Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfof Structured version   Visualization version   GIF version

Theorem sibfof 34377
Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfof.c 𝐶 = (Base‘𝐾)
sibfof.0 (𝜑𝑊 ∈ TopSp)
sibfof.1 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
sibfof.2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfof.3 (𝜑𝐾 ∈ TopSp)
sibfof.4 (𝜑𝐽 ∈ Fre)
sibfof.5 (𝜑 → ( 0 + 0 ) = (0g𝐾))
Assertion
Ref Expression
sibfof (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))

Proof of Theorem sibfof
Dummy variables 𝑥 𝑦 𝑧 𝑝 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sibfof.1 . . . . . . . 8 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
2 sibfof.0 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
3 sitgval.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
4 sitgval.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑊)
53, 4tpsuni 22879 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
62, 5syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
76sqxpeqd 5691 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ( 𝐽 × 𝐽))
87feq2d 6697 . . . . . . . 8 (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐶+ :( 𝐽 × 𝐽)⟶𝐶))
91, 8mpbid 232 . . . . . . 7 (𝜑+ :( 𝐽 × 𝐽)⟶𝐶)
109fovcdmda 7583 . . . . . 6 ((𝜑 ∧ (𝑧 𝐽𝑥 𝐽)) → (𝑧 + 𝑥) ∈ 𝐶)
11 sitgval.s . . . . . . 7 𝑆 = (sigaGen‘𝐽)
12 sitgval.0 . . . . . . 7 0 = (0g𝑊)
13 sitgval.x . . . . . . 7 · = ( ·𝑠𝑊)
14 sitgval.h . . . . . . 7 𝐻 = (ℝHom‘(Scalar‘𝑊))
15 sitgval.1 . . . . . . 7 (𝜑𝑊𝑉)
16 sitgval.2 . . . . . . 7 (𝜑𝑀 ran measures)
17 sibfmbl.1 . . . . . . 7 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
183, 4, 11, 12, 13, 14, 15, 16, 17sibff 34373 . . . . . 6 (𝜑𝐹: dom 𝑀 𝐽)
19 sibfof.2 . . . . . . 7 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
203, 4, 11, 12, 13, 14, 15, 16, 19sibff 34373 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
21 dmexg 7902 . . . . . . 7 (𝑀 ran measures → dom 𝑀 ∈ V)
22 uniexg 7739 . . . . . . 7 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
2316, 21, 223syl 18 . . . . . 6 (𝜑 dom 𝑀 ∈ V)
24 inidm 4207 . . . . . 6 ( dom 𝑀 dom 𝑀) = dom 𝑀
2510, 18, 20, 23, 23, 24off 7694 . . . . 5 (𝜑 → (𝐹f + 𝐺): dom 𝑀𝐶)
26 sibfof.3 . . . . . . . 8 (𝜑𝐾 ∈ TopSp)
27 sibfof.c . . . . . . . . 9 𝐶 = (Base‘𝐾)
28 eqid 2736 . . . . . . . . 9 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2927, 28tpsuni 22879 . . . . . . . 8 (𝐾 ∈ TopSp → 𝐶 = (TopOpen‘𝐾))
3026, 29syl 17 . . . . . . 7 (𝜑𝐶 = (TopOpen‘𝐾))
31 fvex 6894 . . . . . . . 8 (TopOpen‘𝐾) ∈ V
32 unisg 34179 . . . . . . . 8 ((TopOpen‘𝐾) ∈ V → (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾))
3331, 32ax-mp 5 . . . . . . 7 (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾)
3430, 33eqtr4di 2789 . . . . . 6 (𝜑𝐶 = (sigaGen‘(TopOpen‘𝐾)))
3534feq3d 6698 . . . . 5 (𝜑 → ((𝐹f + 𝐺): dom 𝑀𝐶 ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
3625, 35mpbid 232 . . . 4 (𝜑 → (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾)))
3731a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘𝐾) ∈ V)
3837sgsiga 34178 . . . . . 6 (𝜑 → (sigaGen‘(TopOpen‘𝐾)) ∈ ran sigAlgebra)
3938uniexd 7741 . . . . 5 (𝜑 (sigaGen‘(TopOpen‘𝐾)) ∈ V)
4039, 23elmapd 8859 . . . 4 (𝜑 → ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
4136, 40mpbird 257 . . 3 (𝜑 → (𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀))
42 inundif 4459 . . . . . . 7 ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺))) = 𝑏
4342imaeq2i 6050 . . . . . 6 ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = ((𝐹f + 𝐺) “ 𝑏)
44 ffun 6714 . . . . . . . 8 ((𝐹f + 𝐺): dom 𝑀𝐶 → Fun (𝐹f + 𝐺))
45 unpreima 7058 . . . . . . . 8 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4625, 44, 453syl 18 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4746adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4843, 47eqtr3id 2785 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
49 dmmeas 34237 . . . . . . . 8 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
5016, 49syl 17 . . . . . . 7 (𝜑 → dom 𝑀 ran sigAlgebra)
5150adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → dom 𝑀 ran sigAlgebra)
52 imaiun 7242 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧})
53 iunid 5041 . . . . . . . . 9 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹f + 𝐺))
5453imaeq2i 6050 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
5552, 54eqtr3i 2761 . . . . . . 7 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
56 inss2 4218 . . . . . . . . . 10 (𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺)
576feq3d 6698 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹: dom 𝑀𝐵𝐹: dom 𝑀 𝐽))
5818, 57mpbird 257 . . . . . . . . . . . . . 14 (𝜑𝐹: dom 𝑀𝐵)
596feq3d 6698 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6020, 59mpbird 257 . . . . . . . . . . . . . 14 (𝜑𝐺: dom 𝑀𝐵)
611ffnd 6712 . . . . . . . . . . . . . 14 (𝜑+ Fn (𝐵 × 𝐵))
6258, 60, 23, 61ofpreima2 32649 . . . . . . . . . . . . 13 (𝜑 → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6362adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6450adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → dom 𝑀 ran sigAlgebra)
6550ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → dom 𝑀 ran sigAlgebra)
66 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
67 inss1 4217 . . . . . . . . . . . . . . . . . 18 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧})
68 cnvimass 6074 . . . . . . . . . . . . . . . . . . . 20 ( + “ {𝑧}) ⊆ dom +
6968, 1fssdm 6730 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7069adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7167, 70sstrid 3975 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐵))
7271sselda 3963 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
7350adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → dom 𝑀 ran sigAlgebra)
74 sibfof.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ Fre)
7574sgsiga 34178 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7611, 75eqeltrid 2839 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ran sigAlgebra)
7776adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝑆 ran sigAlgebra)
783, 4, 11, 12, 13, 14, 15, 16, 17sibfmbl 34372 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
7978adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
804tpstop 22880 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
81 cldssbrsiga 34223 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
822, 80, 813syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8382adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8474adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐽 ∈ Fre)
85 xp1st 8025 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (1st𝑝) ∈ 𝐵)
8685adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐵)
876adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐵 = 𝐽)
8886, 87eleqtrd 2837 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐽)
89 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 𝐽 = 𝐽
9089t1sncld 23269 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (1st𝑝) ∈ 𝐽) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9184, 88, 90syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9283, 91sseldd 3964 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (sigaGen‘𝐽))
9392, 11eleqtrrdi 2846 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ 𝑆)
9473, 77, 79, 93mbfmcnvima 34292 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
9566, 72, 94syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
963, 4, 11, 12, 13, 14, 15, 16, 19sibfmbl 34372 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
9796adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
98 xp2nd 8026 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (2nd𝑝) ∈ 𝐵)
9998adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐵)
10099, 87eleqtrd 2837 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐽)
10189t1sncld 23269 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (2nd𝑝) ∈ 𝐽) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10284, 100, 101syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10383, 102sseldd 3964 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (sigaGen‘𝐽))
104103, 11eleqtrrdi 2846 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ 𝑆)
10573, 77, 97, 104mbfmcnvima 34292 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
10666, 72, 105syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
107 inelsiga 34171 . . . . . . . . . . . . . . 15 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀 ∧ (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
10865, 95, 106, 107syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
109108ralrimiva 3133 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
1103, 4, 11, 12, 13, 14, 15, 16, 17sibfrn 34374 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ∈ Fin)
1113, 4, 11, 12, 13, 14, 15, 16, 19sibfrn 34374 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐺 ∈ Fin)
112 xpfi 9335 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
113110, 111, 112syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
114 inss2 4218 . . . . . . . . . . . . . . . 16 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)
115 ssdomg 9019 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺)))
116113, 114, 115mpisyl 21 . . . . . . . . . . . . . . 15 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺))
117 isfinite 9671 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 × ran 𝐺) ∈ Fin ↔ (ran 𝐹 × ran 𝐺) ≺ ω)
118117biimpi 216 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → (ran 𝐹 × ran 𝐺) ≺ ω)
119 sdomdom 8999 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ≺ ω → (ran 𝐹 × ran 𝐺) ≼ ω)
120113, 118, 1193syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ran 𝐹 × ran 𝐺) ≼ ω)
121 domtr 9026 . . . . . . . . . . . . . . 15 (((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺) ∧ (ran 𝐹 × ran 𝐺) ≼ ω) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
122116, 120, 121syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
123122adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
124 nfcv 2899 . . . . . . . . . . . . . 14 𝑝(( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))
125124sigaclcuni 34154 . . . . . . . . . . . . 13 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12664, 109, 123, 125syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12763, 126eqeltrd 2835 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
128127ralrimiva 3133 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
129 ssralv 4032 . . . . . . . . . 10 ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀))
13056, 128, 129mpsyl 68 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
131130adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
1321ffund 6715 . . . . . . . . . . . . 13 (𝜑 → Fun + )
133 imafi 9330 . . . . . . . . . . . . 13 ((Fun + ∧ (ran 𝐹 × ran 𝐺) ∈ Fin) → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
134132, 113, 133syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
13518, 20, 9, 23ofrn2 32623 . . . . . . . . . . . 12 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
136 ssfi 9192 . . . . . . . . . . . 12 ((( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin ∧ ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) → ran (𝐹f + 𝐺) ∈ Fin)
137134, 135, 136syl2anc 584 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ∈ Fin)
138 ssdomg 9019 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ∈ Fin → ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺)))
139137, 56, 138mpisyl 21 . . . . . . . . . 10 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺))
140 isfinite 9671 . . . . . . . . . . . 12 (ran (𝐹f + 𝐺) ∈ Fin ↔ ran (𝐹f + 𝐺) ≺ ω)
141137, 140sylib 218 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ≺ ω)
142 sdomdom 8999 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ≺ ω → ran (𝐹f + 𝐺) ≼ ω)
143141, 142syl 17 . . . . . . . . . 10 (𝜑 → ran (𝐹f + 𝐺) ≼ ω)
144 domtr 9026 . . . . . . . . . 10 (((𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺) ∧ ran (𝐹f + 𝐺) ≼ ω) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
145139, 143, 144syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
146145adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
147 nfcv 2899 . . . . . . . . 9 𝑧(𝑏 ∩ ran (𝐹f + 𝐺))
148147sigaclcuni 34154 . . . . . . . 8 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
14951, 131, 146, 148syl3anc 1373 . . . . . . 7 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
15055, 149eqeltrrid 2840 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
151 difpreima 7060 . . . . . . . . . 10 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
15225, 44, 1513syl 18 . . . . . . . . 9 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
153 cnvimarndm 6075 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺)) = dom (𝐹f + 𝐺)
154153difeq2i 4103 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺))
155 cnvimass 6074 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺)
156 ssdif0 4346 . . . . . . . . . . 11 (((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺) ↔ (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅)
157155, 156mpbi 230 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅
158154, 157eqtri 2759 . . . . . . . . 9 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = ∅
159152, 158eqtrdi 2787 . . . . . . . 8 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = ∅)
160 0elsiga 34150 . . . . . . . . 9 (dom 𝑀 ran sigAlgebra → ∅ ∈ dom 𝑀)
16116, 49, 1603syl 18 . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑀)
162159, 161eqeltrd 2835 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
163162adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
164 unelsiga 34170 . . . . . 6 ((dom 𝑀 ran sigAlgebra ∧ ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀 ∧ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16551, 150, 163, 164syl3anc 1373 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16648, 165eqeltrd 2835 . . . 4 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
167166ralrimiva 3133 . . 3 (𝜑 → ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
16850, 38ismbfm 34287 . . 3 (𝜑 → ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ↔ ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ∧ ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)))
16941, 167, 168mpbir2and 713 . 2 (𝜑 → (𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))))
17062adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
171170fveq2d 6885 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
172 measbasedom 34238 . . . . . . . . 9 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
17316, 172sylib 218 . . . . . . . 8 (𝜑𝑀 ∈ (measures‘dom 𝑀))
174173adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 𝑀 ∈ (measures‘dom 𝑀))
175 eldifi 4111 . . . . . . . 8 (𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}) → 𝑧 ∈ ran (𝐹f + 𝐺))
176175, 109sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
177122adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
178 sneq 4616 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → {𝑥} = {(1st𝑝)})
179178imaeq2d 6052 . . . . . . . . . 10 (𝑥 = (1st𝑝) → (𝐹 “ {𝑥}) = (𝐹 “ {(1st𝑝)}))
180 sneq 4616 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → {𝑦} = {(2nd𝑝)})
181180imaeq2d 6052 . . . . . . . . . 10 (𝑦 = (2nd𝑝) → (𝐺 “ {𝑦}) = (𝐺 “ {(2nd𝑝)}))
18218ffund 6715 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
183 sndisj 5116 . . . . . . . . . . 11 Disj 𝑥 ∈ ran 𝐹{𝑥}
184 disjpreima 32570 . . . . . . . . . . 11 ((Fun 𝐹Disj 𝑥 ∈ ran 𝐹{𝑥}) → Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
185182, 183, 184sylancl 586 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
18620ffund 6715 . . . . . . . . . . 11 (𝜑 → Fun 𝐺)
187 sndisj 5116 . . . . . . . . . . 11 Disj 𝑦 ∈ ran 𝐺{𝑦}
188 disjpreima 32570 . . . . . . . . . . 11 ((Fun 𝐺Disj 𝑦 ∈ ran 𝐺{𝑦}) → Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
189186, 187, 188sylancl 586 . . . . . . . . . 10 (𝜑Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
190179, 181, 185, 189disjxpin 32574 . . . . . . . . 9 (𝜑Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
191 disjss1 5097 . . . . . . . . 9 ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
192114, 190, 191mpsyl 68 . . . . . . . 8 (𝜑Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
193192adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
194 measvuni 34250 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω ∧ Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
195174, 176, 177, 193, 194syl112anc 1376 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
196 ssfi 9192 . . . . . . . . 9 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
197113, 114, 196sylancl 586 . . . . . . . 8 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
198197adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
199 simpll 766 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
200 simpr 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)))
201114, 200sselid 3961 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
202 xp1st 8025 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
203201, 202syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ ran 𝐹)
204 xp2nd 8026 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
205201, 204syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ ran 𝐺)
206 oveq12 7419 . . . . . . . . . . . . . . . 16 ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = ( 0 + 0 ))
207 sibfof.5 . . . . . . . . . . . . . . . 16 (𝜑 → ( 0 + 0 ) = (0g𝐾))
208206, 207sylan9eqr 2793 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 = 0𝑦 = 0 )) → (𝑥 + 𝑦) = (0g𝐾))
209208ex 412 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = (0g𝐾)))
210209necon3ad 2946 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → ¬ (𝑥 = 0𝑦 = 0 )))
211 neorian 3028 . . . . . . . . . . . . 13 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
212210, 211imbitrrdi 252 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
213212adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
214213ralrimivva 3188 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
215199, 214syl 17 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
21667a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧}))
217216sselda 3963 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ( + “ {𝑧}))
218 fniniseg 7055 . . . . . . . . . . . . 13 ( + Fn (𝐵 × 𝐵) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
219199, 61, 2183syl 18 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
220217, 219mpbid 232 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧))
221 simpr 484 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = 𝑧)
222 1st2nd2 8032 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝐵 × 𝐵) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
223222fveq2d 6885 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩))
224 df-ov 7413 . . . . . . . . . . . . . 14 ((1st𝑝) + (2nd𝑝)) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩)
225223, 224eqtr4di 2789 . . . . . . . . . . . . 13 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
226225adantr 480 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
227221, 226eqtr3d 2773 . . . . . . . . . . 11 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
228220, 227syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
229 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}))
230229eldifbd 3944 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ¬ 𝑧 ∈ {(0g𝐾)})
231 velsn 4622 . . . . . . . . . . . 12 (𝑧 ∈ {(0g𝐾)} ↔ 𝑧 = (0g𝐾))
232231necon3bbii 2980 . . . . . . . . . . 11 𝑧 ∈ {(0g𝐾)} ↔ 𝑧 ≠ (0g𝐾))
233230, 232sylib 218 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ≠ (0g𝐾))
234228, 233eqnetrrd 3001 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾))
235175, 72sylanl2 681 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
236235, 85syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ 𝐵)
237235, 98syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ 𝐵)
238 oveq1 7417 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥 + 𝑦) = ((1st𝑝) + 𝑦))
239238neeq1d 2992 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥 + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + 𝑦) ≠ (0g𝐾)))
240 neeq1 2995 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥0 ↔ (1st𝑝) ≠ 0 ))
241240orbi1d 916 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥0𝑦0 ) ↔ ((1st𝑝) ≠ 0𝑦0 )))
242239, 241imbi12d 344 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → (((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) ↔ (((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 ))))
243 oveq2 7418 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → ((1st𝑝) + 𝑦) = ((1st𝑝) + (2nd𝑝)))
244243neeq1d 2992 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾)))
245 neeq1 2995 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → (𝑦0 ↔ (2nd𝑝) ≠ 0 ))
246245orbi2d 915 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) ≠ 0𝑦0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )))
247244, 246imbi12d 344 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → ((((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 )) ↔ (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
248242, 247rspc2v 3617 . . . . . . . . . 10 (((1st𝑝) ∈ 𝐵 ∧ (2nd𝑝) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
249236, 237, 248syl2anc 584 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
250215, 234, 249mp2d 49 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
2513, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 74sibfinima 34376 . . . . . . . 8 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
252199, 203, 205, 250, 251syl31anc 1375 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
253198, 252esumpfinval 34111 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
254171, 195, 2533eqtrd 2775 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
255 rge0ssre 13478 . . . . . . 7 (0[,)+∞) ⊆ ℝ
256255, 252sselid 3961 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
257198, 256fsumrecl 15755 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
258254, 257eqeltrd 2835 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ)
259174adantr 480 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑀 ∈ (measures‘dom 𝑀))
260175, 108sylanl2 681 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
261 measge0 34243 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
262259, 260, 261syl2anc 584 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
263198, 256, 262fsumge0 15816 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
264263, 254breqtrrd 5152 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧})))
265 elrege0 13476 . . . 4 ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧}))))
266258, 264, 265sylanbrc 583 . . 3 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
267266ralrimiva 3133 . 2 (𝜑 → ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
268 eqid 2736 . . 3 (sigaGen‘(TopOpen‘𝐾)) = (sigaGen‘(TopOpen‘𝐾))
269 eqid 2736 . . 3 (0g𝐾) = (0g𝐾)
270 eqid 2736 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
271 eqid 2736 . . 3 (ℝHom‘(Scalar‘𝐾)) = (ℝHom‘(Scalar‘𝐾))
27227, 28, 268, 269, 270, 271, 26, 16issibf 34370 . 2 (𝜑 → ((𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ∧ ran (𝐹f + 𝐺) ∈ Fin ∧ ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))))
273169, 137, 267, 272mpbir3and 1343 1 (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  wral 3052  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606  cop 4612   cuni 4888   ciun 4972  Disj wdisj 5091   class class class wbr 5124   × cxp 5657  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  ωcom 7866  1st c1st 7991  2nd c2nd 7992  m cmap 8845  cdom 8962  csdm 8963  Fincfn 8964  cr 11133  0cc0 11134  +∞cpnf 11271  cle 11275  [,)cico 13369  Σcsu 15707  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  TopOpenctopn 17440  0gc0g 17458  Topctop 22836  TopSpctps 22875  Clsdccld 22959  Frect1 23250  ℝHomcrrh 34029  Σ*cesum 34063  sigAlgebracsiga 34144  sigaGencsigagen 34174  measurescmeas 34231  MblFnMcmbfm 34285  sitgcsitg 34366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-ordt 17520  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-ps 18581  df-tsr 18582  df-plusf 18622  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-abv 20774  df-lmod 20824  df-scaf 20825  df-sra 21136  df-rgmod 21137  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-t1 23257  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tmd 24015  df-tgp 24016  df-tsms 24070  df-trg 24103  df-xms 24264  df-ms 24265  df-tms 24266  df-nm 24526  df-ngp 24527  df-nrg 24529  df-nlm 24530  df-ii 24826  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-esum 34064  df-siga 34145  df-sigagen 34175  df-meas 34232  df-mbfm 34286  df-sitg 34367
This theorem is referenced by:  sitmcl  34388
  Copyright terms: Public domain W3C validator