MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem2 Structured version   Visualization version   GIF version

Theorem bezoutlem2 16428
Description: Lemma for bezout 16431. (Contributed by Mario Carneiro, 15-Mar-2014.) ( Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
bezout.1 ๐‘€ = {๐‘ง โˆˆ โ„• โˆฃ โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„ค ๐‘ง = ((๐ด ยท ๐‘ฅ) + (๐ต ยท ๐‘ฆ))}
bezout.3 (๐œ‘ โ†’ ๐ด โˆˆ โ„ค)
bezout.4 (๐œ‘ โ†’ ๐ต โˆˆ โ„ค)
bezout.2 ๐บ = inf(๐‘€, โ„, < )
bezout.5 (๐œ‘ โ†’ ยฌ (๐ด = 0 โˆง ๐ต = 0))
Assertion
Ref Expression
bezoutlem2 (๐œ‘ โ†’ ๐บ โˆˆ ๐‘€)
Distinct variable groups:   ๐‘ฅ,๐‘ฆ,๐‘ง,๐ด   ๐‘ฅ,๐ต,๐‘ฆ,๐‘ง   ๐‘ฅ,๐บ,๐‘ฆ,๐‘ง   ๐œ‘,๐‘ฅ,๐‘ฆ,๐‘ง
Allowed substitution hints:   ๐‘€(๐‘ฅ,๐‘ฆ,๐‘ง)

Proof of Theorem bezoutlem2
StepHypRef Expression
1 bezout.2 . 2 ๐บ = inf(๐‘€, โ„, < )
2 bezout.1 . . . . 5 ๐‘€ = {๐‘ง โˆˆ โ„• โˆฃ โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„ค ๐‘ง = ((๐ด ยท ๐‘ฅ) + (๐ต ยท ๐‘ฆ))}
32ssrab3 4045 . . . 4 ๐‘€ โŠ† โ„•
4 nnuz 12813 . . . 4 โ„• = (โ„คโ‰ฅโ€˜1)
53, 4sseqtri 3985 . . 3 ๐‘€ โŠ† (โ„คโ‰ฅโ€˜1)
6 bezout.3 . . . . . 6 (๐œ‘ โ†’ ๐ด โˆˆ โ„ค)
7 bezout.4 . . . . . 6 (๐œ‘ โ†’ ๐ต โˆˆ โ„ค)
82, 6, 7bezoutlem1 16427 . . . . 5 (๐œ‘ โ†’ (๐ด โ‰  0 โ†’ (absโ€˜๐ด) โˆˆ ๐‘€))
9 ne0i 4299 . . . . 5 ((absโ€˜๐ด) โˆˆ ๐‘€ โ†’ ๐‘€ โ‰  โˆ…)
108, 9syl6 35 . . . 4 (๐œ‘ โ†’ (๐ด โ‰  0 โ†’ ๐‘€ โ‰  โˆ…))
11 eqid 2737 . . . . . . 7 {๐‘ง โˆˆ โ„• โˆฃ โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ))} = {๐‘ง โˆˆ โ„• โˆฃ โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ))}
1211, 7, 6bezoutlem1 16427 . . . . . 6 (๐œ‘ โ†’ (๐ต โ‰  0 โ†’ (absโ€˜๐ต) โˆˆ {๐‘ง โˆˆ โ„• โˆฃ โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ))}))
13 rexcom 3276 . . . . . . . . . 10 (โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„ค ๐‘ง = ((๐ด ยท ๐‘ฅ) + (๐ต ยท ๐‘ฆ)) โ†” โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ด ยท ๐‘ฅ) + (๐ต ยท ๐‘ฆ)))
146zcnd 12615 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
1514adantr 482 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค)) โ†’ ๐ด โˆˆ โ„‚)
16 zcn 12511 . . . . . . . . . . . . . . 15 (๐‘ฅ โˆˆ โ„ค โ†’ ๐‘ฅ โˆˆ โ„‚)
1716ad2antll 728 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค)) โ†’ ๐‘ฅ โˆˆ โ„‚)
1815, 17mulcld 11182 . . . . . . . . . . . . 13 ((๐œ‘ โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค)) โ†’ (๐ด ยท ๐‘ฅ) โˆˆ โ„‚)
197zcnd 12615 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
2019adantr 482 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค)) โ†’ ๐ต โˆˆ โ„‚)
21 zcn 12511 . . . . . . . . . . . . . . 15 (๐‘ฆ โˆˆ โ„ค โ†’ ๐‘ฆ โˆˆ โ„‚)
2221ad2antrl 727 . . . . . . . . . . . . . 14 ((๐œ‘ โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค)) โ†’ ๐‘ฆ โˆˆ โ„‚)
2320, 22mulcld 11182 . . . . . . . . . . . . 13 ((๐œ‘ โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค)) โ†’ (๐ต ยท ๐‘ฆ) โˆˆ โ„‚)
2418, 23addcomd 11364 . . . . . . . . . . . 12 ((๐œ‘ โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค)) โ†’ ((๐ด ยท ๐‘ฅ) + (๐ต ยท ๐‘ฆ)) = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ)))
2524eqeq2d 2748 . . . . . . . . . . 11 ((๐œ‘ โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค)) โ†’ (๐‘ง = ((๐ด ยท ๐‘ฅ) + (๐ต ยท ๐‘ฆ)) โ†” ๐‘ง = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ))))
26252rexbidva 3212 . . . . . . . . . 10 (๐œ‘ โ†’ (โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ด ยท ๐‘ฅ) + (๐ต ยท ๐‘ฆ)) โ†” โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ))))
2713, 26bitrid 283 . . . . . . . . 9 (๐œ‘ โ†’ (โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„ค ๐‘ง = ((๐ด ยท ๐‘ฅ) + (๐ต ยท ๐‘ฆ)) โ†” โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ))))
2827rabbidv 3418 . . . . . . . 8 (๐œ‘ โ†’ {๐‘ง โˆˆ โ„• โˆฃ โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„ค ๐‘ง = ((๐ด ยท ๐‘ฅ) + (๐ต ยท ๐‘ฆ))} = {๐‘ง โˆˆ โ„• โˆฃ โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ))})
292, 28eqtrid 2789 . . . . . . 7 (๐œ‘ โ†’ ๐‘€ = {๐‘ง โˆˆ โ„• โˆฃ โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ))})
3029eleq2d 2824 . . . . . 6 (๐œ‘ โ†’ ((absโ€˜๐ต) โˆˆ ๐‘€ โ†” (absโ€˜๐ต) โˆˆ {๐‘ง โˆˆ โ„• โˆฃ โˆƒ๐‘ฆ โˆˆ โ„ค โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ง = ((๐ต ยท ๐‘ฆ) + (๐ด ยท ๐‘ฅ))}))
3112, 30sylibrd 259 . . . . 5 (๐œ‘ โ†’ (๐ต โ‰  0 โ†’ (absโ€˜๐ต) โˆˆ ๐‘€))
32 ne0i 4299 . . . . 5 ((absโ€˜๐ต) โˆˆ ๐‘€ โ†’ ๐‘€ โ‰  โˆ…)
3331, 32syl6 35 . . . 4 (๐œ‘ โ†’ (๐ต โ‰  0 โ†’ ๐‘€ โ‰  โˆ…))
34 bezout.5 . . . . 5 (๐œ‘ โ†’ ยฌ (๐ด = 0 โˆง ๐ต = 0))
35 neorian 3040 . . . . 5 ((๐ด โ‰  0 โˆจ ๐ต โ‰  0) โ†” ยฌ (๐ด = 0 โˆง ๐ต = 0))
3634, 35sylibr 233 . . . 4 (๐œ‘ โ†’ (๐ด โ‰  0 โˆจ ๐ต โ‰  0))
3710, 33, 36mpjaod 859 . . 3 (๐œ‘ โ†’ ๐‘€ โ‰  โˆ…)
38 infssuzcl 12864 . . 3 ((๐‘€ โŠ† (โ„คโ‰ฅโ€˜1) โˆง ๐‘€ โ‰  โˆ…) โ†’ inf(๐‘€, โ„, < ) โˆˆ ๐‘€)
395, 37, 38sylancr 588 . 2 (๐œ‘ โ†’ inf(๐‘€, โ„, < ) โˆˆ ๐‘€)
401, 39eqeltrid 2842 1 (๐œ‘ โ†’ ๐บ โˆˆ ๐‘€)
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 397   โˆจ wo 846   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2944  โˆƒwrex 3074  {crab 3410   โŠ† wss 3915  โˆ…c0 4287  โ€˜cfv 6501  (class class class)co 7362  infcinf 9384  โ„‚cc 11056  โ„cr 11057  0cc0 11058  1c1 11059   + caddc 11061   ยท cmul 11063   < clt 11196  โ„•cn 12160  โ„คcz 12506  โ„คโ‰ฅcuz 12770  abscabs 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-seq 13914  df-exp 13975  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128
This theorem is referenced by:  bezoutlem3  16429  bezoutlem4  16430
  Copyright terms: Public domain W3C validator