Step | Hyp | Ref
| Expression |
1 | | sibfof.1 |
. . . . . . . 8
⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐶) |
2 | | sibfof.0 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ TopSp) |
3 | | sitgval.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑊) |
4 | | sitgval.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝑊) |
5 | 3, 4 | tpsuni 21993 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ TopSp → 𝐵 = ∪
𝐽) |
6 | 2, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
7 | 6 | sqxpeqd 5612 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 × 𝐵) = (∪ 𝐽 × ∪ 𝐽)) |
8 | 7 | feq2d 6570 |
. . . . . . . 8
⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐶 ↔ + :(∪ 𝐽
× ∪ 𝐽)⟶𝐶)) |
9 | 1, 8 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → + :(∪ 𝐽
× ∪ 𝐽)⟶𝐶) |
10 | 9 | fovrnda 7421 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽)) → (𝑧 + 𝑥) ∈ 𝐶) |
11 | | sitgval.s |
. . . . . . 7
⊢ 𝑆 = (sigaGen‘𝐽) |
12 | | sitgval.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑊) |
13 | | sitgval.x |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑊) |
14 | | sitgval.h |
. . . . . . 7
⊢ 𝐻 =
(ℝHom‘(Scalar‘𝑊)) |
15 | | sitgval.1 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
16 | | sitgval.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) |
17 | | sibfmbl.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
18 | 3, 4, 11, 12, 13, 14, 15, 16, 17 | sibff 32203 |
. . . . . 6
⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
19 | | sibfof.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) |
20 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | sibff 32203 |
. . . . . 6
⊢ (𝜑 → 𝐺:∪ dom 𝑀⟶∪ 𝐽) |
21 | | dmexg 7724 |
. . . . . . 7
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ V) |
22 | | uniexg 7571 |
. . . . . . 7
⊢ (dom
𝑀 ∈ V → ∪ dom 𝑀 ∈ V) |
23 | 16, 21, 22 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ∪ dom 𝑀 ∈ V) |
24 | | inidm 4149 |
. . . . . 6
⊢ (∪ dom 𝑀 ∩ ∪ dom
𝑀) = ∪ dom 𝑀 |
25 | 10, 18, 20, 23, 23, 24 | off 7529 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘f + 𝐺):∪ dom 𝑀⟶𝐶) |
26 | | sibfof.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ TopSp) |
27 | | sibfof.c |
. . . . . . . . 9
⊢ 𝐶 = (Base‘𝐾) |
28 | | eqid 2738 |
. . . . . . . . 9
⊢
(TopOpen‘𝐾) =
(TopOpen‘𝐾) |
29 | 27, 28 | tpsuni 21993 |
. . . . . . . 8
⊢ (𝐾 ∈ TopSp → 𝐶 = ∪
(TopOpen‘𝐾)) |
30 | 26, 29 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐶 = ∪
(TopOpen‘𝐾)) |
31 | | fvex 6769 |
. . . . . . . 8
⊢
(TopOpen‘𝐾)
∈ V |
32 | | unisg 32011 |
. . . . . . . 8
⊢
((TopOpen‘𝐾)
∈ V → ∪
(sigaGen‘(TopOpen‘𝐾)) = ∪
(TopOpen‘𝐾)) |
33 | 31, 32 | ax-mp 5 |
. . . . . . 7
⊢ ∪ (sigaGen‘(TopOpen‘𝐾)) = ∪
(TopOpen‘𝐾) |
34 | 30, 33 | eqtr4di 2797 |
. . . . . 6
⊢ (𝜑 → 𝐶 = ∪
(sigaGen‘(TopOpen‘𝐾))) |
35 | 34 | feq3d 6571 |
. . . . 5
⊢ (𝜑 → ((𝐹 ∘f + 𝐺):∪ dom 𝑀⟶𝐶 ↔ (𝐹 ∘f + 𝐺):∪ dom 𝑀⟶∪ (sigaGen‘(TopOpen‘𝐾)))) |
36 | 25, 35 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝐹 ∘f + 𝐺):∪ dom 𝑀⟶∪ (sigaGen‘(TopOpen‘𝐾))) |
37 | 31 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (TopOpen‘𝐾) ∈ V) |
38 | 37 | sgsiga 32010 |
. . . . . 6
⊢ (𝜑 →
(sigaGen‘(TopOpen‘𝐾)) ∈ ∪ ran
sigAlgebra) |
39 | 38 | uniexd 7573 |
. . . . 5
⊢ (𝜑 → ∪ (sigaGen‘(TopOpen‘𝐾)) ∈ V) |
40 | 39, 23 | elmapd 8587 |
. . . 4
⊢ (𝜑 → ((𝐹 ∘f + 𝐺) ∈ (∪
(sigaGen‘(TopOpen‘𝐾)) ↑m ∪ dom 𝑀) ↔ (𝐹 ∘f + 𝐺):∪ dom 𝑀⟶∪ (sigaGen‘(TopOpen‘𝐾)))) |
41 | 36, 40 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (∪
(sigaGen‘(TopOpen‘𝐾)) ↑m ∪ dom 𝑀)) |
42 | | inundif 4409 |
. . . . . . 7
⊢ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) = 𝑏 |
43 | 42 | imaeq2i 5956 |
. . . . . 6
⊢ (◡(𝐹 ∘f + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) = (◡(𝐹 ∘f + 𝐺) “ 𝑏) |
44 | | ffun 6587 |
. . . . . . . 8
⊢ ((𝐹 ∘f + 𝐺):∪
dom 𝑀⟶𝐶 → Fun (𝐹 ∘f + 𝐺)) |
45 | | unpreima 6922 |
. . . . . . . 8
⊢ (Fun
(𝐹 ∘f
+ 𝐺) → (◡(𝐹 ∘f + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) = ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))))) |
46 | 25, 44, 45 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) = ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))))) |
47 | 46 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) = ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))))) |
48 | 43, 47 | eqtr3id 2793 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ 𝑏) = ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))))) |
49 | | dmmeas 32069 |
. . . . . . . 8
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
50 | 16, 49 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
51 | 50 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
52 | | imaiun 7100 |
. . . . . . . 8
⊢ (◡(𝐹 ∘f + 𝐺) “ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)){𝑧}) = ∪
𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) |
53 | | iunid 4986 |
. . . . . . . . 9
⊢ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) |
54 | 53 | imaeq2i 5956 |
. . . . . . . 8
⊢ (◡(𝐹 ∘f + 𝐺) “ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)){𝑧}) = (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) |
55 | 52, 54 | eqtr3i 2768 |
. . . . . . 7
⊢ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) = (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) |
56 | | inss2 4160 |
. . . . . . . . . 10
⊢ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ⊆ ran (𝐹 ∘f + 𝐺) |
57 | 6 | feq3d 6571 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹:∪ dom 𝑀⟶𝐵 ↔ 𝐹:∪ dom 𝑀⟶∪ 𝐽)) |
58 | 18, 57 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶𝐵) |
59 | 6 | feq3d 6571 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺:∪ dom 𝑀⟶𝐵 ↔ 𝐺:∪ dom 𝑀⟶∪ 𝐽)) |
60 | 20, 59 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:∪ dom 𝑀⟶𝐵) |
61 | 1 | ffnd 6585 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → + Fn (𝐵 × 𝐵)) |
62 | 58, 60, 23, 61 | ofpreima2 30905 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ {𝑧}) = ∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
63 | 62 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → (◡(𝐹 ∘f + 𝐺) “ {𝑧}) = ∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
64 | 50 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
65 | 50 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
66 | | simpll 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑) |
67 | | inss1 4159 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (◡ + “ {𝑧}) |
68 | | cnvimass 5978 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡ + “ {𝑧}) ⊆ dom + |
69 | 68, 1 | fssdm 6604 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡ + “ {𝑧}) ⊆ (𝐵 × 𝐵)) |
70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → (◡ + “ {𝑧}) ⊆ (𝐵 × 𝐵)) |
71 | 67, 70 | sstrid 3928 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐵)) |
72 | 71 | sselda 3917 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵)) |
73 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
74 | | sibfof.4 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽 ∈ Fre) |
75 | 74 | sgsiga 32010 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
76 | 11, 75 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑆 ∈ ∪ ran
sigAlgebra) |
77 | 76 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝑆 ∈ ∪ ran
sigAlgebra) |
78 | 3, 4, 11, 12, 13, 14, 15, 16, 17 | sibfmbl 32202 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
79 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
80 | 4 | tpstop 21994 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑊 ∈ TopSp → 𝐽 ∈ Top) |
81 | | cldssbrsiga 32055 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 ∈ Top →
(Clsd‘𝐽) ⊆
(sigaGen‘𝐽)) |
82 | 2, 80, 81 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
83 | 82 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
84 | 74 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐽 ∈ Fre) |
85 | | xp1st 7836 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (𝐵 × 𝐵) → (1st ‘𝑝) ∈ 𝐵) |
86 | 85 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (1st ‘𝑝) ∈ 𝐵) |
87 | 6 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐵 = ∪ 𝐽) |
88 | 86, 87 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (1st ‘𝑝) ∈ ∪ 𝐽) |
89 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ 𝐽 =
∪ 𝐽 |
90 | 89 | t1sncld 22385 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ Fre ∧
(1st ‘𝑝)
∈ ∪ 𝐽) → {(1st ‘𝑝)} ∈ (Clsd‘𝐽)) |
91 | 84, 88, 90 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(1st ‘𝑝)} ∈ (Clsd‘𝐽)) |
92 | 83, 91 | sseldd 3918 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(1st ‘𝑝)} ∈ (sigaGen‘𝐽)) |
93 | 92, 11 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(1st ‘𝑝)} ∈ 𝑆) |
94 | 73, 77, 79, 93 | mbfmcnvima 32124 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (◡𝐹 “ {(1st ‘𝑝)}) ∈ dom 𝑀) |
95 | 66, 72, 94 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (◡𝐹 “ {(1st ‘𝑝)}) ∈ dom 𝑀) |
96 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | sibfmbl 32202 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) |
97 | 96 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) |
98 | | xp2nd 7837 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (𝐵 × 𝐵) → (2nd ‘𝑝) ∈ 𝐵) |
99 | 98 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (2nd ‘𝑝) ∈ 𝐵) |
100 | 99, 87 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (2nd ‘𝑝) ∈ ∪ 𝐽) |
101 | 89 | t1sncld 22385 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ Fre ∧
(2nd ‘𝑝)
∈ ∪ 𝐽) → {(2nd ‘𝑝)} ∈ (Clsd‘𝐽)) |
102 | 84, 100, 101 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(2nd ‘𝑝)} ∈ (Clsd‘𝐽)) |
103 | 83, 102 | sseldd 3918 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(2nd ‘𝑝)} ∈ (sigaGen‘𝐽)) |
104 | 103, 11 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(2nd ‘𝑝)} ∈ 𝑆) |
105 | 73, 77, 97, 104 | mbfmcnvima 32124 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (◡𝐺 “ {(2nd ‘𝑝)}) ∈ dom 𝑀) |
106 | 66, 72, 105 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (◡𝐺 “ {(2nd ‘𝑝)}) ∈ dom 𝑀) |
107 | | inelsiga 32003 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ (◡𝐹 “ {(1st ‘𝑝)}) ∈ dom 𝑀 ∧ (◡𝐺 “ {(2nd ‘𝑝)}) ∈ dom 𝑀) → ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
108 | 65, 95, 106, 107 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
109 | 108 | ralrimiva 3107 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
110 | 3, 4, 11, 12, 13, 14, 15, 16, 17 | sibfrn 32204 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
111 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | sibfrn 32204 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
112 | | xpfi 9015 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝐹 ∈ Fin ∧ ran
𝐺 ∈ Fin) → (ran
𝐹 × ran 𝐺) ∈ Fin) |
113 | 110, 111,
112 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin) |
114 | | inss2 4160 |
. . . . . . . . . . . . . . . 16
⊢ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) |
115 | | ssdomg 8741 |
. . . . . . . . . . . . . . . 16
⊢ ((ran
𝐹 × ran 𝐺) ∈ Fin → (((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺))) |
116 | 113, 114,
115 | mpisyl 21 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺)) |
117 | | isfinite 9340 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝐹 × ran 𝐺) ∈ Fin ↔ (ran 𝐹 × ran 𝐺) ≺ ω) |
118 | 117 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢ ((ran
𝐹 × ran 𝐺) ∈ Fin → (ran 𝐹 × ran 𝐺) ≺ ω) |
119 | | sdomdom 8723 |
. . . . . . . . . . . . . . . 16
⊢ ((ran
𝐹 × ran 𝐺) ≺ ω → (ran
𝐹 × ran 𝐺) ≼
ω) |
120 | 113, 118,
119 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ≼ ω) |
121 | | domtr 8748 |
. . . . . . . . . . . . . . 15
⊢ ((((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺) ∧ (ran 𝐹 × ran 𝐺) ≼ ω) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) |
122 | 116, 120,
121 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) |
123 | 122 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) |
124 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑝((◡
+ “
{𝑧}) ∩ (ran 𝐹 × ran 𝐺)) |
125 | 124 | sigaclcuni 31986 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀 ∧ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) → ∪ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
126 | 64, 109, 123, 125 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → ∪ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
127 | 63, 126 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → (◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
128 | 127 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ ran (𝐹 ∘f + 𝐺)(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
129 | | ssralv 3983 |
. . . . . . . . . 10
⊢ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ⊆ ran (𝐹 ∘f + 𝐺) → (∀𝑧 ∈ ran (𝐹 ∘f + 𝐺)(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀)) |
130 | 56, 128, 129 | mpsyl 68 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
131 | 130 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
132 | 1 | ffund 6588 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun + ) |
133 | | imafi 8920 |
. . . . . . . . . . . . 13
⊢ ((Fun
+ ∧
(ran 𝐹 × ran 𝐺) ∈ Fin) → ( + “ (ran
𝐹 × ran 𝐺)) ∈ Fin) |
134 | 132, 113,
133 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin) |
135 | 18, 20, 9, 23 | ofrn2 30878 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) |
136 | | ssfi 8918 |
. . . . . . . . . . . 12
⊢ ((( + “ (ran
𝐹 × ran 𝐺)) ∈ Fin ∧ ran (𝐹 ∘f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) → ran (𝐹 ∘f + 𝐺) ∈ Fin) |
137 | 134, 135,
136 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ∈ Fin) |
138 | | ssdomg 8741 |
. . . . . . . . . . 11
⊢ (ran
(𝐹 ∘f
+ 𝐺) ∈ Fin → ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ⊆ ran (𝐹 ∘f + 𝐺) → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ran (𝐹 ∘f + 𝐺))) |
139 | 137, 56, 138 | mpisyl 21 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ran (𝐹 ∘f + 𝐺)) |
140 | | isfinite 9340 |
. . . . . . . . . . . 12
⊢ (ran
(𝐹 ∘f
+ 𝐺) ∈ Fin ↔ ran (𝐹 ∘f + 𝐺) ≺
ω) |
141 | 137, 140 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ≺ ω) |
142 | | sdomdom 8723 |
. . . . . . . . . . 11
⊢ (ran
(𝐹 ∘f
+ 𝐺) ≺ ω → ran
(𝐹 ∘f
+ 𝐺) ≼
ω) |
143 | 141, 142 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ≼ ω) |
144 | | domtr 8748 |
. . . . . . . . . 10
⊢ (((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ran (𝐹 ∘f + 𝐺) ∧ ran (𝐹 ∘f + 𝐺) ≼ ω) → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ω) |
145 | 139, 143,
144 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ω) |
146 | 145 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ω) |
147 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑧(𝑏 ∩ ran (𝐹 ∘f + 𝐺)) |
148 | 147 | sigaclcuni 31986 |
. . . . . . . 8
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ω) → ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
149 | 51, 131, 146, 148 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
150 | 55, 149 | eqeltrrid 2844 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀) |
151 | | difpreima 6924 |
. . . . . . . . . 10
⊢ (Fun
(𝐹 ∘f
+ 𝐺) → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) = ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺)))) |
152 | 25, 44, 151 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) = ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺)))) |
153 | | cnvimarndm 5979 |
. . . . . . . . . . 11
⊢ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺)) = dom (𝐹 ∘f + 𝐺) |
154 | 153 | difeq2i 4050 |
. . . . . . . . . 10
⊢ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺))) = ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ dom (𝐹 ∘f + 𝐺)) |
155 | | cnvimass 5978 |
. . . . . . . . . . 11
⊢ (◡(𝐹 ∘f + 𝐺) “ 𝑏) ⊆ dom (𝐹 ∘f + 𝐺) |
156 | | ssdif0 4294 |
. . . . . . . . . . 11
⊢ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ⊆ dom (𝐹 ∘f + 𝐺) ↔ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ dom (𝐹 ∘f + 𝐺)) = ∅) |
157 | 155, 156 | mpbi 229 |
. . . . . . . . . 10
⊢ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ dom (𝐹 ∘f + 𝐺)) = ∅ |
158 | 154, 157 | eqtri 2766 |
. . . . . . . . 9
⊢ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺))) = ∅ |
159 | 152, 158 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) = ∅) |
160 | | 0elsiga 31982 |
. . . . . . . . 9
⊢ (dom
𝑀 ∈ ∪ ran sigAlgebra → ∅ ∈ dom 𝑀) |
161 | 16, 49, 160 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ dom 𝑀) |
162 | 159, 161 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀) |
163 | 162 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀) |
164 | | unelsiga 32002 |
. . . . . 6
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀 ∧ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀) → ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) ∈ dom 𝑀) |
165 | 51, 150, 163, 164 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) ∈ dom 𝑀) |
166 | 48, 165 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ 𝑏) ∈ dom 𝑀) |
167 | 166 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))(◡(𝐹 ∘f + 𝐺) “ 𝑏) ∈ dom 𝑀) |
168 | 50, 38 | ismbfm 32119 |
. . 3
⊢ (𝜑 → ((𝐹 ∘f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ↔ ((𝐹 ∘f + 𝐺) ∈ (∪
(sigaGen‘(TopOpen‘𝐾)) ↑m ∪ dom 𝑀) ∧ ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))(◡(𝐹 ∘f + 𝐺) “ 𝑏) ∈ dom 𝑀))) |
169 | 41, 167, 168 | mpbir2and 709 |
. 2
⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾)))) |
170 | 62 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (◡(𝐹 ∘f + 𝐺) “ {𝑧}) = ∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
171 | 170 | fveq2d 6760 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) = (𝑀‘∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
172 | | measbasedom 32070 |
. . . . . . . . 9
⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
173 | 16, 172 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (measures‘dom 𝑀)) |
174 | 173 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → 𝑀 ∈ (measures‘dom 𝑀)) |
175 | | eldifi 4057 |
. . . . . . . 8
⊢ (𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)}) → 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) |
176 | 175, 109 | sylan2 592 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
177 | 122 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) |
178 | | sneq 4568 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → {𝑥} = {(1st ‘𝑝)}) |
179 | 178 | imaeq2d 5958 |
. . . . . . . . . 10
⊢ (𝑥 = (1st ‘𝑝) → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {(1st ‘𝑝)})) |
180 | | sneq 4568 |
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘𝑝) → {𝑦} = {(2nd ‘𝑝)}) |
181 | 180 | imaeq2d 5958 |
. . . . . . . . . 10
⊢ (𝑦 = (2nd ‘𝑝) → (◡𝐺 “ {𝑦}) = (◡𝐺 “ {(2nd ‘𝑝)})) |
182 | 18 | ffund 6588 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐹) |
183 | | sndisj 5061 |
. . . . . . . . . . 11
⊢
Disj 𝑥 ∈
ran 𝐹{𝑥} |
184 | | disjpreima 30824 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ Disj 𝑥 ∈ ran 𝐹{𝑥}) → Disj 𝑥 ∈ ran 𝐹(◡𝐹 “ {𝑥})) |
185 | 182, 183,
184 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑥 ∈ ran 𝐹(◡𝐹 “ {𝑥})) |
186 | 20 | ffund 6588 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐺) |
187 | | sndisj 5061 |
. . . . . . . . . . 11
⊢
Disj 𝑦 ∈
ran 𝐺{𝑦} |
188 | | disjpreima 30824 |
. . . . . . . . . . 11
⊢ ((Fun
𝐺 ∧ Disj 𝑦 ∈ ran 𝐺{𝑦}) → Disj 𝑦 ∈ ran 𝐺(◡𝐺 “ {𝑦})) |
189 | 186, 187,
188 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑦 ∈ ran 𝐺(◡𝐺 “ {𝑦})) |
190 | 179, 181,
185, 189 | disjxpin 30828 |
. . . . . . . . 9
⊢ (𝜑 → Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
191 | | disjss1 5041 |
. . . . . . . . 9
⊢ (((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) → Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
192 | 114, 190,
191 | mpsyl 68 |
. . . . . . . 8
⊢ (𝜑 → Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
193 | 192 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
194 | | measvuni 32082 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀 ∧ (((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω ∧ Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) → (𝑀‘∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) = Σ*𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
195 | 174, 176,
177, 193, 194 | syl112anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) = Σ*𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
196 | | ssfi 8918 |
. . . . . . . . 9
⊢ (((ran
𝐹 × ran 𝐺) ∈ Fin ∧ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin) |
197 | 113, 114,
196 | sylancl 585 |
. . . . . . . 8
⊢ (𝜑 → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin) |
198 | 197 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin) |
199 | | simpll 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑) |
200 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) |
201 | 114, 200 | sselid 3915 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (ran 𝐹 × ran 𝐺)) |
202 | | xp1st 7836 |
. . . . . . . . 9
⊢ (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st ‘𝑝) ∈ ran 𝐹) |
203 | 201, 202 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st ‘𝑝) ∈ ran 𝐹) |
204 | | xp2nd 7837 |
. . . . . . . . 9
⊢ (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd ‘𝑝) ∈ ran 𝐺) |
205 | 201, 204 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd ‘𝑝) ∈ ran 𝐺) |
206 | | oveq12 7264 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 0 ∧ 𝑦 = 0 ) → (𝑥 + 𝑦) = ( 0 + 0 )) |
207 | | sibfof.5 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ( 0 + 0 ) =
(0g‘𝐾)) |
208 | 206, 207 | sylan9eqr 2801 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 = 0 ∧ 𝑦 = 0 )) → (𝑥 + 𝑦) = (0g‘𝐾)) |
209 | 208 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 = 0 ∧ 𝑦 = 0 ) → (𝑥 + 𝑦) = (0g‘𝐾))) |
210 | 209 | necon3ad 2955 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑥 + 𝑦) ≠ (0g‘𝐾) → ¬ (𝑥 = 0 ∧ 𝑦 = 0 ))) |
211 | | neorian 3038 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ¬ (𝑥 = 0 ∧ 𝑦 = 0 )) |
212 | 210, 211 | syl6ibr 251 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) |
213 | 212 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) |
214 | 213 | ralrimivva 3114 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) |
215 | 199, 214 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) |
216 | 67 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (◡ + “ {𝑧})) |
217 | 216 | sselda 3917 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (◡ + “ {𝑧})) |
218 | | fniniseg 6919 |
. . . . . . . . . . . . 13
⊢ ( + Fn (𝐵 × 𝐵) → (𝑝 ∈ (◡ + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧))) |
219 | 199, 61, 218 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (◡ + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧))) |
220 | 217, 219 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧)) |
221 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧) → ( + ‘𝑝) = 𝑧) |
222 | | 1st2nd2 7843 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ (𝐵 × 𝐵) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
223 | 222 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐵 × 𝐵) → ( + ‘𝑝) = ( +
‘〈(1st ‘𝑝), (2nd ‘𝑝)〉)) |
224 | | df-ov 7258 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑝) + (2nd
‘𝑝)) = ( +
‘〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
225 | 223, 224 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ (𝐵 × 𝐵) → ( + ‘𝑝) = ((1st ‘𝑝) + (2nd
‘𝑝))) |
226 | 225 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧) → ( + ‘𝑝) = ((1st ‘𝑝) + (2nd
‘𝑝))) |
227 | 221, 226 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧) → 𝑧 = ((1st ‘𝑝) + (2nd
‘𝑝))) |
228 | 220, 227 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 = ((1st ‘𝑝) + (2nd
‘𝑝))) |
229 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) |
230 | 229 | eldifbd 3896 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ¬ 𝑧 ∈ {(0g‘𝐾)}) |
231 | | velsn 4574 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈
{(0g‘𝐾)}
↔ 𝑧 =
(0g‘𝐾)) |
232 | 231 | necon3bbii 2990 |
. . . . . . . . . . 11
⊢ (¬
𝑧 ∈
{(0g‘𝐾)}
↔ 𝑧 ≠
(0g‘𝐾)) |
233 | 230, 232 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ≠ (0g‘𝐾)) |
234 | 228, 233 | eqnetrrd 3011 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st ‘𝑝) + (2nd
‘𝑝)) ≠
(0g‘𝐾)) |
235 | 175, 72 | sylanl2 677 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵)) |
236 | 235, 85 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st ‘𝑝) ∈ 𝐵) |
237 | 235, 98 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd ‘𝑝) ∈ 𝐵) |
238 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑝) → (𝑥 + 𝑦) = ((1st ‘𝑝) + 𝑦)) |
239 | 238 | neeq1d 3002 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → ((𝑥 + 𝑦) ≠ (0g‘𝐾) ↔ ((1st ‘𝑝) + 𝑦) ≠ (0g‘𝐾))) |
240 | | neeq1 3005 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑝) → (𝑥 ≠ 0 ↔ (1st
‘𝑝) ≠ 0
)) |
241 | 240 | orbi1d 913 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → ((𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ((1st
‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 ))) |
242 | 239, 241 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → (((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 )) ↔
(((1st ‘𝑝)
+ 𝑦) ≠
(0g‘𝐾)
→ ((1st ‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 )))) |
243 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘𝑝) → ((1st
‘𝑝) + 𝑦) = ((1st
‘𝑝) +
(2nd ‘𝑝))) |
244 | 243 | neeq1d 3002 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘𝑝) → (((1st
‘𝑝) + 𝑦) ≠
(0g‘𝐾)
↔ ((1st ‘𝑝) + (2nd
‘𝑝)) ≠
(0g‘𝐾))) |
245 | | neeq1 3005 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘𝑝) → (𝑦 ≠ 0 ↔ (2nd
‘𝑝) ≠ 0
)) |
246 | 245 | orbi2d 912 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘𝑝) → (((1st
‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ((1st
‘𝑝) ≠ 0 ∨
(2nd ‘𝑝)
≠ 0
))) |
247 | 244, 246 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘𝑝) → ((((1st
‘𝑝) + 𝑦) ≠
(0g‘𝐾)
→ ((1st ‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 )) ↔
(((1st ‘𝑝)
+
(2nd ‘𝑝))
≠ (0g‘𝐾) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)))) |
248 | 242, 247 | rspc2v 3562 |
. . . . . . . . . 10
⊢
(((1st ‘𝑝) ∈ 𝐵 ∧ (2nd ‘𝑝) ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 )) →
(((1st ‘𝑝)
+
(2nd ‘𝑝))
≠ (0g‘𝐾) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)))) |
249 | 236, 237,
248 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 )) →
(((1st ‘𝑝)
+
(2nd ‘𝑝))
≠ (0g‘𝐾) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)))) |
250 | 215, 234,
249 | mp2d 49 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)) |
251 | 3, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 74 | sibfinima 32206 |
. . . . . . . 8
⊢ (((𝜑 ∧ (1st
‘𝑝) ∈ ran 𝐹 ∧ (2nd
‘𝑝) ∈ ran 𝐺) ∧ ((1st
‘𝑝) ≠ 0 ∨
(2nd ‘𝑝)
≠ 0 ))
→ (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
(0[,)+∞)) |
252 | 199, 203,
205, 250, 251 | syl31anc 1371 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
(0[,)+∞)) |
253 | 198, 252 | esumpfinval 31943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) →
Σ*𝑝 ∈
((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) = Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
254 | 171, 195,
253 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) = Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
255 | | rge0ssre 13117 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ |
256 | 255, 252 | sselid 3915 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
ℝ) |
257 | 198, 256 | fsumrecl 15374 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
ℝ) |
258 | 254, 257 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ ℝ) |
259 | 174 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑀 ∈ (measures‘dom 𝑀)) |
260 | 175, 108 | sylanl2 677 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
261 | | measge0 32075 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) → 0 ≤ (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
262 | 259, 260,
261 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 0 ≤ (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
263 | 198, 256,
262 | fsumge0 15435 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → 0 ≤ Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
264 | 263, 254 | breqtrrd 5098 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → 0 ≤ (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧}))) |
265 | | elrege0 13115 |
. . . 4
⊢ ((𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})))) |
266 | 258, 264,
265 | sylanbrc 582 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ (0[,)+∞)) |
267 | 266 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})(𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ (0[,)+∞)) |
268 | | eqid 2738 |
. . 3
⊢
(sigaGen‘(TopOpen‘𝐾)) = (sigaGen‘(TopOpen‘𝐾)) |
269 | | eqid 2738 |
. . 3
⊢
(0g‘𝐾) = (0g‘𝐾) |
270 | | eqid 2738 |
. . 3
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) |
271 | | eqid 2738 |
. . 3
⊢
(ℝHom‘(Scalar‘𝐾)) = (ℝHom‘(Scalar‘𝐾)) |
272 | 27, 28, 268, 269, 270, 271, 26, 16 | issibf 32200 |
. 2
⊢ (𝜑 → ((𝐹 ∘f + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹 ∘f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ∧ ran (𝐹 ∘f + 𝐺) ∈ Fin ∧ ∀𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})(𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ (0[,)+∞)))) |
273 | 169, 137,
267, 272 | mpbir3and 1340 |
1
⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ dom (𝐾sitg𝑀)) |