Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bezoutlem2 | Structured version Visualization version GIF version |
Description: Lemma for bezout 16251. (Contributed by Mario Carneiro, 15-Mar-2014.) ( Revised by AV, 30-Sep-2020.) |
Ref | Expression |
---|---|
bezout.1 | ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} |
bezout.3 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
bezout.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
bezout.2 | ⊢ 𝐺 = inf(𝑀, ℝ, < ) |
bezout.5 | ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
Ref | Expression |
---|---|
bezoutlem2 | ⊢ (𝜑 → 𝐺 ∈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bezout.2 | . 2 ⊢ 𝐺 = inf(𝑀, ℝ, < ) | |
2 | bezout.1 | . . . . 5 ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} | |
3 | 2 | ssrab3 4015 | . . . 4 ⊢ 𝑀 ⊆ ℕ |
4 | nnuz 12621 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
5 | 3, 4 | sseqtri 3957 | . . 3 ⊢ 𝑀 ⊆ (ℤ≥‘1) |
6 | bezout.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
7 | bezout.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
8 | 2, 6, 7 | bezoutlem1 16247 | . . . . 5 ⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀)) |
9 | ne0i 4268 | . . . . 5 ⊢ ((abs‘𝐴) ∈ 𝑀 → 𝑀 ≠ ∅) | |
10 | 8, 9 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 0 → 𝑀 ≠ ∅)) |
11 | eqid 2738 | . . . . . . 7 ⊢ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} | |
12 | 11, 7, 6 | bezoutlem1 16247 | . . . . . 6 ⊢ (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})) |
13 | rexcom 3234 | . . . . . . . . . 10 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | |
14 | 6 | zcnd 12427 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
15 | 14 | adantr 481 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐴 ∈ ℂ) |
16 | zcn 12324 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
17 | 16 | ad2antll 726 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℂ) |
18 | 15, 17 | mulcld 10995 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐴 · 𝑥) ∈ ℂ) |
19 | 7 | zcnd 12427 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
20 | 19 | adantr 481 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐵 ∈ ℂ) |
21 | zcn 12324 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
22 | 21 | ad2antrl 725 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑦 ∈ ℂ) |
23 | 20, 22 | mulcld 10995 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℂ) |
24 | 18, 23 | addcomd 11177 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + (𝐴 · 𝑥))) |
25 | 24 | eqeq2d 2749 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
26 | 25 | 2rexbidva 3228 | . . . . . . . . . 10 ⊢ (𝜑 → (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
27 | 13, 26 | bitrid 282 | . . . . . . . . 9 ⊢ (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
28 | 27 | rabbidv 3414 | . . . . . . . 8 ⊢ (𝜑 → {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}) |
29 | 2, 28 | eqtrid 2790 | . . . . . . 7 ⊢ (𝜑 → 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}) |
30 | 29 | eleq2d 2824 | . . . . . 6 ⊢ (𝜑 → ((abs‘𝐵) ∈ 𝑀 ↔ (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})) |
31 | 12, 30 | sylibrd 258 | . . . . 5 ⊢ (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ 𝑀)) |
32 | ne0i 4268 | . . . . 5 ⊢ ((abs‘𝐵) ∈ 𝑀 → 𝑀 ≠ ∅) | |
33 | 31, 32 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝐵 ≠ 0 → 𝑀 ≠ ∅)) |
34 | bezout.5 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | |
35 | neorian 3039 | . . . . 5 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | |
36 | 34, 35 | sylibr 233 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
37 | 10, 33, 36 | mpjaod 857 | . . 3 ⊢ (𝜑 → 𝑀 ≠ ∅) |
38 | infssuzcl 12672 | . . 3 ⊢ ((𝑀 ⊆ (ℤ≥‘1) ∧ 𝑀 ≠ ∅) → inf(𝑀, ℝ, < ) ∈ 𝑀) | |
39 | 5, 37, 38 | sylancr 587 | . 2 ⊢ (𝜑 → inf(𝑀, ℝ, < ) ∈ 𝑀) |
40 | 1, 39 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝐺 ∈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 infcinf 9200 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 ℕcn 11973 ℤcz 12319 ℤ≥cuz 12582 abscabs 14945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 |
This theorem is referenced by: bezoutlem3 16249 bezoutlem4 16250 |
Copyright terms: Public domain | W3C validator |