MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crreczi Structured version   Visualization version   GIF version

Theorem crreczi 14169
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.)
Hypotheses
Ref Expression
crrecz.1 𝐴 ∈ ℝ
crrecz.2 𝐵 ∈ ℝ
Assertion
Ref Expression
crreczi ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))

Proof of Theorem crreczi
StepHypRef Expression
1 crrecz.1 . . . . . . . 8 𝐴 ∈ ℝ
21recni 11164 . . . . . . 7 𝐴 ∈ ℂ
32sqcli 14122 . . . . . 6 (𝐴↑2) ∈ ℂ
4 ax-icn 11103 . . . . . . . 8 i ∈ ℂ
5 crrecz.2 . . . . . . . . 9 𝐵 ∈ ℝ
65recni 11164 . . . . . . . 8 𝐵 ∈ ℂ
74, 6mulcli 11157 . . . . . . 7 (i · 𝐵) ∈ ℂ
87sqcli 14122 . . . . . 6 ((i · 𝐵)↑2) ∈ ℂ
93, 8negsubi 11476 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) − ((i · 𝐵)↑2))
104, 6sqmuli 14125 . . . . . . . . 9 ((i · 𝐵)↑2) = ((i↑2) · (𝐵↑2))
11 i2 14143 . . . . . . . . . 10 (i↑2) = -1
1211oveq1i 7379 . . . . . . . . 9 ((i↑2) · (𝐵↑2)) = (-1 · (𝐵↑2))
13 ax-1cn 11102 . . . . . . . . . 10 1 ∈ ℂ
146sqcli 14122 . . . . . . . . . 10 (𝐵↑2) ∈ ℂ
1513, 14mulneg1i 11600 . . . . . . . . 9 (-1 · (𝐵↑2)) = -(1 · (𝐵↑2))
1610, 12, 153eqtri 2756 . . . . . . . 8 ((i · 𝐵)↑2) = -(1 · (𝐵↑2))
1716negeqi 11390 . . . . . . 7 -((i · 𝐵)↑2) = --(1 · (𝐵↑2))
1813, 14mulcli 11157 . . . . . . . 8 (1 · (𝐵↑2)) ∈ ℂ
1918negnegi 11468 . . . . . . 7 --(1 · (𝐵↑2)) = (1 · (𝐵↑2))
2014mullidi 11155 . . . . . . 7 (1 · (𝐵↑2)) = (𝐵↑2)
2117, 19, 203eqtri 2756 . . . . . 6 -((i · 𝐵)↑2) = (𝐵↑2)
2221oveq2i 7380 . . . . 5 ((𝐴↑2) + -((i · 𝐵)↑2)) = ((𝐴↑2) + (𝐵↑2))
232, 7subsqi 14154 . . . . 5 ((𝐴↑2) − ((i · 𝐵)↑2)) = ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵)))
249, 22, 233eqtr3ri 2761 . . . 4 ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴↑2) + (𝐵↑2))
2524oveq1i 7379 . . 3 (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2)))
26 neorian 3020 . . . . 5 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))
27 sumsqeq0 14120 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0))
281, 5, 27mp2an 692 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)
2928necon3bbii 2972 . . . . 5 (¬ (𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
3026, 29bitri 275 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝐴↑2) + (𝐵↑2)) ≠ 0)
312, 7addcli 11156 . . . . 5 (𝐴 + (i · 𝐵)) ∈ ℂ
322, 7subcli 11474 . . . . 5 (𝐴 − (i · 𝐵)) ∈ ℂ
333, 14addcli 11156 . . . . 5 ((𝐴↑2) + (𝐵↑2)) ∈ ℂ
3431, 32, 33divasszi 11908 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
3530, 34sylbi 217 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) / ((𝐴↑2) + (𝐵↑2))) = ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))))
36 divid 11844 . . . . 5 ((((𝐴↑2) + (𝐵↑2)) ∈ ℂ ∧ ((𝐴↑2) + (𝐵↑2)) ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3733, 36mpan 690 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3830, 37sylbi 217 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴↑2) + (𝐵↑2))) = 1)
3925, 35, 383eqtr3a 2788 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1)
4032, 33divclzi 11893 . . . 4 (((𝐴↑2) + (𝐵↑2)) ≠ 0 → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4130, 40sylbi 217 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ)
4231a1i 11 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ∈ ℂ)
43 crne0 12155 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0))
441, 5, 43mp2an 692 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0)
4544biimpi 216 . . 3 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (𝐴 + (i · 𝐵)) ≠ 0)
46 divmul 11816 . . . 4 ((1 ∈ ℂ ∧ ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4713, 46mp3an1 1450 . . 3 ((((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ∈ ℂ ∧ ((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ≠ 0)) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4841, 42, 45, 47syl12anc 836 . 2 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))) ↔ ((𝐴 + (i · 𝐵)) · ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) = 1))
4939, 48mpbird 257 1 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-exp 14003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator