MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem2 Structured version   Visualization version   GIF version

Theorem bezoutlem2 15877
Description: Lemma for bezout 15880. (Contributed by Mario Carneiro, 15-Mar-2014.) ( Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
bezout.2 𝐺 = inf(𝑀, ℝ, < )
bezout.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlem2 (𝜑𝐺𝑀)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem bezoutlem2
StepHypRef Expression
1 bezout.2 . 2 𝐺 = inf(𝑀, ℝ, < )
2 bezout.1 . . . . 5 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
32ssrab3 4032 . . . 4 𝑀 ⊆ ℕ
4 nnuz 12269 . . . 4 ℕ = (ℤ‘1)
53, 4sseqtri 3978 . . 3 𝑀 ⊆ (ℤ‘1)
6 bezout.3 . . . . . 6 (𝜑𝐴 ∈ ℤ)
7 bezout.4 . . . . . 6 (𝜑𝐵 ∈ ℤ)
82, 6, 7bezoutlem1 15876 . . . . 5 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
9 ne0i 4272 . . . . 5 ((abs‘𝐴) ∈ 𝑀𝑀 ≠ ∅)
108, 9syl6 35 . . . 4 (𝜑 → (𝐴 ≠ 0 → 𝑀 ≠ ∅))
11 eqid 2822 . . . . . . 7 {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}
1211, 7, 6bezoutlem1 15876 . . . . . 6 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
13 rexcom 3336 . . . . . . . . . 10 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
146zcnd 12076 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℂ)
1514adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐴 ∈ ℂ)
16 zcn 11974 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1716ad2antll 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℂ)
1815, 17mulcld 10650 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐴 · 𝑥) ∈ ℂ)
197zcnd 12076 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℂ)
2019adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐵 ∈ ℂ)
21 zcn 11974 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
2221ad2antrl 727 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑦 ∈ ℂ)
2320, 22mulcld 10650 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℂ)
2418, 23addcomd 10831 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))
2524eqeq2d 2833 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
26252rexbidva 3285 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
2713, 26syl5bb 286 . . . . . . . . 9 (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
2827rabbidv 3455 . . . . . . . 8 (𝜑 → {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
292, 28syl5eq 2869 . . . . . . 7 (𝜑𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
3029eleq2d 2899 . . . . . 6 (𝜑 → ((abs‘𝐵) ∈ 𝑀 ↔ (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
3112, 30sylibrd 262 . . . . 5 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ 𝑀))
32 ne0i 4272 . . . . 5 ((abs‘𝐵) ∈ 𝑀𝑀 ≠ ∅)
3331, 32syl6 35 . . . 4 (𝜑 → (𝐵 ≠ 0 → 𝑀 ≠ ∅))
34 bezout.5 . . . . 5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
35 neorian 3105 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
3634, 35sylibr 237 . . . 4 (𝜑 → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
3710, 33, 36mpjaod 857 . . 3 (𝜑𝑀 ≠ ∅)
38 infssuzcl 12320 . . 3 ((𝑀 ⊆ (ℤ‘1) ∧ 𝑀 ≠ ∅) → inf(𝑀, ℝ, < ) ∈ 𝑀)
395, 37, 38sylancr 590 . 2 (𝜑 → inf(𝑀, ℝ, < ) ∈ 𝑀)
401, 39eqeltrid 2918 1 (𝜑𝐺𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2114  wne 3011  wrex 3131  {crab 3134  wss 3908  c0 4265  cfv 6334  (class class class)co 7140  infcinf 8893  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cn 11625  cz 11969  cuz 12231  abscabs 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586
This theorem is referenced by:  bezoutlem3  15878  bezoutlem4  15879
  Copyright terms: Public domain W3C validator