| Step | Hyp | Ref
| Expression |
| 1 | | haustop 23274 |
. . 3
⊢ (𝑅 ∈ Haus → 𝑅 ∈ Top) |
| 2 | | haustop 23274 |
. . 3
⊢ (𝑆 ∈ Haus → 𝑆 ∈ Top) |
| 3 | | txtop 23512 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| 4 | 1, 2, 3 | syl2an 596 |
. 2
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → (𝑅 ×t 𝑆) ∈ Top) |
| 5 | | eqid 2736 |
. . . . . . . 8
⊢ ∪ 𝑅 =
∪ 𝑅 |
| 6 | | eqid 2736 |
. . . . . . . 8
⊢ ∪ 𝑆 =
∪ 𝑆 |
| 7 | 5, 6 | txuni 23535 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∪ 𝑅
× ∪ 𝑆) = ∪ (𝑅 ×t 𝑆)) |
| 8 | 1, 2, 7 | syl2an 596 |
. . . . . 6
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → (∪ 𝑅
× ∪ 𝑆) = ∪ (𝑅 ×t 𝑆)) |
| 9 | 8 | eleq2d 2821 |
. . . . 5
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ↔ 𝑥 ∈ ∪ (𝑅 ×t 𝑆))) |
| 10 | 8 | eleq2d 2821 |
. . . . 5
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → (𝑦 ∈ (∪ 𝑅
× ∪ 𝑆) ↔ 𝑦 ∈ ∪ (𝑅 ×t 𝑆))) |
| 11 | 9, 10 | anbi12d 632 |
. . . 4
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → ((𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆))
↔ (𝑥 ∈ ∪ (𝑅
×t 𝑆)
∧ 𝑦 ∈ ∪ (𝑅
×t 𝑆)))) |
| 12 | | neorian 3028 |
. . . . . . 7
⊢
(((1st ‘𝑥) ≠ (1st ‘𝑦) ∨ (2nd
‘𝑥) ≠
(2nd ‘𝑦))
↔ ¬ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) = (2nd ‘𝑦))) |
| 13 | | xpopth 8034 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆))
→ (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) = (2nd ‘𝑦)) ↔ 𝑥 = 𝑦)) |
| 14 | 13 | adantl 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) = (2nd ‘𝑦)) ↔ 𝑥 = 𝑦)) |
| 15 | 14 | necon3bbid 2970 |
. . . . . . 7
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ (¬ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) = (2nd ‘𝑦)) ↔ 𝑥 ≠ 𝑦)) |
| 16 | 12, 15 | bitrid 283 |
. . . . . 6
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ (((1st ‘𝑥) ≠ (1st ‘𝑦) ∨ (2nd
‘𝑥) ≠
(2nd ‘𝑦))
↔ 𝑥 ≠ 𝑦)) |
| 17 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) → 𝑅 ∈ Haus) |
| 18 | | xp1st 8025 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) → (1st ‘𝑥) ∈ ∪ 𝑅) |
| 19 | 18 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ (1st ‘𝑥) ∈ ∪ 𝑅) |
| 20 | 19 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) → (1st
‘𝑥) ∈ ∪ 𝑅) |
| 21 | | xp1st 8025 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (∪ 𝑅
× ∪ 𝑆) → (1st ‘𝑦) ∈ ∪ 𝑅) |
| 22 | 21 | ad2antll 729 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ (1st ‘𝑦) ∈ ∪ 𝑅) |
| 23 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) → (1st
‘𝑦) ∈ ∪ 𝑅) |
| 24 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) → (1st
‘𝑥) ≠
(1st ‘𝑦)) |
| 25 | 5 | hausnei 23271 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Haus ∧
((1st ‘𝑥)
∈ ∪ 𝑅 ∧ (1st ‘𝑦) ∈ ∪ 𝑅
∧ (1st ‘𝑥) ≠ (1st ‘𝑦))) → ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑅 ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
| 26 | 17, 20, 23, 24, 25 | syl13anc 1374 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) → ∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑅 ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
| 27 | 1 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ 𝑅 ∈
Top) |
| 28 | 27 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑅 ∈ Top) |
| 29 | 2 | ad4antlr 733 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑆 ∈ Top) |
| 30 | | simprll 778 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑢 ∈ 𝑅) |
| 31 | 6 | topopn 22849 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ Top → ∪ 𝑆
∈ 𝑆) |
| 32 | 29, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ∪ 𝑆
∈ 𝑆) |
| 33 | | txopn 23545 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑢 ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆)) → (𝑢 × ∪ 𝑆) ∈ (𝑅 ×t 𝑆)) |
| 34 | 28, 29, 30, 32, 33 | syl22anc 838 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑢 × ∪ 𝑆) ∈ (𝑅 ×t 𝑆)) |
| 35 | | simprlr 779 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑣 ∈ 𝑅) |
| 36 | | txopn 23545 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑣 ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆)) → (𝑣 × ∪ 𝑆) ∈ (𝑅 ×t 𝑆)) |
| 37 | 28, 29, 35, 32, 36 | syl22anc 838 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑣 × ∪ 𝑆) ∈ (𝑅 ×t 𝑆)) |
| 38 | | 1st2nd2 8032 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
| 39 | 38 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ 𝑥 =
〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
| 40 | 39 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
| 41 | | simprr1 1222 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (1st
‘𝑥) ∈ 𝑢) |
| 42 | | xp2nd 8026 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) → (2nd ‘𝑥) ∈ ∪ 𝑆) |
| 43 | 42 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ (2nd ‘𝑥) ∈ ∪ 𝑆) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (2nd
‘𝑥) ∈ ∪ 𝑆) |
| 45 | 41, 44 | jca 511 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((1st
‘𝑥) ∈ 𝑢 ∧ (2nd
‘𝑥) ∈ ∪ 𝑆)) |
| 46 | | elxp6 8027 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑢 × ∪ 𝑆) ↔ (𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∧ ((1st
‘𝑥) ∈ 𝑢 ∧ (2nd
‘𝑥) ∈ ∪ 𝑆))) |
| 47 | 40, 45, 46 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 ∈ (𝑢 × ∪ 𝑆)) |
| 48 | | 1st2nd2 8032 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (∪ 𝑅
× ∪ 𝑆) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 49 | 48 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ 𝑦 =
〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 50 | 49 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 51 | | simprr2 1223 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (1st
‘𝑦) ∈ 𝑣) |
| 52 | | xp2nd 8026 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (∪ 𝑅
× ∪ 𝑆) → (2nd ‘𝑦) ∈ ∪ 𝑆) |
| 53 | 52 | ad2antll 729 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ (2nd ‘𝑦) ∈ ∪ 𝑆) |
| 54 | 53 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (2nd
‘𝑦) ∈ ∪ 𝑆) |
| 55 | 51, 54 | jca 511 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((1st
‘𝑦) ∈ 𝑣 ∧ (2nd
‘𝑦) ∈ ∪ 𝑆)) |
| 56 | | elxp6 8027 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝑣 × ∪ 𝑆) ↔ (𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉 ∧ ((1st
‘𝑦) ∈ 𝑣 ∧ (2nd
‘𝑦) ∈ ∪ 𝑆))) |
| 57 | 50, 55, 56 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 ∈ (𝑣 × ∪ 𝑆)) |
| 58 | | simprr3 1224 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑢 ∩ 𝑣) = ∅) |
| 59 | 58 | xpeq1d 5688 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((𝑢 ∩ 𝑣) × ∪ 𝑆) = (∅ × ∪ 𝑆)) |
| 60 | | xpindir 5819 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∩ 𝑣) × ∪ 𝑆) = ((𝑢 × ∪ 𝑆) ∩ (𝑣 × ∪ 𝑆)) |
| 61 | | 0xp 5758 |
. . . . . . . . . . . . 13
⊢ (∅
× ∪ 𝑆) = ∅ |
| 62 | 59, 60, 61 | 3eqtr3g 2794 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((𝑢 × ∪ 𝑆) ∩ (𝑣 × ∪ 𝑆)) = ∅) |
| 63 | | eleq2 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑢 × ∪ 𝑆) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (𝑢 × ∪ 𝑆))) |
| 64 | | ineq1 4193 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑢 × ∪ 𝑆) → (𝑧 ∩ 𝑤) = ((𝑢 × ∪ 𝑆) ∩ 𝑤)) |
| 65 | 64 | eqeq1d 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑢 × ∪ 𝑆) → ((𝑧 ∩ 𝑤) = ∅ ↔ ((𝑢 × ∪ 𝑆) ∩ 𝑤) = ∅)) |
| 66 | 63, 65 | 3anbi13d 1440 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑢 × ∪ 𝑆) → ((𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅) ↔ (𝑥 ∈ (𝑢 × ∪ 𝑆) ∧ 𝑦 ∈ 𝑤 ∧ ((𝑢 × ∪ 𝑆) ∩ 𝑤) = ∅))) |
| 67 | | eleq2 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑣 × ∪ 𝑆) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ (𝑣 × ∪ 𝑆))) |
| 68 | | ineq2 4194 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝑣 × ∪ 𝑆) → ((𝑢 × ∪ 𝑆) ∩ 𝑤) = ((𝑢 × ∪ 𝑆) ∩ (𝑣 × ∪ 𝑆))) |
| 69 | 68 | eqeq1d 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑣 × ∪ 𝑆) → (((𝑢 × ∪ 𝑆) ∩ 𝑤) = ∅ ↔ ((𝑢 × ∪ 𝑆) ∩ (𝑣 × ∪ 𝑆)) = ∅)) |
| 70 | 67, 69 | 3anbi23d 1441 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑣 × ∪ 𝑆) → ((𝑥 ∈ (𝑢 × ∪ 𝑆) ∧ 𝑦 ∈ 𝑤 ∧ ((𝑢 × ∪ 𝑆) ∩ 𝑤) = ∅) ↔ (𝑥 ∈ (𝑢 × ∪ 𝑆) ∧ 𝑦 ∈ (𝑣 × ∪ 𝑆) ∧ ((𝑢 × ∪ 𝑆) ∩ (𝑣 × ∪ 𝑆)) = ∅))) |
| 71 | 66, 70 | rspc2ev 3619 |
. . . . . . . . . . . 12
⊢ (((𝑢 × ∪ 𝑆)
∈ (𝑅
×t 𝑆)
∧ (𝑣 × ∪ 𝑆)
∈ (𝑅
×t 𝑆)
∧ (𝑥 ∈ (𝑢 × ∪ 𝑆)
∧ 𝑦 ∈ (𝑣 × ∪ 𝑆)
∧ ((𝑢 × ∪ 𝑆)
∩ (𝑣 × ∪ 𝑆))
= ∅)) → ∃𝑧
∈ (𝑅
×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) |
| 72 | 34, 37, 47, 57, 62, 71 | syl113anc 1384 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ ((𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅) ∧ ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) |
| 73 | 72 | expr 456 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) ∧ (𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅)) → (((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) |
| 74 | 73 | rexlimdvva 3202 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) → (∃𝑢 ∈ 𝑅 ∃𝑣 ∈ 𝑅 ((1st ‘𝑥) ∈ 𝑢 ∧ (1st ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) |
| 75 | 26, 74 | mpd 15 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (1st ‘𝑥) ≠ (1st ‘𝑦)) → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) |
| 76 | | simpllr 775 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) → 𝑆 ∈ Haus) |
| 77 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) → (2nd
‘𝑥) ∈ ∪ 𝑆) |
| 78 | 53 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) → (2nd
‘𝑦) ∈ ∪ 𝑆) |
| 79 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) → (2nd
‘𝑥) ≠
(2nd ‘𝑦)) |
| 80 | 6 | hausnei 23271 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Haus ∧
((2nd ‘𝑥)
∈ ∪ 𝑆 ∧ (2nd ‘𝑦) ∈ ∪ 𝑆
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦))) → ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ 𝑆 ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
| 81 | 76, 77, 78, 79, 80 | syl13anc 1374 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) → ∃𝑢 ∈ 𝑆 ∃𝑣 ∈ 𝑆 ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅)) |
| 82 | 27 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑅 ∈ Top) |
| 83 | 2 | ad4antlr 733 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑆 ∈ Top) |
| 84 | 5 | topopn 22849 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Top → ∪ 𝑅
∈ 𝑅) |
| 85 | 82, 84 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ∪ 𝑅
∈ 𝑅) |
| 86 | | simprll 778 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑢 ∈ 𝑆) |
| 87 | | txopn 23545 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (∪ 𝑅
∈ 𝑅 ∧ 𝑢 ∈ 𝑆)) → (∪
𝑅 × 𝑢) ∈ (𝑅 ×t 𝑆)) |
| 88 | 82, 83, 85, 86, 87 | syl22anc 838 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (∪ 𝑅
× 𝑢) ∈ (𝑅 ×t 𝑆)) |
| 89 | | simprlr 779 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑣 ∈ 𝑆) |
| 90 | | txopn 23545 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (∪ 𝑅
∈ 𝑅 ∧ 𝑣 ∈ 𝑆)) → (∪
𝑅 × 𝑣) ∈ (𝑅 ×t 𝑆)) |
| 91 | 82, 83, 85, 89, 90 | syl22anc 838 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (∪ 𝑅
× 𝑣) ∈ (𝑅 ×t 𝑆)) |
| 92 | 39 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
| 93 | 19 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (1st
‘𝑥) ∈ ∪ 𝑅) |
| 94 | | simprr1 1222 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (2nd
‘𝑥) ∈ 𝑢) |
| 95 | 93, 94 | jca 511 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((1st
‘𝑥) ∈ ∪ 𝑅
∧ (2nd ‘𝑥) ∈ 𝑢)) |
| 96 | | elxp6 8027 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (∪ 𝑅
× 𝑢) ↔ (𝑥 = 〈(1st
‘𝑥), (2nd
‘𝑥)〉 ∧
((1st ‘𝑥)
∈ ∪ 𝑅 ∧ (2nd ‘𝑥) ∈ 𝑢))) |
| 97 | 92, 95, 96 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑥 ∈ (∪ 𝑅 × 𝑢)) |
| 98 | 49 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 99 | 22 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (1st
‘𝑦) ∈ ∪ 𝑅) |
| 100 | | simprr2 1223 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (2nd
‘𝑦) ∈ 𝑣) |
| 101 | 99, 100 | jca 511 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((1st
‘𝑦) ∈ ∪ 𝑅
∧ (2nd ‘𝑦) ∈ 𝑣)) |
| 102 | | elxp6 8027 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (∪ 𝑅
× 𝑣) ↔ (𝑦 = 〈(1st
‘𝑦), (2nd
‘𝑦)〉 ∧
((1st ‘𝑦)
∈ ∪ 𝑅 ∧ (2nd ‘𝑦) ∈ 𝑣))) |
| 103 | 98, 101, 102 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → 𝑦 ∈ (∪ 𝑅 × 𝑣)) |
| 104 | | simprr3 1224 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (𝑢 ∩ 𝑣) = ∅) |
| 105 | 104 | xpeq2d 5689 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → (∪ 𝑅
× (𝑢 ∩ 𝑣)) = (∪ 𝑅
× ∅)) |
| 106 | | xpindi 5818 |
. . . . . . . . . . . . 13
⊢ (∪ 𝑅
× (𝑢 ∩ 𝑣)) = ((∪ 𝑅
× 𝑢) ∩ (∪ 𝑅
× 𝑣)) |
| 107 | | xp0 6152 |
. . . . . . . . . . . . 13
⊢ (∪ 𝑅
× ∅) = ∅ |
| 108 | 105, 106,
107 | 3eqtr3g 2794 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ((∪ 𝑅
× 𝑢) ∩ (∪ 𝑅
× 𝑣)) =
∅) |
| 109 | | eleq2 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (∪
𝑅 × 𝑢) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ (∪ 𝑅 × 𝑢))) |
| 110 | | ineq1 4193 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (∪
𝑅 × 𝑢) → (𝑧 ∩ 𝑤) = ((∪ 𝑅 × 𝑢) ∩ 𝑤)) |
| 111 | 110 | eqeq1d 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (∪
𝑅 × 𝑢) → ((𝑧 ∩ 𝑤) = ∅ ↔ ((∪ 𝑅
× 𝑢) ∩ 𝑤) = ∅)) |
| 112 | 109, 111 | 3anbi13d 1440 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (∪
𝑅 × 𝑢) → ((𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅) ↔ (𝑥 ∈ (∪ 𝑅 × 𝑢) ∧ 𝑦 ∈ 𝑤 ∧ ((∪ 𝑅 × 𝑢) ∩ 𝑤) = ∅))) |
| 113 | | eleq2 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (∪
𝑅 × 𝑣) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ (∪ 𝑅 × 𝑣))) |
| 114 | | ineq2 4194 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (∪
𝑅 × 𝑣) → ((∪ 𝑅
× 𝑢) ∩ 𝑤) = ((∪ 𝑅
× 𝑢) ∩ (∪ 𝑅
× 𝑣))) |
| 115 | 114 | eqeq1d 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (∪
𝑅 × 𝑣) → (((∪ 𝑅
× 𝑢) ∩ 𝑤) = ∅ ↔ ((∪ 𝑅
× 𝑢) ∩ (∪ 𝑅
× 𝑣)) =
∅)) |
| 116 | 113, 115 | 3anbi23d 1441 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (∪
𝑅 × 𝑣) → ((𝑥 ∈ (∪ 𝑅 × 𝑢) ∧ 𝑦 ∈ 𝑤 ∧ ((∪ 𝑅 × 𝑢) ∩ 𝑤) = ∅) ↔ (𝑥 ∈ (∪ 𝑅 × 𝑢) ∧ 𝑦 ∈ (∪ 𝑅 × 𝑣) ∧ ((∪ 𝑅 × 𝑢) ∩ (∪ 𝑅 × 𝑣)) = ∅))) |
| 117 | 112, 116 | rspc2ev 3619 |
. . . . . . . . . . . 12
⊢ (((∪ 𝑅
× 𝑢) ∈ (𝑅 ×t 𝑆) ∧ (∪ 𝑅
× 𝑣) ∈ (𝑅 ×t 𝑆) ∧ (𝑥 ∈ (∪ 𝑅 × 𝑢) ∧ 𝑦 ∈ (∪ 𝑅 × 𝑣) ∧ ((∪ 𝑅 × 𝑢) ∩ (∪ 𝑅 × 𝑣)) = ∅)) → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) |
| 118 | 88, 91, 97, 103, 108, 117 | syl113anc 1384 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅))) → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) |
| 119 | 118 | expr 456 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ Haus
∧ 𝑆 ∈ Haus) ∧
(𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → (((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) |
| 120 | 119 | rexlimdvva 3202 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) → (∃𝑢 ∈ 𝑆 ∃𝑣 ∈ 𝑆 ((2nd ‘𝑥) ∈ 𝑢 ∧ (2nd ‘𝑦) ∈ 𝑣 ∧ (𝑢 ∩ 𝑣) = ∅) → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) |
| 121 | 81, 120 | mpd 15 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ (2nd ‘𝑥) ≠ (2nd ‘𝑦)) → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) |
| 122 | 75, 121 | jaodan 959 |
. . . . . . 7
⊢ ((((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
∧ ((1st ‘𝑥) ≠ (1st ‘𝑦) ∨ (2nd
‘𝑥) ≠
(2nd ‘𝑦)))
→ ∃𝑧 ∈
(𝑅 ×t
𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) |
| 123 | 122 | ex 412 |
. . . . . 6
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ (((1st ‘𝑥) ≠ (1st ‘𝑦) ∨ (2nd
‘𝑥) ≠
(2nd ‘𝑦))
→ ∃𝑧 ∈
(𝑅 ×t
𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) |
| 124 | 16, 123 | sylbird 260 |
. . . . 5
⊢ (((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) ∧ (𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆)))
→ (𝑥 ≠ 𝑦 → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) |
| 125 | 124 | ex 412 |
. . . 4
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → ((𝑥 ∈ (∪ 𝑅
× ∪ 𝑆) ∧ 𝑦 ∈ (∪ 𝑅 × ∪ 𝑆))
→ (𝑥 ≠ 𝑦 → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)))) |
| 126 | 11, 125 | sylbird 260 |
. . 3
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → ((𝑥 ∈ ∪ (𝑅
×t 𝑆)
∧ 𝑦 ∈ ∪ (𝑅
×t 𝑆))
→ (𝑥 ≠ 𝑦 → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)))) |
| 127 | 126 | ralrimivv 3186 |
. 2
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) →
∀𝑥 ∈ ∪ (𝑅
×t 𝑆)∀𝑦 ∈ ∪ (𝑅 ×t 𝑆)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅))) |
| 128 | | eqid 2736 |
. . 3
⊢ ∪ (𝑅
×t 𝑆) =
∪ (𝑅 ×t 𝑆) |
| 129 | 128 | ishaus 23265 |
. 2
⊢ ((𝑅 ×t 𝑆) ∈ Haus ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑥 ∈ ∪ (𝑅
×t 𝑆)∀𝑦 ∈ ∪ (𝑅 ×t 𝑆)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (𝑅 ×t 𝑆)∃𝑤 ∈ (𝑅 ×t 𝑆)(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)))) |
| 130 | 4, 127, 129 | sylanbrc 583 |
1
⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → (𝑅 ×t 𝑆) ∈ Haus) |