| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bezoutlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for bezout 16454. (Contributed by Mario Carneiro, 15-Mar-2014.) ( Revised by AV, 30-Sep-2020.) |
| Ref | Expression |
|---|---|
| bezout.1 | ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} |
| bezout.3 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| bezout.4 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| bezout.2 | ⊢ 𝐺 = inf(𝑀, ℝ, < ) |
| bezout.5 | ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| Ref | Expression |
|---|---|
| bezoutlem2 | ⊢ (𝜑 → 𝐺 ∈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout.2 | . 2 ⊢ 𝐺 = inf(𝑀, ℝ, < ) | |
| 2 | bezout.1 | . . . . 5 ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} | |
| 3 | 2 | ssrab3 4029 | . . . 4 ⊢ 𝑀 ⊆ ℕ |
| 4 | nnuz 12775 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 5 | 3, 4 | sseqtri 3978 | . . 3 ⊢ 𝑀 ⊆ (ℤ≥‘1) |
| 6 | bezout.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 7 | bezout.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
| 8 | 2, 6, 7 | bezoutlem1 16450 | . . . . 5 ⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀)) |
| 9 | ne0i 4288 | . . . . 5 ⊢ ((abs‘𝐴) ∈ 𝑀 → 𝑀 ≠ ∅) | |
| 10 | 8, 9 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 0 → 𝑀 ≠ ∅)) |
| 11 | eqid 2731 | . . . . . . 7 ⊢ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} | |
| 12 | 11, 7, 6 | bezoutlem1 16450 | . . . . . 6 ⊢ (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})) |
| 13 | rexcom 3261 | . . . . . . . . . 10 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | |
| 14 | 6 | zcnd 12578 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 15 | 14 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐴 ∈ ℂ) |
| 16 | zcn 12473 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 17 | 16 | ad2antll 729 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℂ) |
| 18 | 15, 17 | mulcld 11132 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐴 · 𝑥) ∈ ℂ) |
| 19 | 7 | zcnd 12578 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 20 | 19 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐵 ∈ ℂ) |
| 21 | zcn 12473 | . . . . . . . . . . . . . . 15 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 22 | 21 | ad2antrl 728 | . . . . . . . . . . . . . 14 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑦 ∈ ℂ) |
| 23 | 20, 22 | mulcld 11132 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℂ) |
| 24 | 18, 23 | addcomd 11315 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + (𝐴 · 𝑥))) |
| 25 | 24 | eqeq2d 2742 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
| 26 | 25 | 2rexbidva 3195 | . . . . . . . . . 10 ⊢ (𝜑 → (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
| 27 | 13, 26 | bitrid 283 | . . . . . . . . 9 ⊢ (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
| 28 | 27 | rabbidv 3402 | . . . . . . . 8 ⊢ (𝜑 → {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}) |
| 29 | 2, 28 | eqtrid 2778 | . . . . . . 7 ⊢ (𝜑 → 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}) |
| 30 | 29 | eleq2d 2817 | . . . . . 6 ⊢ (𝜑 → ((abs‘𝐵) ∈ 𝑀 ↔ (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})) |
| 31 | 12, 30 | sylibrd 259 | . . . . 5 ⊢ (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ 𝑀)) |
| 32 | ne0i 4288 | . . . . 5 ⊢ ((abs‘𝐵) ∈ 𝑀 → 𝑀 ≠ ∅) | |
| 33 | 31, 32 | syl6 35 | . . . 4 ⊢ (𝜑 → (𝐵 ≠ 0 → 𝑀 ≠ ∅)) |
| 34 | bezout.5 | . . . . 5 ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | |
| 35 | neorian 3023 | . . . . 5 ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | |
| 36 | 34, 35 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
| 37 | 10, 33, 36 | mpjaod 860 | . . 3 ⊢ (𝜑 → 𝑀 ≠ ∅) |
| 38 | infssuzcl 12830 | . . 3 ⊢ ((𝑀 ⊆ (ℤ≥‘1) ∧ 𝑀 ≠ ∅) → inf(𝑀, ℝ, < ) ∈ 𝑀) | |
| 39 | 5, 37, 38 | sylancr 587 | . 2 ⊢ (𝜑 → inf(𝑀, ℝ, < ) ∈ 𝑀) |
| 40 | 1, 39 | eqeltrid 2835 | 1 ⊢ (𝜑 → 𝐺 ∈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ⊆ wss 3897 ∅c0 4280 ‘cfv 6481 (class class class)co 7346 infcinf 9325 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 < clt 11146 ℕcn 12125 ℤcz 12468 ℤ≥cuz 12732 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: bezoutlem3 16452 bezoutlem4 16453 |
| Copyright terms: Public domain | W3C validator |