Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) |
2 | | rrx2pnecoorneor.i |
. . . . . . . . 9
⊢ 𝐼 = {1, 2} |
3 | 2 | raleqi 3337 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝐼 (𝑋‘𝑖) = (𝑌‘𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋‘𝑖) = (𝑌‘𝑖)) |
4 | | 1ex 10902 |
. . . . . . . . 9
⊢ 1 ∈
V |
5 | | 2ex 11980 |
. . . . . . . . 9
⊢ 2 ∈
V |
6 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → (𝑋‘𝑖) = (𝑋‘1)) |
7 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → (𝑌‘𝑖) = (𝑌‘1)) |
8 | 6, 7 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑖 = 1 → ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ (𝑋‘1) = (𝑌‘1))) |
9 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑖 = 2 → (𝑋‘𝑖) = (𝑋‘2)) |
10 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑖 = 2 → (𝑌‘𝑖) = (𝑌‘2)) |
11 | 9, 10 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑖 = 2 → ((𝑋‘𝑖) = (𝑌‘𝑖) ↔ (𝑋‘2) = (𝑌‘2))) |
12 | 4, 5, 8, 11 | ralpr 4633 |
. . . . . . . 8
⊢
(∀𝑖 ∈
{1, 2} (𝑋‘𝑖) = (𝑌‘𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) |
13 | 3, 12 | bitri 274 |
. . . . . . 7
⊢
(∀𝑖 ∈
𝐼 (𝑋‘𝑖) = (𝑌‘𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) |
14 | 1, 13 | sylibr 233 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ∀𝑖 ∈ 𝐼 (𝑋‘𝑖) = (𝑌‘𝑖)) |
15 | | elmapfn 8611 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (ℝ
↑m 𝐼)
→ 𝑋 Fn 𝐼) |
16 | | rrx2pnecoorneor.b |
. . . . . . . . . 10
⊢ 𝑃 = (ℝ ↑m
𝐼) |
17 | 15, 16 | eleq2s 2857 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑃 → 𝑋 Fn 𝐼) |
18 | | elmapfn 8611 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (ℝ
↑m 𝐼)
→ 𝑌 Fn 𝐼) |
19 | 18, 16 | eleq2s 2857 |
. . . . . . . . 9
⊢ (𝑌 ∈ 𝑃 → 𝑌 Fn 𝐼) |
20 | 17, 19 | anim12i 612 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼)) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼)) |
22 | | eqfnfv 6891 |
. . . . . . 7
⊢ ((𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ 𝐼 (𝑋‘𝑖) = (𝑌‘𝑖))) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 = 𝑌 ↔ ∀𝑖 ∈ 𝐼 (𝑋‘𝑖) = (𝑌‘𝑖))) |
24 | 14, 23 | mpbird 256 |
. . . . 5
⊢ (((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → 𝑋 = 𝑌) |
25 | 24 | ex 412 |
. . . 4
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌)) |
26 | 25 | necon3ad 2955 |
. . 3
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 ≠ 𝑌 → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))) |
27 | 26 | 3impia 1115 |
. 2
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) |
28 | | neorian 3038 |
. 2
⊢ (((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)) ↔ ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) |
29 | 27, 28 | sylibr 233 |
1
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))) |