MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic Structured version   Visualization version   GIF version

Theorem dcubic 25435
Description: Solutions to the depressed cubic, a special case of cubic 25438. (The definitions of 𝑀, 𝑁, 𝐺, 𝑇 here differ from mcubic 25436 by scale factors of -9, 54, 54 and -27 respectively, to simplify the algebra and presentation.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c (𝜑𝑃 ∈ ℂ)
dcubic.d (𝜑𝑄 ∈ ℂ)
dcubic.x (𝜑𝑋 ∈ ℂ)
dcubic.t (𝜑𝑇 ∈ ℂ)
dcubic.3 (𝜑 → (𝑇↑3) = (𝐺𝑁))
dcubic.g (𝜑𝐺 ∈ ℂ)
dcubic.2 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
dcubic.m (𝜑𝑀 = (𝑃 / 3))
dcubic.n (𝜑𝑁 = (𝑄 / 2))
dcubic.0 (𝜑𝑇 ≠ 0)
Assertion
Ref Expression
dcubic (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))))
Distinct variable groups:   𝑀,𝑟   𝑃,𝑟   𝜑,𝑟   𝑄,𝑟   𝑇,𝑟   𝑋,𝑟
Allowed substitution hints:   𝐺(𝑟)   𝑁(𝑟)

Proof of Theorem dcubic
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 dcubic.0 . . . . . . 7 (𝜑𝑇 ≠ 0)
21adantr 484 . . . . . 6 ((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) → 𝑇 ≠ 0)
3 dcubic.t . . . . . . . . 9 (𝜑𝑇 ∈ ℂ)
43adantr 484 . . . . . . . 8 ((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) → 𝑇 ∈ ℂ)
5 3z 12007 . . . . . . . . . 10 3 ∈ ℤ
6 expne0i 13461 . . . . . . . . . 10 ((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0 ∧ 3 ∈ ℤ) → (𝑇↑3) ≠ 0)
75, 6mp3an3 1447 . . . . . . . . 9 ((𝑇 ∈ ℂ ∧ 𝑇 ≠ 0) → (𝑇↑3) ≠ 0)
87ex 416 . . . . . . . 8 (𝑇 ∈ ℂ → (𝑇 ≠ 0 → (𝑇↑3) ≠ 0))
94, 8syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) → (𝑇 ≠ 0 → (𝑇↑3) ≠ 0))
10 dcubic.3 . . . . . . . . . . 11 (𝜑 → (𝑇↑3) = (𝐺𝑁))
1110ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑇↑3) = (𝐺𝑁))
12 dcubic.g . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ ℂ)
1312ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝐺 ∈ ℂ)
14 dcubic.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
1514ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
16 dcubic.n . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 = (𝑄 / 2))
1716ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝑁 = (𝑄 / 2))
18 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝑋 = 0)
1918oveq2d 7155 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑃 · 𝑋) = (𝑃 · 0))
20 dcubic.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃 ∈ ℂ)
2120ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝑃 ∈ ℂ)
2221mul01d 10832 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑃 · 0) = 0)
2319, 22eqtrd 2836 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑃 · 𝑋) = 0)
2423oveq1d 7154 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑃 · 𝑋) + 𝑄) = (0 + 𝑄))
2518oveq1d 7154 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑋↑3) = (0↑3))
26 3nn 11708 . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ∈ ℕ
27 0exp 13464 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ ℕ → (0↑3) = 0)
2826, 27ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 (0↑3) = 0
2925, 28eqtrdi 2852 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑋↑3) = 0)
3029oveq1d 7154 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = (0 + ((𝑃 · 𝑋) + 𝑄)))
31 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)
32 0cnd 10627 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 0 ∈ ℂ)
3323, 32eqeltrd 2893 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑃 · 𝑋) ∈ ℂ)
34 dcubic.d . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑄 ∈ ℂ)
3534ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝑄 ∈ ℂ)
3633, 35addcld 10653 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑃 · 𝑋) + 𝑄) ∈ ℂ)
3736addid2d 10834 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (0 + ((𝑃 · 𝑋) + 𝑄)) = ((𝑃 · 𝑋) + 𝑄))
3830, 31, 373eqtr3rd 2845 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑃 · 𝑋) + 𝑄) = 0)
3935addid2d 10834 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (0 + 𝑄) = 𝑄)
4024, 38, 393eqtr3rd 2845 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝑄 = 0)
4140oveq1d 7154 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑄 / 2) = (0 / 2))
42 2cn 11704 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℂ
43 2ne0 11733 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
4442, 43div0i 11367 . . . . . . . . . . . . . . . . . . 19 (0 / 2) = 0
4541, 44eqtrdi 2852 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑄 / 2) = 0)
4617, 45eqtrd 2836 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝑁 = 0)
4746sq0id 13557 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑁↑2) = 0)
48 dcubic.m . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 = (𝑃 / 3))
49 3cn 11710 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℂ
5049a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 3 ∈ ℂ)
51 3ne0 11735 . . . . . . . . . . . . . . . . . . . . . . 23 3 ≠ 0
5251a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 3 ≠ 0)
5320, 50, 52divcld 11409 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 / 3) ∈ ℂ)
5448, 53eqeltrd 2893 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℂ)
5554ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝑀 ∈ ℂ)
56 4cn 11714 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℂ
5756a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 4 ∈ ℂ)
58 4ne0 11737 . . . . . . . . . . . . . . . . . . . 20 4 ≠ 0
5958a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 4 ≠ 0)
6018sq0id 13557 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑋↑2) = 0)
6160oveq1d 7154 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑋↑2) + (4 · 𝑀)) = (0 + (4 · 𝑀)))
62 dcubic.x . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋 ∈ ℂ)
6362sqcld 13508 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋↑2) ∈ ℂ)
64 mulcl 10614 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((4 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (4 · 𝑀) ∈ ℂ)
6556, 54, 64sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (4 · 𝑀) ∈ ℂ)
6663, 65addcld 10653 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋↑2) + (4 · 𝑀)) ∈ ℂ)
6766ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑋↑2) + (4 · 𝑀)) ∈ ℂ)
68 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (√‘((𝑋↑2) + (4 · 𝑀))) = 0)
6967, 68sqr00d 14796 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑋↑2) + (4 · 𝑀)) = 0)
7065ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (4 · 𝑀) ∈ ℂ)
7170addid2d 10834 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (0 + (4 · 𝑀)) = (4 · 𝑀))
7261, 69, 713eqtr3rd 2845 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (4 · 𝑀) = 0)
7356mul01i 10823 . . . . . . . . . . . . . . . . . . . 20 (4 · 0) = 0
7472, 73eqtr4di 2854 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (4 · 𝑀) = (4 · 0))
7555, 32, 57, 59, 74mulcanad 11268 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝑀 = 0)
7675oveq1d 7154 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑀↑3) = (0↑3))
7776, 28eqtrdi 2852 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑀↑3) = 0)
7847, 77oveq12d 7157 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑁↑2) + (𝑀↑3)) = (0 + 0))
79 00id 10808 . . . . . . . . . . . . . . 15 (0 + 0) = 0
8078, 79eqtrdi 2852 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ((𝑁↑2) + (𝑀↑3)) = 0)
8115, 80eqtrd 2836 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝐺↑2) = 0)
8213, 81sqeq0d 13509 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → 𝐺 = 0)
8382, 46oveq12d 7157 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝐺𝑁) = (0 − 0))
84 0m0e0 11749 . . . . . . . . . . 11 (0 − 0) = 0
8583, 84eqtrdi 2852 . . . . . . . . . 10 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝐺𝑁) = 0)
8611, 85eqtrd 2836 . . . . . . . . 9 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → (𝑇↑3) = 0)
8786ex 416 . . . . . . . 8 ((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) → ((𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0) → (𝑇↑3) = 0))
8887necon3ad 3003 . . . . . . 7 ((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) → ((𝑇↑3) ≠ 0 → ¬ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)))
899, 88syld 47 . . . . . 6 ((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) → (𝑇 ≠ 0 → ¬ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)))
902, 89mpd 15 . . . . 5 ((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) → ¬ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0))
91 oveq12 7148 . . . . . . . . . . 11 ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0) → (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) + ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = (0 + 0))
9291, 79eqtrdi 2852 . . . . . . . . . 10 ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0) → (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) + ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 0)
93 oveq12 7148 . . . . . . . . . . 11 ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0) → (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) − ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = (0 − 0))
9493, 84eqtrdi 2852 . . . . . . . . . 10 ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0) → (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) − ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 0)
9592, 94jca 515 . . . . . . . . 9 ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0) → ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) + ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 0 ∧ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) − ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 0))
9666sqrtcld 14792 . . . . . . . . . . . . 13 (𝜑 → (√‘((𝑋↑2) + (4 · 𝑀))) ∈ ℂ)
97 halfaddsub 11862 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (√‘((𝑋↑2) + (4 · 𝑀))) ∈ ℂ) → ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) + ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 𝑋 ∧ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) − ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = (√‘((𝑋↑2) + (4 · 𝑀)))))
9862, 96, 97syl2anc 587 . . . . . . . . . . . 12 (𝜑 → ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) + ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 𝑋 ∧ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) − ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = (√‘((𝑋↑2) + (4 · 𝑀)))))
9998simpld 498 . . . . . . . . . . 11 (𝜑 → (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) + ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 𝑋)
10099eqeq1d 2803 . . . . . . . . . 10 (𝜑 → ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) + ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 0 ↔ 𝑋 = 0))
10198simprd 499 . . . . . . . . . . 11 (𝜑 → (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) − ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = (√‘((𝑋↑2) + (4 · 𝑀))))
102101eqeq1d 2803 . . . . . . . . . 10 (𝜑 → ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) − ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 0 ↔ (√‘((𝑋↑2) + (4 · 𝑀))) = 0))
103100, 102anbi12d 633 . . . . . . . . 9 (𝜑 → (((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) + ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 0 ∧ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) − ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) = 0) ↔ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)))
10495, 103syl5ib 247 . . . . . . . 8 (𝜑 → ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0) → (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)))
105104con3d 155 . . . . . . 7 (𝜑 → (¬ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0) → ¬ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0)))
106 eldifi 4057 . . . . . . . . . . . . . 14 (𝑢 ∈ (ℂ ∖ {0}) → 𝑢 ∈ ℂ)
107106adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → 𝑢 ∈ ℂ)
10854adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → 𝑀 ∈ ℂ)
109 eldifsni 4686 . . . . . . . . . . . . . . 15 (𝑢 ∈ (ℂ ∖ {0}) → 𝑢 ≠ 0)
110109adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → 𝑢 ≠ 0)
111108, 107, 110divcld 11409 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑀 / 𝑢) ∈ ℂ)
11262adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → 𝑋 ∈ ℂ)
113107, 111, 112subaddd 11008 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑢 − (𝑀 / 𝑢)) = 𝑋 ↔ ((𝑀 / 𝑢) + 𝑋) = 𝑢))
114 eqcom 2808 . . . . . . . . . . . 12 (𝑋 = (𝑢 − (𝑀 / 𝑢)) ↔ (𝑢 − (𝑀 / 𝑢)) = 𝑋)
115 eqcom 2808 . . . . . . . . . . . 12 (𝑢 = ((𝑀 / 𝑢) + 𝑋) ↔ ((𝑀 / 𝑢) + 𝑋) = 𝑢)
116113, 114, 1153bitr4g 317 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑋 = (𝑢 − (𝑀 / 𝑢)) ↔ 𝑢 = ((𝑀 / 𝑢) + 𝑋)))
117107sqcld 13508 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑢↑2) ∈ ℂ)
118112, 107mulcld 10654 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑋 · 𝑢) ∈ ℂ)
119118, 108addcld 10653 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑋 · 𝑢) + 𝑀) ∈ ℂ)
120117, 119subeq0ad 11000 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (((𝑢↑2) − ((𝑋 · 𝑢) + 𝑀)) = 0 ↔ (𝑢↑2) = ((𝑋 · 𝑢) + 𝑀)))
121107sqvald 13507 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑢↑2) = (𝑢 · 𝑢))
122111, 112, 107adddird 10659 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (((𝑀 / 𝑢) + 𝑋) · 𝑢) = (((𝑀 / 𝑢) · 𝑢) + (𝑋 · 𝑢)))
123108, 107, 110divcan1d 11410 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑀 / 𝑢) · 𝑢) = 𝑀)
124123oveq1d 7154 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (((𝑀 / 𝑢) · 𝑢) + (𝑋 · 𝑢)) = (𝑀 + (𝑋 · 𝑢)))
125108, 118addcomd 10835 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑀 + (𝑋 · 𝑢)) = ((𝑋 · 𝑢) + 𝑀))
126122, 124, 1253eqtrrd 2841 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑋 · 𝑢) + 𝑀) = (((𝑀 / 𝑢) + 𝑋) · 𝑢))
127121, 126eqeq12d 2817 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑢↑2) = ((𝑋 · 𝑢) + 𝑀) ↔ (𝑢 · 𝑢) = (((𝑀 / 𝑢) + 𝑋) · 𝑢)))
128111, 112addcld 10653 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑀 / 𝑢) + 𝑋) ∈ ℂ)
129107, 128, 107, 110mulcan2d 11267 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑢 · 𝑢) = (((𝑀 / 𝑢) + 𝑋) · 𝑢) ↔ 𝑢 = ((𝑀 / 𝑢) + 𝑋)))
130120, 127, 1293bitrd 308 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (((𝑢↑2) − ((𝑋 · 𝑢) + 𝑀)) = 0 ↔ 𝑢 = ((𝑀 / 𝑢) + 𝑋)))
131 1cnd 10629 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → 1 ∈ ℂ)
132 ax-1ne0 10599 . . . . . . . . . . . . . 14 1 ≠ 0
133132a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → 1 ≠ 0)
13462negcld 10977 . . . . . . . . . . . . . 14 (𝜑 → -𝑋 ∈ ℂ)
135134adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → -𝑋 ∈ ℂ)
13654negcld 10977 . . . . . . . . . . . . . 14 (𝜑 → -𝑀 ∈ ℂ)
137136adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → -𝑀 ∈ ℂ)
138 sqneg 13482 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → (-𝑋↑2) = (𝑋↑2))
139112, 138syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (-𝑋↑2) = (𝑋↑2))
140137mulid2d 10652 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (1 · -𝑀) = -𝑀)
141140oveq2d 7155 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (4 · (1 · -𝑀)) = (4 · -𝑀))
142 mulneg2 11070 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (4 · -𝑀) = -(4 · 𝑀))
14356, 108, 142sylancr 590 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (4 · -𝑀) = -(4 · 𝑀))
144141, 143eqtrd 2836 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (4 · (1 · -𝑀)) = -(4 · 𝑀))
145139, 144oveq12d 7157 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((-𝑋↑2) − (4 · (1 · -𝑀))) = ((𝑋↑2) − -(4 · 𝑀)))
14663adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑋↑2) ∈ ℂ)
14765adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (4 · 𝑀) ∈ ℂ)
148146, 147subnegd 10997 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑋↑2) − -(4 · 𝑀)) = ((𝑋↑2) + (4 · 𝑀)))
149145, 148eqtr2d 2837 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑋↑2) + (4 · 𝑀)) = ((-𝑋↑2) − (4 · (1 · -𝑀))))
150131, 133, 135, 137, 107, 149quad 25429 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (((1 · (𝑢↑2)) + ((-𝑋 · 𝑢) + -𝑀)) = 0 ↔ (𝑢 = ((--𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / (2 · 1)) ∨ 𝑢 = ((--𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / (2 · 1)))))
151117mulid2d 10652 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (1 · (𝑢↑2)) = (𝑢↑2))
152112, 107mulneg1d 11086 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (-𝑋 · 𝑢) = -(𝑋 · 𝑢))
153152oveq1d 7154 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((-𝑋 · 𝑢) + -𝑀) = (-(𝑋 · 𝑢) + -𝑀))
154118, 108negdid 11003 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → -((𝑋 · 𝑢) + 𝑀) = (-(𝑋 · 𝑢) + -𝑀))
155153, 154eqtr4d 2839 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((-𝑋 · 𝑢) + -𝑀) = -((𝑋 · 𝑢) + 𝑀))
156151, 155oveq12d 7157 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((1 · (𝑢↑2)) + ((-𝑋 · 𝑢) + -𝑀)) = ((𝑢↑2) + -((𝑋 · 𝑢) + 𝑀)))
157117, 119negsubd 10996 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑢↑2) + -((𝑋 · 𝑢) + 𝑀)) = ((𝑢↑2) − ((𝑋 · 𝑢) + 𝑀)))
158156, 157eqtrd 2836 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((1 · (𝑢↑2)) + ((-𝑋 · 𝑢) + -𝑀)) = ((𝑢↑2) − ((𝑋 · 𝑢) + 𝑀)))
159158eqeq1d 2803 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (((1 · (𝑢↑2)) + ((-𝑋 · 𝑢) + -𝑀)) = 0 ↔ ((𝑢↑2) − ((𝑋 · 𝑢) + 𝑀)) = 0))
160112negnegd 10981 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → --𝑋 = 𝑋)
161160oveq1d 7154 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (--𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) = (𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))))
162 2t1e2 11792 . . . . . . . . . . . . . . . 16 (2 · 1) = 2
163162a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (2 · 1) = 2)
164161, 163oveq12d 7157 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((--𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / (2 · 1)) = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2))
165164eqeq2d 2812 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑢 = ((--𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / (2 · 1)) ↔ 𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)))
166160oveq1d 7154 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (--𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) = (𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))))
167166, 163oveq12d 7157 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((--𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / (2 · 1)) = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2))
168167eqeq2d 2812 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑢 = ((--𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / (2 · 1)) ↔ 𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)))
169165, 168orbi12d 916 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → ((𝑢 = ((--𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / (2 · 1)) ∨ 𝑢 = ((--𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / (2 · 1))) ↔ (𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∨ 𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2))))
170150, 159, 1693bitr3d 312 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (((𝑢↑2) − ((𝑋 · 𝑢) + 𝑀)) = 0 ↔ (𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∨ 𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2))))
171116, 130, 1703bitr2d 310 . . . . . . . . . 10 ((𝜑𝑢 ∈ (ℂ ∖ {0})) → (𝑋 = (𝑢 − (𝑀 / 𝑢)) ↔ (𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∨ 𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2))))
172171rexbidva 3258 . . . . . . . . 9 (𝜑 → (∃𝑢 ∈ (ℂ ∖ {0})𝑋 = (𝑢 − (𝑀 / 𝑢)) ↔ ∃𝑢 ∈ (ℂ ∖ {0})(𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∨ 𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2))))
173 r19.43 3307 . . . . . . . . 9 (∃𝑢 ∈ (ℂ ∖ {0})(𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∨ 𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) ↔ (∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∨ ∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)))
174172, 173syl6bb 290 . . . . . . . 8 (𝜑 → (∃𝑢 ∈ (ℂ ∖ {0})𝑋 = (𝑢 − (𝑀 / 𝑢)) ↔ (∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∨ ∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2))))
175 risset 3229 . . . . . . . . . . 11 (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ (ℂ ∖ {0}) ↔ ∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2))
17662, 96addcld 10653 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) ∈ ℂ)
177176halfcld 11874 . . . . . . . . . . . 12 (𝜑 → ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ ℂ)
178 eldifsn 4683 . . . . . . . . . . . . 13 (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ (ℂ ∖ {0}) ↔ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ ℂ ∧ ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0))
179178baib 539 . . . . . . . . . . . 12 (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ ℂ → (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ (ℂ ∖ {0}) ↔ ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0))
180177, 179syl 17 . . . . . . . . . . 11 (𝜑 → (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ (ℂ ∖ {0}) ↔ ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0))
181175, 180bitr3id 288 . . . . . . . . . 10 (𝜑 → (∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ↔ ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0))
182 risset 3229 . . . . . . . . . . 11 (((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ (ℂ ∖ {0}) ↔ ∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2))
18362, 96subcld 10990 . . . . . . . . . . . . 13 (𝜑 → (𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) ∈ ℂ)
184183halfcld 11874 . . . . . . . . . . . 12 (𝜑 → ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ ℂ)
185 eldifsn 4683 . . . . . . . . . . . . 13 (((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ (ℂ ∖ {0}) ↔ (((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ ℂ ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0))
186185baib 539 . . . . . . . . . . . 12 (((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ ℂ → (((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ (ℂ ∖ {0}) ↔ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0))
187184, 186syl 17 . . . . . . . . . . 11 (𝜑 → (((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∈ (ℂ ∖ {0}) ↔ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0))
188182, 187bitr3id 288 . . . . . . . . . 10 (𝜑 → (∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ↔ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0))
189181, 188orbi12d 916 . . . . . . . . 9 (𝜑 → ((∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∨ ∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) ↔ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0 ∨ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0)))
190 neorian 3084 . . . . . . . . 9 ((((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0 ∨ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ≠ 0) ↔ ¬ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0))
191189, 190syl6bb 290 . . . . . . . 8 (𝜑 → ((∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) ∨ ∃𝑢 ∈ (ℂ ∖ {0})𝑢 = ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2)) ↔ ¬ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0)))
192174, 191bitrd 282 . . . . . . 7 (𝜑 → (∃𝑢 ∈ (ℂ ∖ {0})𝑋 = (𝑢 − (𝑀 / 𝑢)) ↔ ¬ (((𝑋 + (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0 ∧ ((𝑋 − (√‘((𝑋↑2) + (4 · 𝑀)))) / 2) = 0)))
193105, 192sylibrd 262 . . . . . 6 (𝜑 → (¬ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0) → ∃𝑢 ∈ (ℂ ∖ {0})𝑋 = (𝑢 − (𝑀 / 𝑢))))
194193imp 410 . . . . 5 ((𝜑 ∧ ¬ (𝑋 = 0 ∧ (√‘((𝑋↑2) + (4 · 𝑀))) = 0)) → ∃𝑢 ∈ (ℂ ∖ {0})𝑋 = (𝑢 − (𝑀 / 𝑢)))
19590, 194syldan 594 . . . 4 ((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) → ∃𝑢 ∈ (ℂ ∖ {0})𝑋 = (𝑢 − (𝑀 / 𝑢)))
19620ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑃 ∈ ℂ)
19734ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑄 ∈ ℂ)
19862ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑋 ∈ ℂ)
1993ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑇 ∈ ℂ)
20010ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → (𝑇↑3) = (𝐺𝑁))
20112ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝐺 ∈ ℂ)
20214ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
20348ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑀 = (𝑃 / 3))
20416ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑁 = (𝑄 / 2))
2051ad2antrr 725 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑇 ≠ 0)
206106ad2antrl 727 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑢 ∈ ℂ)
207109ad2antrl 727 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑢 ≠ 0)
208 simprr 772 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → 𝑋 = (𝑢 − (𝑀 / 𝑢)))
209 simplr 768 . . . . 5 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)
210196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209dcubic2 25433 . . . 4 (((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ∧ (𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑋 = (𝑢 − (𝑀 / 𝑢)))) → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇)))))
211195, 210rexlimddv 3253 . . 3 ((𝜑 ∧ ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇)))))
212211ex 416 . 2 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))))
21320ad2antrr 725 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑃 ∈ ℂ)
21434ad2antrr 725 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑄 ∈ ℂ)
21562ad2antrr 725 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑋 ∈ ℂ)
216 simplr 768 . . . . 5 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑟 ∈ ℂ)
2173ad2antrr 725 . . . . 5 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑇 ∈ ℂ)
218216, 217mulcld 10654 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → (𝑟 · 𝑇) ∈ ℂ)
219 3nn0 11907 . . . . . . 7 3 ∈ ℕ0
220219a1i 11 . . . . . 6 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 3 ∈ ℕ0)
221216, 217, 220mulexpd 13525 . . . . 5 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → ((𝑟 · 𝑇)↑3) = ((𝑟↑3) · (𝑇↑3)))
222 simprl 770 . . . . . 6 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → (𝑟↑3) = 1)
223222oveq1d 7154 . . . . 5 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → ((𝑟↑3) · (𝑇↑3)) = (1 · (𝑇↑3)))
224 expcl 13447 . . . . . . . . 9 ((𝑇 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑇↑3) ∈ ℂ)
2253, 219, 224sylancl 589 . . . . . . . 8 (𝜑 → (𝑇↑3) ∈ ℂ)
226225mulid2d 10652 . . . . . . 7 (𝜑 → (1 · (𝑇↑3)) = (𝑇↑3))
227226, 10eqtrd 2836 . . . . . 6 (𝜑 → (1 · (𝑇↑3)) = (𝐺𝑁))
228227ad2antrr 725 . . . . 5 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → (1 · (𝑇↑3)) = (𝐺𝑁))
229221, 223, 2283eqtrd 2840 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → ((𝑟 · 𝑇)↑3) = (𝐺𝑁))
23012ad2antrr 725 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝐺 ∈ ℂ)
23114ad2antrr 725 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
23248ad2antrr 725 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑀 = (𝑃 / 3))
23316ad2antrr 725 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑁 = (𝑄 / 2))
234132a1i 11 . . . . . . 7 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 1 ≠ 0)
235222, 234eqnetrd 3057 . . . . . 6 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → (𝑟↑3) ≠ 0)
236 oveq1 7146 . . . . . . . 8 (𝑟 = 0 → (𝑟↑3) = (0↑3))
237236, 28eqtrdi 2852 . . . . . . 7 (𝑟 = 0 → (𝑟↑3) = 0)
238237necon3i 3022 . . . . . 6 ((𝑟↑3) ≠ 0 → 𝑟 ≠ 0)
239235, 238syl 17 . . . . 5 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑟 ≠ 0)
2401ad2antrr 725 . . . . 5 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑇 ≠ 0)
241216, 217, 239, 240mulne0d 11285 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → (𝑟 · 𝑇) ≠ 0)
242 simprr 772 . . . 4 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))
243213, 214, 215, 218, 229, 230, 231, 232, 233, 241, 242dcubic1 25434 . . 3 (((𝜑𝑟 ∈ ℂ) ∧ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)
244243rexlimdva2 3249 . 2 (𝜑 → (∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇)))) → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0))
245212, 244impbid 215 1 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2112  wne 2990  wrex 3110  cdif 3881  {csn 4528  cfv 6328  (class class class)co 7139  cc 10528  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  cmin 10863  -cneg 10864   / cdiv 11290  cn 11629  2c2 11684  3c3 11685  4c4 11686  0cn0 11889  cz 11973  cexp 13429  csqrt 14587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-dvds 15603
This theorem is referenced by:  mcubic  25436
  Copyright terms: Public domain W3C validator