MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem2 Structured version   Visualization version   GIF version

Theorem bezoutlem2 15538
Description: Lemma for bezout 15541. (Contributed by Mario Carneiro, 15-Mar-2014.) ( Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
bezout.2 𝐺 = inf(𝑀, ℝ, < )
bezout.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlem2 (𝜑𝐺𝑀)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem bezoutlem2
StepHypRef Expression
1 bezout.2 . 2 𝐺 = inf(𝑀, ℝ, < )
2 bezout.1 . . . . 5 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
3 ssrab2 3847 . . . . 5 {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} ⊆ ℕ
42, 3eqsstri 3795 . . . 4 𝑀 ⊆ ℕ
5 nnuz 11923 . . . 4 ℕ = (ℤ‘1)
64, 5sseqtri 3797 . . 3 𝑀 ⊆ (ℤ‘1)
7 bezout.3 . . . . . 6 (𝜑𝐴 ∈ ℤ)
8 bezout.4 . . . . . 6 (𝜑𝐵 ∈ ℤ)
92, 7, 8bezoutlem1 15537 . . . . 5 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
10 ne0i 4085 . . . . 5 ((abs‘𝐴) ∈ 𝑀𝑀 ≠ ∅)
119, 10syl6 35 . . . 4 (𝜑 → (𝐴 ≠ 0 → 𝑀 ≠ ∅))
12 eqid 2765 . . . . . . 7 {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}
1312, 8, 7bezoutlem1 15537 . . . . . 6 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
14 rexcom 3246 . . . . . . . . . 10 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
157zcnd 11730 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℂ)
1615adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐴 ∈ ℂ)
17 zcn 11629 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1817ad2antll 720 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℂ)
1916, 18mulcld 10314 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐴 · 𝑥) ∈ ℂ)
208zcnd 11730 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℂ)
2120adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐵 ∈ ℂ)
22 zcn 11629 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
2322ad2antrl 719 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑦 ∈ ℂ)
2421, 23mulcld 10314 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℂ)
2519, 24addcomd 10492 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))
2625eqeq2d 2775 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
27262rexbidva 3203 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
2814, 27syl5bb 274 . . . . . . . . 9 (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
2928rabbidv 3338 . . . . . . . 8 (𝜑 → {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
302, 29syl5eq 2811 . . . . . . 7 (𝜑𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
3130eleq2d 2830 . . . . . 6 (𝜑 → ((abs‘𝐵) ∈ 𝑀 ↔ (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
3213, 31sylibrd 250 . . . . 5 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ 𝑀))
33 ne0i 4085 . . . . 5 ((abs‘𝐵) ∈ 𝑀𝑀 ≠ ∅)
3432, 33syl6 35 . . . 4 (𝜑 → (𝐵 ≠ 0 → 𝑀 ≠ ∅))
35 bezout.5 . . . . 5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
36 neorian 3031 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
3735, 36sylibr 225 . . . 4 (𝜑 → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
3811, 34, 37mpjaod 886 . . 3 (𝜑𝑀 ≠ ∅)
39 infssuzcl 11973 . . 3 ((𝑀 ⊆ (ℤ‘1) ∧ 𝑀 ≠ ∅) → inf(𝑀, ℝ, < ) ∈ 𝑀)
406, 38, 39sylancr 581 . 2 (𝜑 → inf(𝑀, ℝ, < ) ∈ 𝑀)
411, 40syl5eqel 2848 1 (𝜑𝐺𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2937  wrex 3056  {crab 3059  wss 3732  c0 4079  cfv 6068  (class class class)co 6842  infcinf 8554  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cn 11274  cz 11624  cuz 11886  abscabs 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261
This theorem is referenced by:  bezoutlem3  15539  bezoutlem4  15540
  Copyright terms: Public domain W3C validator