirc02p  48773
  Copyright terms: Public domain W3C validator