MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crreczi Structured version   Visualization version   GIF version

Theorem crreczi 14264
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.)
Hypotheses
Ref Expression
crrecz.1 𝐴 ∈ ℝ
crrecz.2 𝐵 ∈ ℝ
Assertion
Ref Expression
crreczi ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))

Proof of Theorem crreczi
StepHypRef Expression
1 crrecz.1 . . . . . . . 8 𝐴 ∈ ℝ
21recni 11273 . . . . . . 7 𝐴 ∈ ℂ
32sqcli 14217 . . . . . 6 (𝐴↑2) ∈ ℂ
4 ax-icn 11212 . . . . . . . 8 i ∈ ℂ
5 crrecz.2 . . . . . . . . 9 𝐵 ∈ ℝ
65recni 11273 . . . . . . . 8 𝐵 ∈ ℂ
74, 6mulcli 11266 . . . . . . 7 (i · 𝐵) ∈ ℂ
87sqcli 14217 . . . . . 6 ((i · 𝐵)↑2) ∈ ℂ
93, 8negsubi 11585 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) − ((i · 𝐵)↑2))
104, 6sqmuli 14220 . . . . . . . . 9 ((i · 𝐵)↑2) = ((i↑2) · (𝐵↑2))
11 i2 14238 . . . . . . . . . 10 (i↑2) = -1
1211oveq1i 7441 . . . . . . . . 9 ((i↑2) · (𝐵↑2)) = (-1 · (𝐵↑2))
13 ax-1cn 11211 . . . . . . . . . 10 1 ∈ ℂ
146sqcli 14217 . . . . . . . . . 10 (𝐵↑2) ∈ ℂ
1513, 14mulneg1i 11707 . . . . . . . . 9 (-1 · (𝐵↑2)) = -(1 · (𝐵↑2))
1610, 12, 153eqtri 2767 . . . . . . . 8 ((i · 𝐵)↑2) = -(1 · (𝐵↑2))
1716negeqi 11499 . . . . . . 7 -((i · 𝐵)↑2) = --(1 · (𝐵↑2))
1813, 14mulcli 11266 . . . . . . . 8 (1 · (𝐵↑2)) ∈ ℂ
1918negnegi 11577 . . . . . . 7 --(1 · (𝐵↑2)) = (1 · (𝐵↑2))
2014mullidi 11264 . . . . . . 7 (1 · (𝐵↑2)) = (𝐵↑2)
2117, 19, 203eqtri 2767 . . . . . 6 -((i · 𝐵)↑2) = (𝐵↑2)
2221oveq2i 7442 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) + (𝐵↑2))
232, 7subsqi 14249 . . . . 5 ((𝐴↑2) − ((i · 𝐵)↑2)) = ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵)))
249, 22, 233eqtr3ri 2772 . . . 4 ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴↑2) + (𝐵↑2))
2524oveq1i 7441 . . 3 (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2)))
26 neorian 3035 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
27 sumsqeq0 14215 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))
281, 5, 27mp2an 692 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)
2928necon3bbii 2986 . . . . 5 (¬ (𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
3026, 29bitri 275 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
312, 7addcli 11265 . . . . 5 (𝐴 + (i · 𝐵)) ∈ ℂ
322, 7subcli 11583 . . . . 5 (𝐴 − (i · 𝐵)) ∈ ℂ
333, 14addcli 11265 . . . . 5 ((𝐴↑2) + (𝐵↑2)) ∈ ℂ
3431, 32, 33divasszi 12015 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
3530, 34sylbi 217 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
36 divid 11951 . . . . 5 ((((𝐴↑2) + (𝐵↑2)) ∈ ℂ ∧ ((𝐴↑2) + (𝐵↑2)) ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3733, 36mpan 690 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3830, 37sylbi 217 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3925, 35, 383eqtr3a 2799 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1)
4032, 33divclzi 12000 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4130, 40sylbi 217 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4231a1i 11 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ∈ ℂ)
43 crne0 12257 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0))
441, 5, 43mp2an 692 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0)
4544biimpi 216 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ≠ 0)
46 divmul 11923 . . . 4 ((1 ∈ ℂ ∧ ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4713, 46mp3an1 1447 . . 3 ((((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4841, 42, 45, 47syl12anc 837 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4939, 48mpbird 257 1 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  ici 11155   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator