Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfof Structured version   Visualization version   GIF version

Theorem sibfof 34305
Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfof.c 𝐶 = (Base‘𝐾)
sibfof.0 (𝜑𝑊 ∈ TopSp)
sibfof.1 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
sibfof.2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfof.3 (𝜑𝐾 ∈ TopSp)
sibfof.4 (𝜑𝐽 ∈ Fre)
sibfof.5 (𝜑 → ( 0 + 0 ) = (0g𝐾))
Assertion
Ref Expression
sibfof (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))

Proof of Theorem sibfof
Dummy variables 𝑥 𝑦 𝑧 𝑝 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sibfof.1 . . . . . . . 8 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
2 sibfof.0 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
3 sitgval.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
4 sitgval.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑊)
53, 4tpsuni 22963 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
62, 5syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
76sqxpeqd 5732 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ( 𝐽 × 𝐽))
87feq2d 6733 . . . . . . . 8 (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐶+ :( 𝐽 × 𝐽)⟶𝐶))
91, 8mpbid 232 . . . . . . 7 (𝜑+ :( 𝐽 × 𝐽)⟶𝐶)
109fovcdmda 7621 . . . . . 6 ((𝜑 ∧ (𝑧 𝐽𝑥 𝐽)) → (𝑧 + 𝑥) ∈ 𝐶)
11 sitgval.s . . . . . . 7 𝑆 = (sigaGen‘𝐽)
12 sitgval.0 . . . . . . 7 0 = (0g𝑊)
13 sitgval.x . . . . . . 7 · = ( ·𝑠𝑊)
14 sitgval.h . . . . . . 7 𝐻 = (ℝHom‘(Scalar‘𝑊))
15 sitgval.1 . . . . . . 7 (𝜑𝑊𝑉)
16 sitgval.2 . . . . . . 7 (𝜑𝑀 ran measures)
17 sibfmbl.1 . . . . . . 7 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
183, 4, 11, 12, 13, 14, 15, 16, 17sibff 34301 . . . . . 6 (𝜑𝐹: dom 𝑀 𝐽)
19 sibfof.2 . . . . . . 7 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
203, 4, 11, 12, 13, 14, 15, 16, 19sibff 34301 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
21 dmexg 7941 . . . . . . 7 (𝑀 ran measures → dom 𝑀 ∈ V)
22 uniexg 7775 . . . . . . 7 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
2316, 21, 223syl 18 . . . . . 6 (𝜑 dom 𝑀 ∈ V)
24 inidm 4248 . . . . . 6 ( dom 𝑀 dom 𝑀) = dom 𝑀
2510, 18, 20, 23, 23, 24off 7732 . . . . 5 (𝜑 → (𝐹f + 𝐺): dom 𝑀𝐶)
26 sibfof.3 . . . . . . . 8 (𝜑𝐾 ∈ TopSp)
27 sibfof.c . . . . . . . . 9 𝐶 = (Base‘𝐾)
28 eqid 2740 . . . . . . . . 9 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2927, 28tpsuni 22963 . . . . . . . 8 (𝐾 ∈ TopSp → 𝐶 = (TopOpen‘𝐾))
3026, 29syl 17 . . . . . . 7 (𝜑𝐶 = (TopOpen‘𝐾))
31 fvex 6933 . . . . . . . 8 (TopOpen‘𝐾) ∈ V
32 unisg 34107 . . . . . . . 8 ((TopOpen‘𝐾) ∈ V → (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾))
3331, 32ax-mp 5 . . . . . . 7 (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾)
3430, 33eqtr4di 2798 . . . . . 6 (𝜑𝐶 = (sigaGen‘(TopOpen‘𝐾)))
3534feq3d 6734 . . . . 5 (𝜑 → ((𝐹f + 𝐺): dom 𝑀𝐶 ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
3625, 35mpbid 232 . . . 4 (𝜑 → (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾)))
3731a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘𝐾) ∈ V)
3837sgsiga 34106 . . . . . 6 (𝜑 → (sigaGen‘(TopOpen‘𝐾)) ∈ ran sigAlgebra)
3938uniexd 7777 . . . . 5 (𝜑 (sigaGen‘(TopOpen‘𝐾)) ∈ V)
4039, 23elmapd 8898 . . . 4 (𝜑 → ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
4136, 40mpbird 257 . . 3 (𝜑 → (𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀))
42 inundif 4502 . . . . . . 7 ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺))) = 𝑏
4342imaeq2i 6087 . . . . . 6 ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = ((𝐹f + 𝐺) “ 𝑏)
44 ffun 6750 . . . . . . . 8 ((𝐹f + 𝐺): dom 𝑀𝐶 → Fun (𝐹f + 𝐺))
45 unpreima 7096 . . . . . . . 8 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4625, 44, 453syl 18 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4746adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4843, 47eqtr3id 2794 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
49 dmmeas 34165 . . . . . . . 8 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
5016, 49syl 17 . . . . . . 7 (𝜑 → dom 𝑀 ran sigAlgebra)
5150adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → dom 𝑀 ran sigAlgebra)
52 imaiun 7282 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧})
53 iunid 5083 . . . . . . . . 9 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹f + 𝐺))
5453imaeq2i 6087 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
5552, 54eqtr3i 2770 . . . . . . 7 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
56 inss2 4259 . . . . . . . . . 10 (𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺)
576feq3d 6734 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹: dom 𝑀𝐵𝐹: dom 𝑀 𝐽))
5818, 57mpbird 257 . . . . . . . . . . . . . 14 (𝜑𝐹: dom 𝑀𝐵)
596feq3d 6734 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6020, 59mpbird 257 . . . . . . . . . . . . . 14 (𝜑𝐺: dom 𝑀𝐵)
611ffnd 6748 . . . . . . . . . . . . . 14 (𝜑+ Fn (𝐵 × 𝐵))
6258, 60, 23, 61ofpreima2 32684 . . . . . . . . . . . . 13 (𝜑 → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6362adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6450adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → dom 𝑀 ran sigAlgebra)
6550ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → dom 𝑀 ran sigAlgebra)
66 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
67 inss1 4258 . . . . . . . . . . . . . . . . . 18 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧})
68 cnvimass 6111 . . . . . . . . . . . . . . . . . . . 20 ( + “ {𝑧}) ⊆ dom +
6968, 1fssdm 6766 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7069adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7167, 70sstrid 4020 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐵))
7271sselda 4008 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
7350adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → dom 𝑀 ran sigAlgebra)
74 sibfof.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ Fre)
7574sgsiga 34106 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7611, 75eqeltrid 2848 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ran sigAlgebra)
7776adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝑆 ran sigAlgebra)
783, 4, 11, 12, 13, 14, 15, 16, 17sibfmbl 34300 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
7978adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
804tpstop 22964 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
81 cldssbrsiga 34151 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
822, 80, 813syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8382adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8474adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐽 ∈ Fre)
85 xp1st 8062 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (1st𝑝) ∈ 𝐵)
8685adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐵)
876adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐵 = 𝐽)
8886, 87eleqtrd 2846 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐽)
89 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 𝐽 = 𝐽
9089t1sncld 23355 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (1st𝑝) ∈ 𝐽) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9184, 88, 90syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9283, 91sseldd 4009 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (sigaGen‘𝐽))
9392, 11eleqtrrdi 2855 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ 𝑆)
9473, 77, 79, 93mbfmcnvima 34220 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
9566, 72, 94syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
963, 4, 11, 12, 13, 14, 15, 16, 19sibfmbl 34300 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
9796adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
98 xp2nd 8063 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (2nd𝑝) ∈ 𝐵)
9998adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐵)
10099, 87eleqtrd 2846 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐽)
10189t1sncld 23355 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (2nd𝑝) ∈ 𝐽) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10284, 100, 101syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10383, 102sseldd 4009 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (sigaGen‘𝐽))
104103, 11eleqtrrdi 2855 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ 𝑆)
10573, 77, 97, 104mbfmcnvima 34220 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
10666, 72, 105syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
107 inelsiga 34099 . . . . . . . . . . . . . . 15 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀 ∧ (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
10865, 95, 106, 107syl3anc 1371 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
109108ralrimiva 3152 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
1103, 4, 11, 12, 13, 14, 15, 16, 17sibfrn 34302 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ∈ Fin)
1113, 4, 11, 12, 13, 14, 15, 16, 19sibfrn 34302 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐺 ∈ Fin)
112 xpfi 9386 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
113110, 111, 112syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
114 inss2 4259 . . . . . . . . . . . . . . . 16 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)
115 ssdomg 9060 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺)))
116113, 114, 115mpisyl 21 . . . . . . . . . . . . . . 15 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺))
117 isfinite 9721 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 × ran 𝐺) ∈ Fin ↔ (ran 𝐹 × ran 𝐺) ≺ ω)
118117biimpi 216 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → (ran 𝐹 × ran 𝐺) ≺ ω)
119 sdomdom 9040 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ≺ ω → (ran 𝐹 × ran 𝐺) ≼ ω)
120113, 118, 1193syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ran 𝐹 × ran 𝐺) ≼ ω)
121 domtr 9067 . . . . . . . . . . . . . . 15 (((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺) ∧ (ran 𝐹 × ran 𝐺) ≼ ω) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
122116, 120, 121syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
123122adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
124 nfcv 2908 . . . . . . . . . . . . . 14 𝑝(( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))
125124sigaclcuni 34082 . . . . . . . . . . . . 13 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12664, 109, 123, 125syl3anc 1371 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12763, 126eqeltrd 2844 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
128127ralrimiva 3152 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
129 ssralv 4077 . . . . . . . . . 10 ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀))
13056, 128, 129mpsyl 68 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
131130adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
1321ffund 6751 . . . . . . . . . . . . 13 (𝜑 → Fun + )
133 imafi 9381 . . . . . . . . . . . . 13 ((Fun + ∧ (ran 𝐹 × ran 𝐺) ∈ Fin) → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
134132, 113, 133syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
13518, 20, 9, 23ofrn2 32659 . . . . . . . . . . . 12 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
136 ssfi 9240 . . . . . . . . . . . 12 ((( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin ∧ ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) → ran (𝐹f + 𝐺) ∈ Fin)
137134, 135, 136syl2anc 583 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ∈ Fin)
138 ssdomg 9060 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ∈ Fin → ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺)))
139137, 56, 138mpisyl 21 . . . . . . . . . 10 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺))
140 isfinite 9721 . . . . . . . . . . . 12 (ran (𝐹f + 𝐺) ∈ Fin ↔ ran (𝐹f + 𝐺) ≺ ω)
141137, 140sylib 218 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ≺ ω)
142 sdomdom 9040 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ≺ ω → ran (𝐹f + 𝐺) ≼ ω)
143141, 142syl 17 . . . . . . . . . 10 (𝜑 → ran (𝐹f + 𝐺) ≼ ω)
144 domtr 9067 . . . . . . . . . 10 (((𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺) ∧ ran (𝐹f + 𝐺) ≼ ω) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
145139, 143, 144syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
146145adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
147 nfcv 2908 . . . . . . . . 9 𝑧(𝑏 ∩ ran (𝐹f + 𝐺))
148147sigaclcuni 34082 . . . . . . . 8 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
14951, 131, 146, 148syl3anc 1371 . . . . . . 7 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
15055, 149eqeltrrid 2849 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
151 difpreima 7098 . . . . . . . . . 10 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
15225, 44, 1513syl 18 . . . . . . . . 9 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
153 cnvimarndm 6112 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺)) = dom (𝐹f + 𝐺)
154153difeq2i 4146 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺))
155 cnvimass 6111 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺)
156 ssdif0 4389 . . . . . . . . . . 11 (((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺) ↔ (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅)
157155, 156mpbi 230 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅
158154, 157eqtri 2768 . . . . . . . . 9 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = ∅
159152, 158eqtrdi 2796 . . . . . . . 8 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = ∅)
160 0elsiga 34078 . . . . . . . . 9 (dom 𝑀 ran sigAlgebra → ∅ ∈ dom 𝑀)
16116, 49, 1603syl 18 . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑀)
162159, 161eqeltrd 2844 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
163162adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
164 unelsiga 34098 . . . . . 6 ((dom 𝑀 ran sigAlgebra ∧ ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀 ∧ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16551, 150, 163, 164syl3anc 1371 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16648, 165eqeltrd 2844 . . . 4 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
167166ralrimiva 3152 . . 3 (𝜑 → ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
16850, 38ismbfm 34215 . . 3 (𝜑 → ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ↔ ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ∧ ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)))
16941, 167, 168mpbir2and 712 . 2 (𝜑 → (𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))))
17062adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
171170fveq2d 6924 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
172 measbasedom 34166 . . . . . . . . 9 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
17316, 172sylib 218 . . . . . . . 8 (𝜑𝑀 ∈ (measures‘dom 𝑀))
174173adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 𝑀 ∈ (measures‘dom 𝑀))
175 eldifi 4154 . . . . . . . 8 (𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}) → 𝑧 ∈ ran (𝐹f + 𝐺))
176175, 109sylan2 592 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
177122adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
178 sneq 4658 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → {𝑥} = {(1st𝑝)})
179178imaeq2d 6089 . . . . . . . . . 10 (𝑥 = (1st𝑝) → (𝐹 “ {𝑥}) = (𝐹 “ {(1st𝑝)}))
180 sneq 4658 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → {𝑦} = {(2nd𝑝)})
181180imaeq2d 6089 . . . . . . . . . 10 (𝑦 = (2nd𝑝) → (𝐺 “ {𝑦}) = (𝐺 “ {(2nd𝑝)}))
18218ffund 6751 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
183 sndisj 5158 . . . . . . . . . . 11 Disj 𝑥 ∈ ran 𝐹{𝑥}
184 disjpreima 32606 . . . . . . . . . . 11 ((Fun 𝐹Disj 𝑥 ∈ ran 𝐹{𝑥}) → Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
185182, 183, 184sylancl 585 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
18620ffund 6751 . . . . . . . . . . 11 (𝜑 → Fun 𝐺)
187 sndisj 5158 . . . . . . . . . . 11 Disj 𝑦 ∈ ran 𝐺{𝑦}
188 disjpreima 32606 . . . . . . . . . . 11 ((Fun 𝐺Disj 𝑦 ∈ ran 𝐺{𝑦}) → Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
189186, 187, 188sylancl 585 . . . . . . . . . 10 (𝜑Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
190179, 181, 185, 189disjxpin 32610 . . . . . . . . 9 (𝜑Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
191 disjss1 5139 . . . . . . . . 9 ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
192114, 190, 191mpsyl 68 . . . . . . . 8 (𝜑Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
193192adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
194 measvuni 34178 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω ∧ Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
195174, 176, 177, 193, 194syl112anc 1374 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
196 ssfi 9240 . . . . . . . . 9 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
197113, 114, 196sylancl 585 . . . . . . . 8 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
198197adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
199 simpll 766 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
200 simpr 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)))
201114, 200sselid 4006 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
202 xp1st 8062 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
203201, 202syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ ran 𝐹)
204 xp2nd 8063 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
205201, 204syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ ran 𝐺)
206 oveq12 7457 . . . . . . . . . . . . . . . 16 ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = ( 0 + 0 ))
207 sibfof.5 . . . . . . . . . . . . . . . 16 (𝜑 → ( 0 + 0 ) = (0g𝐾))
208206, 207sylan9eqr 2802 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 = 0𝑦 = 0 )) → (𝑥 + 𝑦) = (0g𝐾))
209208ex 412 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = (0g𝐾)))
210209necon3ad 2959 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → ¬ (𝑥 = 0𝑦 = 0 )))
211 neorian 3043 . . . . . . . . . . . . 13 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
212210, 211imbitrrdi 252 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
213212adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
214213ralrimivva 3208 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
215199, 214syl 17 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
21667a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧}))
217216sselda 4008 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ( + “ {𝑧}))
218 fniniseg 7093 . . . . . . . . . . . . 13 ( + Fn (𝐵 × 𝐵) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
219199, 61, 2183syl 18 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
220217, 219mpbid 232 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧))
221 simpr 484 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = 𝑧)
222 1st2nd2 8069 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝐵 × 𝐵) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
223222fveq2d 6924 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩))
224 df-ov 7451 . . . . . . . . . . . . . 14 ((1st𝑝) + (2nd𝑝)) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩)
225223, 224eqtr4di 2798 . . . . . . . . . . . . 13 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
226225adantr 480 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
227221, 226eqtr3d 2782 . . . . . . . . . . 11 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
228220, 227syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
229 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}))
230229eldifbd 3989 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ¬ 𝑧 ∈ {(0g𝐾)})
231 velsn 4664 . . . . . . . . . . . 12 (𝑧 ∈ {(0g𝐾)} ↔ 𝑧 = (0g𝐾))
232231necon3bbii 2994 . . . . . . . . . . 11 𝑧 ∈ {(0g𝐾)} ↔ 𝑧 ≠ (0g𝐾))
233230, 232sylib 218 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ≠ (0g𝐾))
234228, 233eqnetrrd 3015 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾))
235175, 72sylanl2 680 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
236235, 85syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ 𝐵)
237235, 98syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ 𝐵)
238 oveq1 7455 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥 + 𝑦) = ((1st𝑝) + 𝑦))
239238neeq1d 3006 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥 + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + 𝑦) ≠ (0g𝐾)))
240 neeq1 3009 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥0 ↔ (1st𝑝) ≠ 0 ))
241240orbi1d 915 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥0𝑦0 ) ↔ ((1st𝑝) ≠ 0𝑦0 )))
242239, 241imbi12d 344 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → (((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) ↔ (((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 ))))
243 oveq2 7456 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → ((1st𝑝) + 𝑦) = ((1st𝑝) + (2nd𝑝)))
244243neeq1d 3006 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾)))
245 neeq1 3009 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → (𝑦0 ↔ (2nd𝑝) ≠ 0 ))
246245orbi2d 914 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) ≠ 0𝑦0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )))
247244, 246imbi12d 344 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → ((((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 )) ↔ (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
248242, 247rspc2v 3646 . . . . . . . . . 10 (((1st𝑝) ∈ 𝐵 ∧ (2nd𝑝) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
249236, 237, 248syl2anc 583 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
250215, 234, 249mp2d 49 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
2513, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 74sibfinima 34304 . . . . . . . 8 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
252199, 203, 205, 250, 251syl31anc 1373 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
253198, 252esumpfinval 34039 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
254171, 195, 2533eqtrd 2784 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
255 rge0ssre 13516 . . . . . . 7 (0[,)+∞) ⊆ ℝ
256255, 252sselid 4006 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
257198, 256fsumrecl 15782 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
258254, 257eqeltrd 2844 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ)
259174adantr 480 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑀 ∈ (measures‘dom 𝑀))
260175, 108sylanl2 680 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
261 measge0 34171 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
262259, 260, 261syl2anc 583 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
263198, 256, 262fsumge0 15843 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
264263, 254breqtrrd 5194 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧})))
265 elrege0 13514 . . . 4 ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧}))))
266258, 264, 265sylanbrc 582 . . 3 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
267266ralrimiva 3152 . 2 (𝜑 → ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
268 eqid 2740 . . 3 (sigaGen‘(TopOpen‘𝐾)) = (sigaGen‘(TopOpen‘𝐾))
269 eqid 2740 . . 3 (0g𝐾) = (0g𝐾)
270 eqid 2740 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
271 eqid 2740 . . 3 (ℝHom‘(Scalar‘𝐾)) = (ℝHom‘(Scalar‘𝐾))
27227, 28, 268, 269, 270, 271, 26, 16issibf 34298 . 2 (𝜑 → ((𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ∧ ran (𝐹f + 𝐺) ∈ Fin ∧ ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))))
273169, 137, 267, 272mpbir3and 1342 1 (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cop 4654   cuni 4931   ciun 5015  Disj wdisj 5133   class class class wbr 5166   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  ωcom 7903  1st c1st 8028  2nd c2nd 8029  m cmap 8884  cdom 9001  csdm 9002  Fincfn 9003  cr 11183  0cc0 11184  +∞cpnf 11321  cle 11325  [,)cico 13409  Σcsu 15734  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  TopOpenctopn 17481  0gc0g 17499  Topctop 22920  TopSpctps 22959  Clsdccld 23045  Frect1 23336  ℝHomcrrh 33939  Σ*cesum 33991  sigAlgebracsiga 34072  sigaGencsigagen 34102  measurescmeas 34159  MblFnMcmbfm 34213  sitgcsitg 34294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-ordt 17561  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-ps 18636  df-tsr 18637  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-abv 20832  df-lmod 20882  df-scaf 20883  df-sra 21195  df-rgmod 21196  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-t1 23343  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-tmd 24101  df-tgp 24102  df-tsms 24156  df-trg 24189  df-xms 24351  df-ms 24352  df-tms 24353  df-nm 24616  df-ngp 24617  df-nrg 24619  df-nlm 24620  df-ii 24922  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-esum 33992  df-siga 34073  df-sigagen 34103  df-meas 34160  df-mbfm 34214  df-sitg 34295
This theorem is referenced by:  sitmcl  34316
  Copyright terms: Public domain W3C validator