| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bezoutlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for bezout 16489. (Contributed by Mario Carneiro, 15-Mar-2014.) ( Revised by AV, 30-Sep-2020.) |
| Ref | Expression |
|---|---|
| bezout.1 | ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} |
| bezout.3 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| bezout.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| bezout.2 | ⊢ 𝐺 = inf(𝑀, ℝ, < ) |
| bezout.5 | ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| Ref | Expression |
|---|---|
| bezoutlem2 | ⊢ (𝜑 → 𝐺 ∈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout.2 | . 2 ⊢ 𝐺 = inf(𝑀, ℝ, < ) | |
| 2 | bezout.1 | . . . . 5 ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} | |
| 3 | 2 | ssrab3 4041 | . . . 4 ⊢ 𝑀 ⊆ ℕ |
| 4 | nnuz 12812 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 5 | 3, 4 | sseqtri 3992 | . . 3 ⊢ 𝑀 ⊆ (ℤ≥‘1) |
| 6 | bezout.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 7 | bezout.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
| 8 | 2, 6, 7 | bezoutlem1 16485 | . . . . 5 ⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀)) |
| 9 | ne0i 4300 | . . . . 5 ⊢ ((abs‘𝐴) ∈ 𝑀 → 𝑀 ≠ ∅) | |
| 10 | 8, 9 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 0 → 𝑀 ≠ ∅)) |
| 11 | eqid 2729 | . . . . . . 7 ⊢ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} | |
| 12 | 11, 7, 6 | bezoutlem1 16485 | . . . . . 6 ⊢ (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})) |
| 13 | rexcom 3264 | . . . . . . . . . 10 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | |
| 14 | 6 | zcnd 12615 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 15 | 14 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐴 ∈ ℂ) |
| 16 | zcn 12510 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 17 | 16 | ad2antll 729 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℂ) |
| 18 | 15, 17 | mulcld 11170 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐴 · 𝑥) ∈ ℂ) |
| 19 | 7 | zcnd 12615 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 20 | 19 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐵 ∈ ℂ) |
| 21 | zcn 12510 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 22 | 21 | ad2antrl 728 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑦 ∈ ℂ) |
| 23 | 20, 22 | mulcld 11170 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℂ) |
| 24 | 18, 23 | addcomd 11352 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + (𝐴 · 𝑥))) |
| 25 | 24 | eqeq2d 2740 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
| 26 | 25 | 2rexbidva 3198 | . . . . . . . . . 10 ⊢ (𝜑 → (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
| 27 | 13, 26 | bitrid 283 | . . . . . . . . 9 ⊢ (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
| 28 | 27 | rabbidv 3410 | . . . . . . . 8 ⊢ (𝜑 → {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}) |
| 29 | 2, 28 | eqtrid 2776 | . . . . . . 7 ⊢ (𝜑 → 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}) |
| 30 | 29 | eleq2d 2814 | . . . . . 6 ⊢ (𝜑 → ((abs‘𝐵) ∈ 𝑀 ↔ (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})) |
| 31 | 12, 30 | sylibrd 259 | . . . . 5 ⊢ (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ 𝑀)) |
| 32 | ne0i 4300 | . . . . 5 ⊢ ((abs‘𝐵) ∈ 𝑀 → 𝑀 ≠ ∅) | |
| 33 | 31, 32 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝐵 ≠ 0 → 𝑀 ≠ ∅)) |
| 34 | bezout.5 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | |
| 35 | neorian 3020 | . . . . 5 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | |
| 36 | 34, 35 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| 37 | 10, 33, 36 | mpjaod 860 | . . 3 ⊢ (𝜑 → 𝑀 ≠ ∅) |
| 38 | infssuzcl 12867 | . . 3 ⊢ ((𝑀 ⊆ (ℤ≥‘1) ∧ 𝑀 ≠ ∅) → inf(𝑀, ℝ, < ) ∈ 𝑀) | |
| 39 | 5, 37, 38 | sylancr 587 | . 2 ⊢ (𝜑 → inf(𝑀, ℝ, < ) ∈ 𝑀) |
| 40 | 1, 39 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝐺 ∈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3402 ⊆ wss 3911 ∅c0 4292 ‘cfv 6499 (class class class)co 7369 infcinf 9368 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 ℕcn 12162 ℤcz 12505 ℤ≥cuz 12769 abscabs 15176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 |
| This theorem is referenced by: bezoutlem3 16487 bezoutlem4 16488 |
| Copyright terms: Public domain | W3C validator |