MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crreczi Structured version   Visualization version   GIF version

Theorem crreczi 13871
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.)
Hypotheses
Ref Expression
crrecz.1 𝐴 ∈ ℝ
crrecz.2 𝐵 ∈ ℝ
Assertion
Ref Expression
crreczi ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))

Proof of Theorem crreczi
StepHypRef Expression
1 crrecz.1 . . . . . . . 8 𝐴 ∈ ℝ
21recni 10920 . . . . . . 7 𝐴 ∈ ℂ
32sqcli 13826 . . . . . 6 (𝐴↑2) ∈ ℂ
4 ax-icn 10861 . . . . . . . 8 i ∈ ℂ
5 crrecz.2 . . . . . . . . 9 𝐵 ∈ ℝ
65recni 10920 . . . . . . . 8 𝐵 ∈ ℂ
74, 6mulcli 10913 . . . . . . 7 (i · 𝐵) ∈ ℂ
87sqcli 13826 . . . . . 6 ((i · 𝐵)↑2) ∈ ℂ
93, 8negsubi 11229 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) − ((i · 𝐵)↑2))
104, 6sqmuli 13829 . . . . . . . . 9 ((i · 𝐵)↑2) = ((i↑2) · (𝐵↑2))
11 i2 13847 . . . . . . . . . 10 (i↑2) = -1
1211oveq1i 7265 . . . . . . . . 9 ((i↑2) · (𝐵↑2)) = (-1 · (𝐵↑2))
13 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
146sqcli 13826 . . . . . . . . . 10 (𝐵↑2) ∈ ℂ
1513, 14mulneg1i 11351 . . . . . . . . 9 (-1 · (𝐵↑2)) = -(1 · (𝐵↑2))
1610, 12, 153eqtri 2770 . . . . . . . 8 ((i · 𝐵)↑2) = -(1 · (𝐵↑2))
1716negeqi 11144 . . . . . . 7 -((i · 𝐵)↑2) = --(1 · (𝐵↑2))
1813, 14mulcli 10913 . . . . . . . 8 (1 · (𝐵↑2)) ∈ ℂ
1918negnegi 11221 . . . . . . 7 --(1 · (𝐵↑2)) = (1 · (𝐵↑2))
2014mulid2i 10911 . . . . . . 7 (1 · (𝐵↑2)) = (𝐵↑2)
2117, 19, 203eqtri 2770 . . . . . 6 -((i · 𝐵)↑2) = (𝐵↑2)
2221oveq2i 7266 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) + (𝐵↑2))
232, 7subsqi 13857 . . . . 5 ((𝐴↑2) − ((i · 𝐵)↑2)) = ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵)))
249, 22, 233eqtr3ri 2775 . . . 4 ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴↑2) + (𝐵↑2))
2524oveq1i 7265 . . 3 (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2)))
26 neorian 3038 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
27 sumsqeq0 13824 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))
281, 5, 27mp2an 688 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)
2928necon3bbii 2990 . . . . 5 (¬ (𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
3026, 29bitri 274 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
312, 7addcli 10912 . . . . 5 (𝐴 + (i · 𝐵)) ∈ ℂ
322, 7subcli 11227 . . . . 5 (𝐴 − (i · 𝐵)) ∈ ℂ
333, 14addcli 10912 . . . . 5 ((𝐴↑2) + (𝐵↑2)) ∈ ℂ
3431, 32, 33divasszi 11655 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
3530, 34sylbi 216 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
36 divid 11592 . . . . 5 ((((𝐴↑2) + (𝐵↑2)) ∈ ℂ ∧ ((𝐴↑2) + (𝐵↑2)) ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3733, 36mpan 686 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3830, 37sylbi 216 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3925, 35, 383eqtr3a 2803 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1)
4032, 33divclzi 11640 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4130, 40sylbi 216 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4231a1i 11 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ∈ ℂ)
43 crne0 11896 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0))
441, 5, 43mp2an 688 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0)
4544biimpi 215 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ≠ 0)
46 divmul 11566 . . . 4 ((1 ∈ ℂ ∧ ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4713, 46mp3an1 1446 . . 3 ((((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4841, 42, 45, 47syl12anc 833 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4939, 48mpbird 256 1 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator