| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sibfof.1 | . . . . . . . 8
⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐶) | 
| 2 |  | sibfof.0 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ TopSp) | 
| 3 |  | sitgval.b | . . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑊) | 
| 4 |  | sitgval.j | . . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝑊) | 
| 5 | 3, 4 | tpsuni 22943 | . . . . . . . . . . 11
⊢ (𝑊 ∈ TopSp → 𝐵 = ∪
𝐽) | 
| 6 | 2, 5 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 = ∪ 𝐽) | 
| 7 | 6 | sqxpeqd 5716 | . . . . . . . . 9
⊢ (𝜑 → (𝐵 × 𝐵) = (∪ 𝐽 × ∪ 𝐽)) | 
| 8 | 7 | feq2d 6721 | . . . . . . . 8
⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐶 ↔ + :(∪ 𝐽
× ∪ 𝐽)⟶𝐶)) | 
| 9 | 1, 8 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → + :(∪ 𝐽
× ∪ 𝐽)⟶𝐶) | 
| 10 | 9 | fovcdmda 7605 | . . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽)) → (𝑧 + 𝑥) ∈ 𝐶) | 
| 11 |  | sitgval.s | . . . . . . 7
⊢ 𝑆 = (sigaGen‘𝐽) | 
| 12 |  | sitgval.0 | . . . . . . 7
⊢  0 =
(0g‘𝑊) | 
| 13 |  | sitgval.x | . . . . . . 7
⊢  · = (
·𝑠 ‘𝑊) | 
| 14 |  | sitgval.h | . . . . . . 7
⊢ 𝐻 =
(ℝHom‘(Scalar‘𝑊)) | 
| 15 |  | sitgval.1 | . . . . . . 7
⊢ (𝜑 → 𝑊 ∈ 𝑉) | 
| 16 |  | sitgval.2 | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) | 
| 17 |  | sibfmbl.1 | . . . . . . 7
⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | 
| 18 | 3, 4, 11, 12, 13, 14, 15, 16, 17 | sibff 34339 | . . . . . 6
⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) | 
| 19 |  | sibfof.2 | . . . . . . 7
⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) | 
| 20 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | sibff 34339 | . . . . . 6
⊢ (𝜑 → 𝐺:∪ dom 𝑀⟶∪ 𝐽) | 
| 21 |  | dmexg 7924 | . . . . . . 7
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ V) | 
| 22 |  | uniexg 7761 | . . . . . . 7
⊢ (dom
𝑀 ∈ V → ∪ dom 𝑀 ∈ V) | 
| 23 | 16, 21, 22 | 3syl 18 | . . . . . 6
⊢ (𝜑 → ∪ dom 𝑀 ∈ V) | 
| 24 |  | inidm 4226 | . . . . . 6
⊢ (∪ dom 𝑀 ∩ ∪ dom
𝑀) = ∪ dom 𝑀 | 
| 25 | 10, 18, 20, 23, 23, 24 | off 7716 | . . . . 5
⊢ (𝜑 → (𝐹 ∘f + 𝐺):∪ dom 𝑀⟶𝐶) | 
| 26 |  | sibfof.3 | . . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ TopSp) | 
| 27 |  | sibfof.c | . . . . . . . . 9
⊢ 𝐶 = (Base‘𝐾) | 
| 28 |  | eqid 2736 | . . . . . . . . 9
⊢
(TopOpen‘𝐾) =
(TopOpen‘𝐾) | 
| 29 | 27, 28 | tpsuni 22943 | . . . . . . . 8
⊢ (𝐾 ∈ TopSp → 𝐶 = ∪
(TopOpen‘𝐾)) | 
| 30 | 26, 29 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝐶 = ∪
(TopOpen‘𝐾)) | 
| 31 |  | fvex 6918 | . . . . . . . 8
⊢
(TopOpen‘𝐾)
∈ V | 
| 32 |  | unisg 34145 | . . . . . . . 8
⊢
((TopOpen‘𝐾)
∈ V → ∪
(sigaGen‘(TopOpen‘𝐾)) = ∪
(TopOpen‘𝐾)) | 
| 33 | 31, 32 | ax-mp 5 | . . . . . . 7
⊢ ∪ (sigaGen‘(TopOpen‘𝐾)) = ∪
(TopOpen‘𝐾) | 
| 34 | 30, 33 | eqtr4di 2794 | . . . . . 6
⊢ (𝜑 → 𝐶 = ∪
(sigaGen‘(TopOpen‘𝐾))) | 
| 35 | 34 | feq3d 6722 | . . . . 5
⊢ (𝜑 → ((𝐹 ∘f + 𝐺):∪ dom 𝑀⟶𝐶 ↔ (𝐹 ∘f + 𝐺):∪ dom 𝑀⟶∪ (sigaGen‘(TopOpen‘𝐾)))) | 
| 36 | 25, 35 | mpbid 232 | . . . 4
⊢ (𝜑 → (𝐹 ∘f + 𝐺):∪ dom 𝑀⟶∪ (sigaGen‘(TopOpen‘𝐾))) | 
| 37 | 31 | a1i 11 | . . . . . . 7
⊢ (𝜑 → (TopOpen‘𝐾) ∈ V) | 
| 38 | 37 | sgsiga 34144 | . . . . . 6
⊢ (𝜑 →
(sigaGen‘(TopOpen‘𝐾)) ∈ ∪ ran
sigAlgebra) | 
| 39 | 38 | uniexd 7763 | . . . . 5
⊢ (𝜑 → ∪ (sigaGen‘(TopOpen‘𝐾)) ∈ V) | 
| 40 | 39, 23 | elmapd 8881 | . . . 4
⊢ (𝜑 → ((𝐹 ∘f + 𝐺) ∈ (∪
(sigaGen‘(TopOpen‘𝐾)) ↑m ∪ dom 𝑀) ↔ (𝐹 ∘f + 𝐺):∪ dom 𝑀⟶∪ (sigaGen‘(TopOpen‘𝐾)))) | 
| 41 | 36, 40 | mpbird 257 | . . 3
⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (∪
(sigaGen‘(TopOpen‘𝐾)) ↑m ∪ dom 𝑀)) | 
| 42 |  | inundif 4478 | . . . . . . 7
⊢ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) = 𝑏 | 
| 43 | 42 | imaeq2i 6075 | . . . . . 6
⊢ (◡(𝐹 ∘f + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) = (◡(𝐹 ∘f + 𝐺) “ 𝑏) | 
| 44 |  | ffun 6738 | . . . . . . . 8
⊢ ((𝐹 ∘f + 𝐺):∪
dom 𝑀⟶𝐶 → Fun (𝐹 ∘f + 𝐺)) | 
| 45 |  | unpreima 7082 | . . . . . . . 8
⊢ (Fun
(𝐹 ∘f
+ 𝐺) → (◡(𝐹 ∘f + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) = ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))))) | 
| 46 | 25, 44, 45 | 3syl 18 | . . . . . . 7
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) = ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))))) | 
| 47 | 46 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) = ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))))) | 
| 48 | 43, 47 | eqtr3id 2790 | . . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ 𝑏) = ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))))) | 
| 49 |  | dmmeas 34203 | . . . . . . . 8
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran
sigAlgebra) | 
| 50 | 16, 49 | syl 17 | . . . . . . 7
⊢ (𝜑 → dom 𝑀 ∈ ∪ ran
sigAlgebra) | 
| 51 | 50 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → dom 𝑀 ∈ ∪ ran
sigAlgebra) | 
| 52 |  | imaiun 7266 | . . . . . . . 8
⊢ (◡(𝐹 ∘f + 𝐺) “ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)){𝑧}) = ∪
𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) | 
| 53 |  | iunid 5059 | . . . . . . . . 9
⊢ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) | 
| 54 | 53 | imaeq2i 6075 | . . . . . . . 8
⊢ (◡(𝐹 ∘f + 𝐺) “ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)){𝑧}) = (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) | 
| 55 | 52, 54 | eqtr3i 2766 | . . . . . . 7
⊢ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) = (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) | 
| 56 |  | inss2 4237 | . . . . . . . . . 10
⊢ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ⊆ ran (𝐹 ∘f + 𝐺) | 
| 57 | 6 | feq3d 6722 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹:∪ dom 𝑀⟶𝐵 ↔ 𝐹:∪ dom 𝑀⟶∪ 𝐽)) | 
| 58 | 18, 57 | mpbird 257 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶𝐵) | 
| 59 | 6 | feq3d 6722 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺:∪ dom 𝑀⟶𝐵 ↔ 𝐺:∪ dom 𝑀⟶∪ 𝐽)) | 
| 60 | 20, 59 | mpbird 257 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:∪ dom 𝑀⟶𝐵) | 
| 61 | 1 | ffnd 6736 | . . . . . . . . . . . . . 14
⊢ (𝜑 → + Fn (𝐵 × 𝐵)) | 
| 62 | 58, 60, 23, 61 | ofpreima2 32677 | . . . . . . . . . . . . 13
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ {𝑧}) = ∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | 
| 63 | 62 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → (◡(𝐹 ∘f + 𝐺) “ {𝑧}) = ∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | 
| 64 | 50 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → dom 𝑀 ∈ ∪ ran
sigAlgebra) | 
| 65 | 50 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → dom 𝑀 ∈ ∪ ran
sigAlgebra) | 
| 66 |  | simpll 766 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑) | 
| 67 |  | inss1 4236 | . . . . . . . . . . . . . . . . . 18
⊢ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (◡ + “ {𝑧}) | 
| 68 |  | cnvimass 6099 | . . . . . . . . . . . . . . . . . . . 20
⊢ (◡ + “ {𝑧}) ⊆ dom + | 
| 69 | 68, 1 | fssdm 6754 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡ + “ {𝑧}) ⊆ (𝐵 × 𝐵)) | 
| 70 | 69 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → (◡ + “ {𝑧}) ⊆ (𝐵 × 𝐵)) | 
| 71 | 67, 70 | sstrid 3994 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐵)) | 
| 72 | 71 | sselda 3982 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵)) | 
| 73 | 50 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → dom 𝑀 ∈ ∪ ran
sigAlgebra) | 
| 74 |  | sibfof.4 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽 ∈ Fre) | 
| 75 | 74 | sgsiga 34144 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) | 
| 76 | 11, 75 | eqeltrid 2844 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑆 ∈ ∪ ran
sigAlgebra) | 
| 77 | 76 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝑆 ∈ ∪ ran
sigAlgebra) | 
| 78 | 3, 4, 11, 12, 13, 14, 15, 16, 17 | sibfmbl 34338 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) | 
| 79 | 78 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) | 
| 80 | 4 | tpstop 22944 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑊 ∈ TopSp → 𝐽 ∈ Top) | 
| 81 |  | cldssbrsiga 34189 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 ∈ Top →
(Clsd‘𝐽) ⊆
(sigaGen‘𝐽)) | 
| 82 | 2, 80, 81 | 3syl 18 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) | 
| 83 | 82 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) | 
| 84 | 74 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐽 ∈ Fre) | 
| 85 |  | xp1st 8047 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (𝐵 × 𝐵) → (1st ‘𝑝) ∈ 𝐵) | 
| 86 | 85 | adantl 481 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (1st ‘𝑝) ∈ 𝐵) | 
| 87 | 6 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐵 = ∪ 𝐽) | 
| 88 | 86, 87 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (1st ‘𝑝) ∈ ∪ 𝐽) | 
| 89 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 90 | 89 | t1sncld 23335 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ Fre ∧
(1st ‘𝑝)
∈ ∪ 𝐽) → {(1st ‘𝑝)} ∈ (Clsd‘𝐽)) | 
| 91 | 84, 88, 90 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(1st ‘𝑝)} ∈ (Clsd‘𝐽)) | 
| 92 | 83, 91 | sseldd 3983 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(1st ‘𝑝)} ∈ (sigaGen‘𝐽)) | 
| 93 | 92, 11 | eleqtrrdi 2851 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(1st ‘𝑝)} ∈ 𝑆) | 
| 94 | 73, 77, 79, 93 | mbfmcnvima 34258 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (◡𝐹 “ {(1st ‘𝑝)}) ∈ dom 𝑀) | 
| 95 | 66, 72, 94 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (◡𝐹 “ {(1st ‘𝑝)}) ∈ dom 𝑀) | 
| 96 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | sibfmbl 34338 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) | 
| 97 | 96 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) | 
| 98 |  | xp2nd 8048 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (𝐵 × 𝐵) → (2nd ‘𝑝) ∈ 𝐵) | 
| 99 | 98 | adantl 481 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (2nd ‘𝑝) ∈ 𝐵) | 
| 100 | 99, 87 | eleqtrd 2842 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (2nd ‘𝑝) ∈ ∪ 𝐽) | 
| 101 | 89 | t1sncld 23335 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ Fre ∧
(2nd ‘𝑝)
∈ ∪ 𝐽) → {(2nd ‘𝑝)} ∈ (Clsd‘𝐽)) | 
| 102 | 84, 100, 101 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(2nd ‘𝑝)} ∈ (Clsd‘𝐽)) | 
| 103 | 83, 102 | sseldd 3983 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(2nd ‘𝑝)} ∈ (sigaGen‘𝐽)) | 
| 104 | 103, 11 | eleqtrrdi 2851 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(2nd ‘𝑝)} ∈ 𝑆) | 
| 105 | 73, 77, 97, 104 | mbfmcnvima 34258 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (◡𝐺 “ {(2nd ‘𝑝)}) ∈ dom 𝑀) | 
| 106 | 66, 72, 105 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (◡𝐺 “ {(2nd ‘𝑝)}) ∈ dom 𝑀) | 
| 107 |  | inelsiga 34137 | . . . . . . . . . . . . . . 15
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ (◡𝐹 “ {(1st ‘𝑝)}) ∈ dom 𝑀 ∧ (◡𝐺 “ {(2nd ‘𝑝)}) ∈ dom 𝑀) → ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) | 
| 108 | 65, 95, 106, 107 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) | 
| 109 | 108 | ralrimiva 3145 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) | 
| 110 | 3, 4, 11, 12, 13, 14, 15, 16, 17 | sibfrn 34340 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝐹 ∈ Fin) | 
| 111 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | sibfrn 34340 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝐺 ∈ Fin) | 
| 112 |  | xpfi 9359 | . . . . . . . . . . . . . . . . 17
⊢ ((ran
𝐹 ∈ Fin ∧ ran
𝐺 ∈ Fin) → (ran
𝐹 × ran 𝐺) ∈ Fin) | 
| 113 | 110, 111,
112 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin) | 
| 114 |  | inss2 4237 | . . . . . . . . . . . . . . . 16
⊢ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) | 
| 115 |  | ssdomg 9041 | . . . . . . . . . . . . . . . 16
⊢ ((ran
𝐹 × ran 𝐺) ∈ Fin → (((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺))) | 
| 116 | 113, 114,
115 | mpisyl 21 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺)) | 
| 117 |  | isfinite 9693 | . . . . . . . . . . . . . . . . 17
⊢ ((ran
𝐹 × ran 𝐺) ∈ Fin ↔ (ran 𝐹 × ran 𝐺) ≺ ω) | 
| 118 | 117 | biimpi 216 | . . . . . . . . . . . . . . . 16
⊢ ((ran
𝐹 × ran 𝐺) ∈ Fin → (ran 𝐹 × ran 𝐺) ≺ ω) | 
| 119 |  | sdomdom 9021 | . . . . . . . . . . . . . . . 16
⊢ ((ran
𝐹 × ran 𝐺) ≺ ω → (ran
𝐹 × ran 𝐺) ≼
ω) | 
| 120 | 113, 118,
119 | 3syl 18 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ≼ ω) | 
| 121 |  | domtr 9048 | . . . . . . . . . . . . . . 15
⊢ ((((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺) ∧ (ran 𝐹 × ran 𝐺) ≼ ω) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) | 
| 122 | 116, 120,
121 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) | 
| 123 | 122 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) | 
| 124 |  | nfcv 2904 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑝((◡
+ “
{𝑧}) ∩ (ran 𝐹 × ran 𝐺)) | 
| 125 | 124 | sigaclcuni 34120 | . . . . . . . . . . . . 13
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀 ∧ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) → ∪ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) | 
| 126 | 64, 109, 123, 125 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → ∪ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) | 
| 127 | 63, 126 | eqeltrd 2840 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) → (◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) | 
| 128 | 127 | ralrimiva 3145 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ ran (𝐹 ∘f + 𝐺)(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) | 
| 129 |  | ssralv 4051 | . . . . . . . . . 10
⊢ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ⊆ ran (𝐹 ∘f + 𝐺) → (∀𝑧 ∈ ran (𝐹 ∘f + 𝐺)(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀)) | 
| 130 | 56, 128, 129 | mpsyl 68 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) | 
| 131 | 130 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) | 
| 132 | 1 | ffund 6739 | . . . . . . . . . . . . 13
⊢ (𝜑 → Fun + ) | 
| 133 |  | imafi 9354 | . . . . . . . . . . . . 13
⊢ ((Fun
+ ∧
(ran 𝐹 × ran 𝐺) ∈ Fin) → ( + “ (ran
𝐹 × ran 𝐺)) ∈ Fin) | 
| 134 | 132, 113,
133 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin) | 
| 135 | 18, 20, 9, 23 | ofrn2 32651 | . . . . . . . . . . . 12
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) | 
| 136 |  | ssfi 9214 | . . . . . . . . . . . 12
⊢ ((( + “ (ran
𝐹 × ran 𝐺)) ∈ Fin ∧ ran (𝐹 ∘f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) → ran (𝐹 ∘f + 𝐺) ∈ Fin) | 
| 137 | 134, 135,
136 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ∈ Fin) | 
| 138 |  | ssdomg 9041 | . . . . . . . . . . 11
⊢ (ran
(𝐹 ∘f
+ 𝐺) ∈ Fin → ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ⊆ ran (𝐹 ∘f + 𝐺) → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ran (𝐹 ∘f + 𝐺))) | 
| 139 | 137, 56, 138 | mpisyl 21 | . . . . . . . . . 10
⊢ (𝜑 → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ran (𝐹 ∘f + 𝐺)) | 
| 140 |  | isfinite 9693 | . . . . . . . . . . . 12
⊢ (ran
(𝐹 ∘f
+ 𝐺) ∈ Fin ↔ ran (𝐹 ∘f + 𝐺) ≺
ω) | 
| 141 | 137, 140 | sylib 218 | . . . . . . . . . . 11
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ≺ ω) | 
| 142 |  | sdomdom 9021 | . . . . . . . . . . 11
⊢ (ran
(𝐹 ∘f
+ 𝐺) ≺ ω → ran
(𝐹 ∘f
+ 𝐺) ≼
ω) | 
| 143 | 141, 142 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ≼ ω) | 
| 144 |  | domtr 9048 | . . . . . . . . . 10
⊢ (((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ran (𝐹 ∘f + 𝐺) ∧ ran (𝐹 ∘f + 𝐺) ≼ ω) → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ω) | 
| 145 | 139, 143,
144 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ω) | 
| 146 | 145 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ω) | 
| 147 |  | nfcv 2904 | . . . . . . . . 9
⊢
Ⅎ𝑧(𝑏 ∩ ran (𝐹 ∘f + 𝐺)) | 
| 148 | 147 | sigaclcuni 34120 | . . . . . . . 8
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) ≼ ω) → ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) | 
| 149 | 51, 131, 146, 148 | syl3anc 1372 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(◡(𝐹 ∘f + 𝐺) “ {𝑧}) ∈ dom 𝑀) | 
| 150 | 55, 149 | eqeltrrid 2845 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀) | 
| 151 |  | difpreima 7084 | . . . . . . . . . 10
⊢ (Fun
(𝐹 ∘f
+ 𝐺) → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) = ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺)))) | 
| 152 | 25, 44, 151 | 3syl 18 | . . . . . . . . 9
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) = ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺)))) | 
| 153 |  | cnvimarndm 6100 | . . . . . . . . . . 11
⊢ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺)) = dom (𝐹 ∘f + 𝐺) | 
| 154 | 153 | difeq2i 4122 | . . . . . . . . . 10
⊢ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺))) = ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ dom (𝐹 ∘f + 𝐺)) | 
| 155 |  | cnvimass 6099 | . . . . . . . . . . 11
⊢ (◡(𝐹 ∘f + 𝐺) “ 𝑏) ⊆ dom (𝐹 ∘f + 𝐺) | 
| 156 |  | ssdif0 4365 | . . . . . . . . . . 11
⊢ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ⊆ dom (𝐹 ∘f + 𝐺) ↔ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ dom (𝐹 ∘f + 𝐺)) = ∅) | 
| 157 | 155, 156 | mpbi 230 | . . . . . . . . . 10
⊢ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ dom (𝐹 ∘f + 𝐺)) = ∅ | 
| 158 | 154, 157 | eqtri 2764 | . . . . . . . . 9
⊢ ((◡(𝐹 ∘f + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘f + 𝐺) “ ran (𝐹 ∘f + 𝐺))) = ∅ | 
| 159 | 152, 158 | eqtrdi 2792 | . . . . . . . 8
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) = ∅) | 
| 160 |  | 0elsiga 34116 | . . . . . . . . 9
⊢ (dom
𝑀 ∈ ∪ ran sigAlgebra → ∅ ∈ dom 𝑀) | 
| 161 | 16, 49, 160 | 3syl 18 | . . . . . . . 8
⊢ (𝜑 → ∅ ∈ dom 𝑀) | 
| 162 | 159, 161 | eqeltrd 2840 | . . . . . . 7
⊢ (𝜑 → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀) | 
| 163 | 162 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀) | 
| 164 |  | unelsiga 34136 | . . . . . 6
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀 ∧ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀) → ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) ∈ dom 𝑀) | 
| 165 | 51, 150, 163, 164 | syl3anc 1372 | . . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((◡(𝐹 ∘f + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∪ (◡(𝐹 ∘f + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘f + 𝐺)))) ∈ dom 𝑀) | 
| 166 | 48, 165 | eqeltrd 2840 | . . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘f + 𝐺) “ 𝑏) ∈ dom 𝑀) | 
| 167 | 166 | ralrimiva 3145 | . . 3
⊢ (𝜑 → ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))(◡(𝐹 ∘f + 𝐺) “ 𝑏) ∈ dom 𝑀) | 
| 168 | 50, 38 | ismbfm 34253 | . . 3
⊢ (𝜑 → ((𝐹 ∘f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ↔ ((𝐹 ∘f + 𝐺) ∈ (∪
(sigaGen‘(TopOpen‘𝐾)) ↑m ∪ dom 𝑀) ∧ ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))(◡(𝐹 ∘f + 𝐺) “ 𝑏) ∈ dom 𝑀))) | 
| 169 | 41, 167, 168 | mpbir2and 713 | . 2
⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾)))) | 
| 170 | 62 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (◡(𝐹 ∘f + 𝐺) “ {𝑧}) = ∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | 
| 171 | 170 | fveq2d 6909 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) = (𝑀‘∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) | 
| 172 |  | measbasedom 34204 | . . . . . . . . 9
⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) | 
| 173 | 16, 172 | sylib 218 | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (measures‘dom 𝑀)) | 
| 174 | 173 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → 𝑀 ∈ (measures‘dom 𝑀)) | 
| 175 |  | eldifi 4130 | . . . . . . . 8
⊢ (𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)}) → 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) | 
| 176 | 175, 109 | sylan2 593 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) | 
| 177 | 122 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) | 
| 178 |  | sneq 4635 | . . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → {𝑥} = {(1st ‘𝑝)}) | 
| 179 | 178 | imaeq2d 6077 | . . . . . . . . . 10
⊢ (𝑥 = (1st ‘𝑝) → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {(1st ‘𝑝)})) | 
| 180 |  | sneq 4635 | . . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘𝑝) → {𝑦} = {(2nd ‘𝑝)}) | 
| 181 | 180 | imaeq2d 6077 | . . . . . . . . . 10
⊢ (𝑦 = (2nd ‘𝑝) → (◡𝐺 “ {𝑦}) = (◡𝐺 “ {(2nd ‘𝑝)})) | 
| 182 | 18 | ffund 6739 | . . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐹) | 
| 183 |  | sndisj 5134 | . . . . . . . . . . 11
⊢
Disj 𝑥 ∈
ran 𝐹{𝑥} | 
| 184 |  | disjpreima 32598 | . . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ Disj 𝑥 ∈ ran 𝐹{𝑥}) → Disj 𝑥 ∈ ran 𝐹(◡𝐹 “ {𝑥})) | 
| 185 | 182, 183,
184 | sylancl 586 | . . . . . . . . . 10
⊢ (𝜑 → Disj 𝑥 ∈ ran 𝐹(◡𝐹 “ {𝑥})) | 
| 186 | 20 | ffund 6739 | . . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐺) | 
| 187 |  | sndisj 5134 | . . . . . . . . . . 11
⊢
Disj 𝑦 ∈
ran 𝐺{𝑦} | 
| 188 |  | disjpreima 32598 | . . . . . . . . . . 11
⊢ ((Fun
𝐺 ∧ Disj 𝑦 ∈ ran 𝐺{𝑦}) → Disj 𝑦 ∈ ran 𝐺(◡𝐺 “ {𝑦})) | 
| 189 | 186, 187,
188 | sylancl 586 | . . . . . . . . . 10
⊢ (𝜑 → Disj 𝑦 ∈ ran 𝐺(◡𝐺 “ {𝑦})) | 
| 190 | 179, 181,
185, 189 | disjxpin 32602 | . . . . . . . . 9
⊢ (𝜑 → Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | 
| 191 |  | disjss1 5115 | . . . . . . . . 9
⊢ (((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) → Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) | 
| 192 | 114, 190,
191 | mpsyl 68 | . . . . . . . 8
⊢ (𝜑 → Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | 
| 193 | 192 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | 
| 194 |  | measvuni 34216 | . . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀 ∧ (((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω ∧ Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) → (𝑀‘∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) = Σ*𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) | 
| 195 | 174, 176,
177, 193, 194 | syl112anc 1375 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) = Σ*𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) | 
| 196 |  | ssfi 9214 | . . . . . . . . 9
⊢ (((ran
𝐹 × ran 𝐺) ∈ Fin ∧ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin) | 
| 197 | 113, 114,
196 | sylancl 586 | . . . . . . . 8
⊢ (𝜑 → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin) | 
| 198 | 197 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin) | 
| 199 |  | simpll 766 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑) | 
| 200 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) | 
| 201 | 114, 200 | sselid 3980 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (ran 𝐹 × ran 𝐺)) | 
| 202 |  | xp1st 8047 | . . . . . . . . 9
⊢ (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st ‘𝑝) ∈ ran 𝐹) | 
| 203 | 201, 202 | syl 17 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st ‘𝑝) ∈ ran 𝐹) | 
| 204 |  | xp2nd 8048 | . . . . . . . . 9
⊢ (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd ‘𝑝) ∈ ran 𝐺) | 
| 205 | 201, 204 | syl 17 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd ‘𝑝) ∈ ran 𝐺) | 
| 206 |  | oveq12 7441 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 0 ∧ 𝑦 = 0 ) → (𝑥 + 𝑦) = ( 0 + 0 )) | 
| 207 |  | sibfof.5 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ( 0 + 0 ) =
(0g‘𝐾)) | 
| 208 | 206, 207 | sylan9eqr 2798 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 = 0 ∧ 𝑦 = 0 )) → (𝑥 + 𝑦) = (0g‘𝐾)) | 
| 209 | 208 | ex 412 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 = 0 ∧ 𝑦 = 0 ) → (𝑥 + 𝑦) = (0g‘𝐾))) | 
| 210 | 209 | necon3ad 2952 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑥 + 𝑦) ≠ (0g‘𝐾) → ¬ (𝑥 = 0 ∧ 𝑦 = 0 ))) | 
| 211 |  | neorian 3036 | . . . . . . . . . . . . 13
⊢ ((𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ¬ (𝑥 = 0 ∧ 𝑦 = 0 )) | 
| 212 | 210, 211 | imbitrrdi 252 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) | 
| 213 | 212 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) | 
| 214 | 213 | ralrimivva 3201 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) | 
| 215 | 199, 214 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) | 
| 216 | 67 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (◡ + “ {𝑧})) | 
| 217 | 216 | sselda 3982 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (◡ + “ {𝑧})) | 
| 218 |  | fniniseg 7079 | . . . . . . . . . . . . 13
⊢ ( + Fn (𝐵 × 𝐵) → (𝑝 ∈ (◡ + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧))) | 
| 219 | 199, 61, 218 | 3syl 18 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (◡ + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧))) | 
| 220 | 217, 219 | mpbid 232 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧)) | 
| 221 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧) → ( + ‘𝑝) = 𝑧) | 
| 222 |  | 1st2nd2 8054 | . . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ (𝐵 × 𝐵) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) | 
| 223 | 222 | fveq2d 6909 | . . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐵 × 𝐵) → ( + ‘𝑝) = ( +
‘〈(1st ‘𝑝), (2nd ‘𝑝)〉)) | 
| 224 |  | df-ov 7435 | . . . . . . . . . . . . . 14
⊢
((1st ‘𝑝) + (2nd
‘𝑝)) = ( +
‘〈(1st ‘𝑝), (2nd ‘𝑝)〉) | 
| 225 | 223, 224 | eqtr4di 2794 | . . . . . . . . . . . . 13
⊢ (𝑝 ∈ (𝐵 × 𝐵) → ( + ‘𝑝) = ((1st ‘𝑝) + (2nd
‘𝑝))) | 
| 226 | 225 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧) → ( + ‘𝑝) = ((1st ‘𝑝) + (2nd
‘𝑝))) | 
| 227 | 221, 226 | eqtr3d 2778 | . . . . . . . . . . 11
⊢ ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧) → 𝑧 = ((1st ‘𝑝) + (2nd
‘𝑝))) | 
| 228 | 220, 227 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 = ((1st ‘𝑝) + (2nd
‘𝑝))) | 
| 229 |  | simplr 768 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) | 
| 230 | 229 | eldifbd 3963 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ¬ 𝑧 ∈ {(0g‘𝐾)}) | 
| 231 |  | velsn 4641 | . . . . . . . . . . . 12
⊢ (𝑧 ∈
{(0g‘𝐾)}
↔ 𝑧 =
(0g‘𝐾)) | 
| 232 | 231 | necon3bbii 2987 | . . . . . . . . . . 11
⊢ (¬
𝑧 ∈
{(0g‘𝐾)}
↔ 𝑧 ≠
(0g‘𝐾)) | 
| 233 | 230, 232 | sylib 218 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ≠ (0g‘𝐾)) | 
| 234 | 228, 233 | eqnetrrd 3008 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st ‘𝑝) + (2nd
‘𝑝)) ≠
(0g‘𝐾)) | 
| 235 | 175, 72 | sylanl2 681 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵)) | 
| 236 | 235, 85 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st ‘𝑝) ∈ 𝐵) | 
| 237 | 235, 98 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd ‘𝑝) ∈ 𝐵) | 
| 238 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑝) → (𝑥 + 𝑦) = ((1st ‘𝑝) + 𝑦)) | 
| 239 | 238 | neeq1d 2999 | . . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → ((𝑥 + 𝑦) ≠ (0g‘𝐾) ↔ ((1st ‘𝑝) + 𝑦) ≠ (0g‘𝐾))) | 
| 240 |  | neeq1 3002 | . . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑝) → (𝑥 ≠ 0 ↔ (1st
‘𝑝) ≠ 0
)) | 
| 241 | 240 | orbi1d 916 | . . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → ((𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ((1st
‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 ))) | 
| 242 | 239, 241 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → (((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 )) ↔
(((1st ‘𝑝)
+ 𝑦) ≠
(0g‘𝐾)
→ ((1st ‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 )))) | 
| 243 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘𝑝) → ((1st
‘𝑝) + 𝑦) = ((1st
‘𝑝) +
(2nd ‘𝑝))) | 
| 244 | 243 | neeq1d 2999 | . . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘𝑝) → (((1st
‘𝑝) + 𝑦) ≠
(0g‘𝐾)
↔ ((1st ‘𝑝) + (2nd
‘𝑝)) ≠
(0g‘𝐾))) | 
| 245 |  | neeq1 3002 | . . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘𝑝) → (𝑦 ≠ 0 ↔ (2nd
‘𝑝) ≠ 0
)) | 
| 246 | 245 | orbi2d 915 | . . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘𝑝) → (((1st
‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ((1st
‘𝑝) ≠ 0 ∨
(2nd ‘𝑝)
≠ 0
))) | 
| 247 | 244, 246 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘𝑝) → ((((1st
‘𝑝) + 𝑦) ≠
(0g‘𝐾)
→ ((1st ‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 )) ↔
(((1st ‘𝑝)
+
(2nd ‘𝑝))
≠ (0g‘𝐾) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)))) | 
| 248 | 242, 247 | rspc2v 3632 | . . . . . . . . . 10
⊢
(((1st ‘𝑝) ∈ 𝐵 ∧ (2nd ‘𝑝) ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 )) →
(((1st ‘𝑝)
+
(2nd ‘𝑝))
≠ (0g‘𝐾) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)))) | 
| 249 | 236, 237,
248 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 )) →
(((1st ‘𝑝)
+
(2nd ‘𝑝))
≠ (0g‘𝐾) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)))) | 
| 250 | 215, 234,
249 | mp2d 49 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)) | 
| 251 | 3, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 74 | sibfinima 34342 | . . . . . . . 8
⊢ (((𝜑 ∧ (1st
‘𝑝) ∈ ran 𝐹 ∧ (2nd
‘𝑝) ∈ ran 𝐺) ∧ ((1st
‘𝑝) ≠ 0 ∨
(2nd ‘𝑝)
≠ 0 ))
→ (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
(0[,)+∞)) | 
| 252 | 199, 203,
205, 250, 251 | syl31anc 1374 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
(0[,)+∞)) | 
| 253 | 198, 252 | esumpfinval 34077 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) →
Σ*𝑝 ∈
((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) = Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) | 
| 254 | 171, 195,
253 | 3eqtrd 2780 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) = Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) | 
| 255 |  | rge0ssre 13497 | . . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ | 
| 256 | 255, 252 | sselid 3980 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
ℝ) | 
| 257 | 198, 256 | fsumrecl 15771 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
ℝ) | 
| 258 | 254, 257 | eqeltrd 2840 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ ℝ) | 
| 259 | 174 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑀 ∈ (measures‘dom 𝑀)) | 
| 260 | 175, 108 | sylanl2 681 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) | 
| 261 |  | measge0 34209 | . . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) → 0 ≤ (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) | 
| 262 | 259, 260,
261 | syl2anc 584 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 0 ≤ (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) | 
| 263 | 198, 256,
262 | fsumge0 15832 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → 0 ≤ Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) | 
| 264 | 263, 254 | breqtrrd 5170 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → 0 ≤ (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧}))) | 
| 265 |  | elrege0 13495 | . . . 4
⊢ ((𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})))) | 
| 266 | 258, 264,
265 | sylanbrc 583 | . . 3
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})) → (𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ (0[,)+∞)) | 
| 267 | 266 | ralrimiva 3145 | . 2
⊢ (𝜑 → ∀𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})(𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ (0[,)+∞)) | 
| 268 |  | eqid 2736 | . . 3
⊢
(sigaGen‘(TopOpen‘𝐾)) = (sigaGen‘(TopOpen‘𝐾)) | 
| 269 |  | eqid 2736 | . . 3
⊢
(0g‘𝐾) = (0g‘𝐾) | 
| 270 |  | eqid 2736 | . . 3
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) | 
| 271 |  | eqid 2736 | . . 3
⊢
(ℝHom‘(Scalar‘𝐾)) = (ℝHom‘(Scalar‘𝐾)) | 
| 272 | 27, 28, 268, 269, 270, 271, 26, 16 | issibf 34336 | . 2
⊢ (𝜑 → ((𝐹 ∘f + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹 ∘f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ∧ ran (𝐹 ∘f + 𝐺) ∈ Fin ∧ ∀𝑧 ∈ (ran (𝐹 ∘f + 𝐺) ∖ {(0g‘𝐾)})(𝑀‘(◡(𝐹 ∘f + 𝐺) “ {𝑧})) ∈ (0[,)+∞)))) | 
| 273 | 169, 137,
267, 272 | mpbir3and 1342 | 1
⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ dom (𝐾sitg𝑀)) |