Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfof Structured version   Visualization version   GIF version

Theorem sibfof 33370
Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐡 = (Baseβ€˜π‘Š)
sitgval.j 𝐽 = (TopOpenβ€˜π‘Š)
sitgval.s 𝑆 = (sigaGenβ€˜π½)
sitgval.0 0 = (0gβ€˜π‘Š)
sitgval.x Β· = ( ·𝑠 β€˜π‘Š)
sitgval.h 𝐻 = (ℝHomβ€˜(Scalarβ€˜π‘Š))
sitgval.1 (πœ‘ β†’ π‘Š ∈ 𝑉)
sitgval.2 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
sibfmbl.1 (πœ‘ β†’ 𝐹 ∈ dom (π‘Šsitg𝑀))
sibfof.c 𝐢 = (Baseβ€˜πΎ)
sibfof.0 (πœ‘ β†’ π‘Š ∈ TopSp)
sibfof.1 (πœ‘ β†’ + :(𝐡 Γ— 𝐡)⟢𝐢)
sibfof.2 (πœ‘ β†’ 𝐺 ∈ dom (π‘Šsitg𝑀))
sibfof.3 (πœ‘ β†’ 𝐾 ∈ TopSp)
sibfof.4 (πœ‘ β†’ 𝐽 ∈ Fre)
sibfof.5 (πœ‘ β†’ ( 0 + 0 ) = (0gβ€˜πΎ))
Assertion
Ref Expression
sibfof (πœ‘ β†’ (𝐹 ∘f + 𝐺) ∈ dom (𝐾sitg𝑀))

Proof of Theorem sibfof
Dummy variables π‘₯ 𝑦 𝑧 𝑝 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sibfof.1 . . . . . . . 8 (πœ‘ β†’ + :(𝐡 Γ— 𝐡)⟢𝐢)
2 sibfof.0 . . . . . . . . . . 11 (πœ‘ β†’ π‘Š ∈ TopSp)
3 sitgval.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜π‘Š)
4 sitgval.j . . . . . . . . . . . 12 𝐽 = (TopOpenβ€˜π‘Š)
53, 4tpsuni 22438 . . . . . . . . . . 11 (π‘Š ∈ TopSp β†’ 𝐡 = βˆͺ 𝐽)
62, 5syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝐡 = βˆͺ 𝐽)
76sqxpeqd 5709 . . . . . . . . 9 (πœ‘ β†’ (𝐡 Γ— 𝐡) = (βˆͺ 𝐽 Γ— βˆͺ 𝐽))
87feq2d 6704 . . . . . . . 8 (πœ‘ β†’ ( + :(𝐡 Γ— 𝐡)⟢𝐢 ↔ + :(βˆͺ 𝐽 Γ— βˆͺ 𝐽)⟢𝐢))
91, 8mpbid 231 . . . . . . 7 (πœ‘ β†’ + :(βˆͺ 𝐽 Γ— βˆͺ 𝐽)⟢𝐢)
109fovcdmda 7578 . . . . . 6 ((πœ‘ ∧ (𝑧 ∈ βˆͺ 𝐽 ∧ π‘₯ ∈ βˆͺ 𝐽)) β†’ (𝑧 + π‘₯) ∈ 𝐢)
11 sitgval.s . . . . . . 7 𝑆 = (sigaGenβ€˜π½)
12 sitgval.0 . . . . . . 7 0 = (0gβ€˜π‘Š)
13 sitgval.x . . . . . . 7 Β· = ( ·𝑠 β€˜π‘Š)
14 sitgval.h . . . . . . 7 𝐻 = (ℝHomβ€˜(Scalarβ€˜π‘Š))
15 sitgval.1 . . . . . . 7 (πœ‘ β†’ π‘Š ∈ 𝑉)
16 sitgval.2 . . . . . . 7 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
17 sibfmbl.1 . . . . . . 7 (πœ‘ β†’ 𝐹 ∈ dom (π‘Šsitg𝑀))
183, 4, 11, 12, 13, 14, 15, 16, 17sibff 33366 . . . . . 6 (πœ‘ β†’ 𝐹:βˆͺ dom π‘€βŸΆβˆͺ 𝐽)
19 sibfof.2 . . . . . . 7 (πœ‘ β†’ 𝐺 ∈ dom (π‘Šsitg𝑀))
203, 4, 11, 12, 13, 14, 15, 16, 19sibff 33366 . . . . . 6 (πœ‘ β†’ 𝐺:βˆͺ dom π‘€βŸΆβˆͺ 𝐽)
21 dmexg 7894 . . . . . . 7 (𝑀 ∈ βˆͺ ran measures β†’ dom 𝑀 ∈ V)
22 uniexg 7730 . . . . . . 7 (dom 𝑀 ∈ V β†’ βˆͺ dom 𝑀 ∈ V)
2316, 21, 223syl 18 . . . . . 6 (πœ‘ β†’ βˆͺ dom 𝑀 ∈ V)
24 inidm 4219 . . . . . 6 (βˆͺ dom 𝑀 ∩ βˆͺ dom 𝑀) = βˆͺ dom 𝑀
2510, 18, 20, 23, 23, 24off 7688 . . . . 5 (πœ‘ β†’ (𝐹 ∘f + 𝐺):βˆͺ dom π‘€βŸΆπΆ)
26 sibfof.3 . . . . . . . 8 (πœ‘ β†’ 𝐾 ∈ TopSp)
27 sibfof.c . . . . . . . . 9 𝐢 = (Baseβ€˜πΎ)
28 eqid 2733 . . . . . . . . 9 (TopOpenβ€˜πΎ) = (TopOpenβ€˜πΎ)
2927, 28tpsuni 22438 . . . . . . . 8 (𝐾 ∈ TopSp β†’ 𝐢 = βˆͺ (TopOpenβ€˜πΎ))
3026, 29syl 17 . . . . . . 7 (πœ‘ β†’ 𝐢 = βˆͺ (TopOpenβ€˜πΎ))
31 fvex 6905 . . . . . . . 8 (TopOpenβ€˜πΎ) ∈ V
32 unisg 33172 . . . . . . . 8 ((TopOpenβ€˜πΎ) ∈ V β†’ βˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ)) = βˆͺ (TopOpenβ€˜πΎ))
3331, 32ax-mp 5 . . . . . . 7 βˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ)) = βˆͺ (TopOpenβ€˜πΎ)
3430, 33eqtr4di 2791 . . . . . 6 (πœ‘ β†’ 𝐢 = βˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ)))
3534feq3d 6705 . . . . 5 (πœ‘ β†’ ((𝐹 ∘f + 𝐺):βˆͺ dom π‘€βŸΆπΆ ↔ (𝐹 ∘f + 𝐺):βˆͺ dom π‘€βŸΆβˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ))))
3625, 35mpbid 231 . . . 4 (πœ‘ β†’ (𝐹 ∘f + 𝐺):βˆͺ dom π‘€βŸΆβˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ)))
3731a1i 11 . . . . . . 7 (πœ‘ β†’ (TopOpenβ€˜πΎ) ∈ V)
3837sgsiga 33171 . . . . . 6 (πœ‘ β†’ (sigaGenβ€˜(TopOpenβ€˜πΎ)) ∈ βˆͺ ran sigAlgebra)
3938uniexd 7732 . . . . 5 (πœ‘ β†’ βˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ)) ∈ V)
4039, 23elmapd 8834 . . . 4 (πœ‘ β†’ ((𝐹 ∘f + 𝐺) ∈ (βˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ)) ↑m βˆͺ dom 𝑀) ↔ (𝐹 ∘f + 𝐺):βˆͺ dom π‘€βŸΆβˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ))))
4136, 40mpbird 257 . . 3 (πœ‘ β†’ (𝐹 ∘f + 𝐺) ∈ (βˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ)) ↑m βˆͺ dom 𝑀))
42 inundif 4479 . . . . . . 7 ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) βˆͺ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺))) = 𝑏
4342imaeq2i 6058 . . . . . 6 (β—‘(𝐹 ∘f + 𝐺) β€œ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) βˆͺ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))) = (β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏)
44 ffun 6721 . . . . . . . 8 ((𝐹 ∘f + 𝐺):βˆͺ dom π‘€βŸΆπΆ β†’ Fun (𝐹 ∘f + 𝐺))
45 unpreima 7065 . . . . . . . 8 (Fun (𝐹 ∘f + 𝐺) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) βˆͺ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))) = ((β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) βˆͺ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))))
4625, 44, 453syl 18 . . . . . . 7 (πœ‘ β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) βˆͺ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))) = ((β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) βˆͺ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))))
4746adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) βˆͺ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))) = ((β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) βˆͺ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))))
4843, 47eqtr3id 2787 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) = ((β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) βˆͺ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))))
49 dmmeas 33230 . . . . . . . 8 (𝑀 ∈ βˆͺ ran measures β†’ dom 𝑀 ∈ βˆͺ ran sigAlgebra)
5016, 49syl 17 . . . . . . 7 (πœ‘ β†’ dom 𝑀 ∈ βˆͺ ran sigAlgebra)
5150adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ dom 𝑀 ∈ βˆͺ ran sigAlgebra)
52 imaiun 7244 . . . . . . . 8 (β—‘(𝐹 ∘f + 𝐺) β€œ βˆͺ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)){𝑧}) = βˆͺ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})
53 iunid 5064 . . . . . . . . 9 βˆͺ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹 ∘f + 𝐺))
5453imaeq2i 6058 . . . . . . . 8 (β—‘(𝐹 ∘f + 𝐺) β€œ βˆͺ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)){𝑧}) = (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)))
5552, 54eqtr3i 2763 . . . . . . 7 βˆͺ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) = (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)))
56 inss2 4230 . . . . . . . . . 10 (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) βŠ† ran (𝐹 ∘f + 𝐺)
576feq3d 6705 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝐹:βˆͺ dom π‘€βŸΆπ΅ ↔ 𝐹:βˆͺ dom π‘€βŸΆβˆͺ 𝐽))
5818, 57mpbird 257 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐹:βˆͺ dom π‘€βŸΆπ΅)
596feq3d 6705 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝐺:βˆͺ dom π‘€βŸΆπ΅ ↔ 𝐺:βˆͺ dom π‘€βŸΆβˆͺ 𝐽))
6020, 59mpbird 257 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐺:βˆͺ dom π‘€βŸΆπ΅)
611ffnd 6719 . . . . . . . . . . . . . 14 (πœ‘ β†’ + Fn (𝐡 Γ— 𝐡))
6258, 60, 23, 61ofpreima2 31922 . . . . . . . . . . . . 13 (πœ‘ β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) = βˆͺ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})))
6362adantr 482 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) = βˆͺ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})))
6450adantr 482 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) β†’ dom 𝑀 ∈ βˆͺ ran sigAlgebra)
6550ad2antrr 725 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ dom 𝑀 ∈ βˆͺ ran sigAlgebra)
66 simpll 766 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ πœ‘)
67 inss1 4229 . . . . . . . . . . . . . . . . . 18 ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) βŠ† (β—‘ + β€œ {𝑧})
68 cnvimass 6081 . . . . . . . . . . . . . . . . . . . 20 (β—‘ + β€œ {𝑧}) βŠ† dom +
6968, 1fssdm 6738 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (β—‘ + β€œ {𝑧}) βŠ† (𝐡 Γ— 𝐡))
7069adantr 482 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) β†’ (β—‘ + β€œ {𝑧}) βŠ† (𝐡 Γ— 𝐡))
7167, 70sstrid 3994 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) βŠ† (𝐡 Γ— 𝐡))
7271sselda 3983 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 𝑝 ∈ (𝐡 Γ— 𝐡))
7350adantr 482 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ dom 𝑀 ∈ βˆͺ ran sigAlgebra)
74 sibfof.4 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ 𝐽 ∈ Fre)
7574sgsiga 33171 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (sigaGenβ€˜π½) ∈ βˆͺ ran sigAlgebra)
7611, 75eqeltrid 2838 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝑆 ∈ βˆͺ ran sigAlgebra)
7776adantr 482 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ 𝑆 ∈ βˆͺ ran sigAlgebra)
783, 4, 11, 12, 13, 14, 15, 16, 17sibfmbl 33365 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐹 ∈ (dom 𝑀MblFnM𝑆))
7978adantr 482 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ 𝐹 ∈ (dom 𝑀MblFnM𝑆))
804tpstop 22439 . . . . . . . . . . . . . . . . . . . . 21 (π‘Š ∈ TopSp β†’ 𝐽 ∈ Top)
81 cldssbrsiga 33216 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ Top β†’ (Clsdβ€˜π½) βŠ† (sigaGenβ€˜π½))
822, 80, 813syl 18 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ (Clsdβ€˜π½) βŠ† (sigaGenβ€˜π½))
8382adantr 482 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ (Clsdβ€˜π½) βŠ† (sigaGenβ€˜π½))
8474adantr 482 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ 𝐽 ∈ Fre)
85 xp1st 8007 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐡 Γ— 𝐡) β†’ (1st β€˜π‘) ∈ 𝐡)
8685adantl 483 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ (1st β€˜π‘) ∈ 𝐡)
876adantr 482 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ 𝐡 = βˆͺ 𝐽)
8886, 87eleqtrd 2836 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ (1st β€˜π‘) ∈ βˆͺ 𝐽)
89 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 βˆͺ 𝐽 = βˆͺ 𝐽
9089t1sncld 22830 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (1st β€˜π‘) ∈ βˆͺ 𝐽) β†’ {(1st β€˜π‘)} ∈ (Clsdβ€˜π½))
9184, 88, 90syl2anc 585 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ {(1st β€˜π‘)} ∈ (Clsdβ€˜π½))
9283, 91sseldd 3984 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ {(1st β€˜π‘)} ∈ (sigaGenβ€˜π½))
9392, 11eleqtrrdi 2845 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ {(1st β€˜π‘)} ∈ 𝑆)
9473, 77, 79, 93mbfmcnvima 33285 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ (◑𝐹 β€œ {(1st β€˜π‘)}) ∈ dom 𝑀)
9566, 72, 94syl2anc 585 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (◑𝐹 β€œ {(1st β€˜π‘)}) ∈ dom 𝑀)
963, 4, 11, 12, 13, 14, 15, 16, 19sibfmbl 33365 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐺 ∈ (dom 𝑀MblFnM𝑆))
9796adantr 482 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ 𝐺 ∈ (dom 𝑀MblFnM𝑆))
98 xp2nd 8008 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐡 Γ— 𝐡) β†’ (2nd β€˜π‘) ∈ 𝐡)
9998adantl 483 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ (2nd β€˜π‘) ∈ 𝐡)
10099, 87eleqtrd 2836 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ (2nd β€˜π‘) ∈ βˆͺ 𝐽)
10189t1sncld 22830 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (2nd β€˜π‘) ∈ βˆͺ 𝐽) β†’ {(2nd β€˜π‘)} ∈ (Clsdβ€˜π½))
10284, 100, 101syl2anc 585 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ {(2nd β€˜π‘)} ∈ (Clsdβ€˜π½))
10383, 102sseldd 3984 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ {(2nd β€˜π‘)} ∈ (sigaGenβ€˜π½))
104103, 11eleqtrrdi 2845 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ {(2nd β€˜π‘)} ∈ 𝑆)
10573, 77, 97, 104mbfmcnvima 33285 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑝 ∈ (𝐡 Γ— 𝐡)) β†’ (◑𝐺 β€œ {(2nd β€˜π‘)}) ∈ dom 𝑀)
10666, 72, 105syl2anc 585 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (◑𝐺 β€œ {(2nd β€˜π‘)}) ∈ dom 𝑀)
107 inelsiga 33164 . . . . . . . . . . . . . . 15 ((dom 𝑀 ∈ βˆͺ ran sigAlgebra ∧ (◑𝐹 β€œ {(1st β€˜π‘)}) ∈ dom 𝑀 ∧ (◑𝐺 β€œ {(2nd β€˜π‘)}) ∈ dom 𝑀) β†’ ((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀)
10865, 95, 106, 107syl3anc 1372 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ ((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀)
109108ralrimiva 3147 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) β†’ βˆ€π‘ ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀)
1103, 4, 11, 12, 13, 14, 15, 16, 17sibfrn 33367 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ran 𝐹 ∈ Fin)
1113, 4, 11, 12, 13, 14, 15, 16, 19sibfrn 33367 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ran 𝐺 ∈ Fin)
112 xpfi 9317 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) β†’ (ran 𝐹 Γ— ran 𝐺) ∈ Fin)
113110, 111, 112syl2anc 585 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (ran 𝐹 Γ— ran 𝐺) ∈ Fin)
114 inss2 4230 . . . . . . . . . . . . . . . 16 ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) βŠ† (ran 𝐹 Γ— ran 𝐺)
115 ssdomg 8996 . . . . . . . . . . . . . . . 16 ((ran 𝐹 Γ— ran 𝐺) ∈ Fin β†’ (((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) βŠ† (ran 𝐹 Γ— ran 𝐺) β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) β‰Ό (ran 𝐹 Γ— ran 𝐺)))
116113, 114, 115mpisyl 21 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) β‰Ό (ran 𝐹 Γ— ran 𝐺))
117 isfinite 9647 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 Γ— ran 𝐺) ∈ Fin ↔ (ran 𝐹 Γ— ran 𝐺) β‰Ί Ο‰)
118117biimpi 215 . . . . . . . . . . . . . . . 16 ((ran 𝐹 Γ— ran 𝐺) ∈ Fin β†’ (ran 𝐹 Γ— ran 𝐺) β‰Ί Ο‰)
119 sdomdom 8976 . . . . . . . . . . . . . . . 16 ((ran 𝐹 Γ— ran 𝐺) β‰Ί Ο‰ β†’ (ran 𝐹 Γ— ran 𝐺) β‰Ό Ο‰)
120113, 118, 1193syl 18 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (ran 𝐹 Γ— ran 𝐺) β‰Ό Ο‰)
121 domtr 9003 . . . . . . . . . . . . . . 15 ((((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) β‰Ό (ran 𝐹 Γ— ran 𝐺) ∧ (ran 𝐹 Γ— ran 𝐺) β‰Ό Ο‰) β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) β‰Ό Ο‰)
122116, 120, 121syl2anc 585 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) β‰Ό Ο‰)
123122adantr 482 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) β‰Ό Ο‰)
124 nfcv 2904 . . . . . . . . . . . . . 14 Ⅎ𝑝((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))
125124sigaclcuni 33147 . . . . . . . . . . . . 13 ((dom 𝑀 ∈ βˆͺ ran sigAlgebra ∧ βˆ€π‘ ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀 ∧ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) β‰Ό Ο‰) β†’ βˆͺ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀)
12664, 109, 123, 125syl3anc 1372 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) β†’ βˆͺ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀)
12763, 126eqeltrd 2834 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑧 ∈ ran (𝐹 ∘f + 𝐺)) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) ∈ dom 𝑀)
128127ralrimiva 3147 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘§ ∈ ran (𝐹 ∘f + 𝐺)(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) ∈ dom 𝑀)
129 ssralv 4051 . . . . . . . . . 10 ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) βŠ† ran (𝐹 ∘f + 𝐺) β†’ (βˆ€π‘§ ∈ ran (𝐹 ∘f + 𝐺)(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) ∈ dom 𝑀 β†’ βˆ€π‘§ ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) ∈ dom 𝑀))
13056, 128, 129mpsyl 68 . . . . . . . . 9 (πœ‘ β†’ βˆ€π‘§ ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) ∈ dom 𝑀)
131130adantr 482 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ βˆ€π‘§ ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) ∈ dom 𝑀)
1321ffund 6722 . . . . . . . . . . . . 13 (πœ‘ β†’ Fun + )
133 imafi 9175 . . . . . . . . . . . . 13 ((Fun + ∧ (ran 𝐹 Γ— ran 𝐺) ∈ Fin) β†’ ( + β€œ (ran 𝐹 Γ— ran 𝐺)) ∈ Fin)
134132, 113, 133syl2anc 585 . . . . . . . . . . . 12 (πœ‘ β†’ ( + β€œ (ran 𝐹 Γ— ran 𝐺)) ∈ Fin)
13518, 20, 9, 23ofrn2 31896 . . . . . . . . . . . 12 (πœ‘ β†’ ran (𝐹 ∘f + 𝐺) βŠ† ( + β€œ (ran 𝐹 Γ— ran 𝐺)))
136 ssfi 9173 . . . . . . . . . . . 12 ((( + β€œ (ran 𝐹 Γ— ran 𝐺)) ∈ Fin ∧ ran (𝐹 ∘f + 𝐺) βŠ† ( + β€œ (ran 𝐹 Γ— ran 𝐺))) β†’ ran (𝐹 ∘f + 𝐺) ∈ Fin)
137134, 135, 136syl2anc 585 . . . . . . . . . . 11 (πœ‘ β†’ ran (𝐹 ∘f + 𝐺) ∈ Fin)
138 ssdomg 8996 . . . . . . . . . . 11 (ran (𝐹 ∘f + 𝐺) ∈ Fin β†’ ((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) βŠ† ran (𝐹 ∘f + 𝐺) β†’ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) β‰Ό ran (𝐹 ∘f + 𝐺)))
139137, 56, 138mpisyl 21 . . . . . . . . . 10 (πœ‘ β†’ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) β‰Ό ran (𝐹 ∘f + 𝐺))
140 isfinite 9647 . . . . . . . . . . . 12 (ran (𝐹 ∘f + 𝐺) ∈ Fin ↔ ran (𝐹 ∘f + 𝐺) β‰Ί Ο‰)
141137, 140sylib 217 . . . . . . . . . . 11 (πœ‘ β†’ ran (𝐹 ∘f + 𝐺) β‰Ί Ο‰)
142 sdomdom 8976 . . . . . . . . . . 11 (ran (𝐹 ∘f + 𝐺) β‰Ί Ο‰ β†’ ran (𝐹 ∘f + 𝐺) β‰Ό Ο‰)
143141, 142syl 17 . . . . . . . . . 10 (πœ‘ β†’ ran (𝐹 ∘f + 𝐺) β‰Ό Ο‰)
144 domtr 9003 . . . . . . . . . 10 (((𝑏 ∩ ran (𝐹 ∘f + 𝐺)) β‰Ό ran (𝐹 ∘f + 𝐺) ∧ ran (𝐹 ∘f + 𝐺) β‰Ό Ο‰) β†’ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) β‰Ό Ο‰)
145139, 143, 144syl2anc 585 . . . . . . . . 9 (πœ‘ β†’ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) β‰Ό Ο‰)
146145adantr 482 . . . . . . . 8 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) β‰Ό Ο‰)
147 nfcv 2904 . . . . . . . . 9 Ⅎ𝑧(𝑏 ∩ ran (𝐹 ∘f + 𝐺))
148147sigaclcuni 33147 . . . . . . . 8 ((dom 𝑀 ∈ βˆͺ ran sigAlgebra ∧ βˆ€π‘§ ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹 ∘f + 𝐺)) β‰Ό Ο‰) β†’ βˆͺ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) ∈ dom 𝑀)
14951, 131, 146, 148syl3anc 1372 . . . . . . 7 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ βˆͺ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) ∈ dom 𝑀)
15055, 149eqeltrrid 2839 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀)
151 difpreima 7067 . . . . . . . . . 10 (Fun (𝐹 ∘f + 𝐺) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺))) = ((β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) βˆ– (β—‘(𝐹 ∘f + 𝐺) β€œ ran (𝐹 ∘f + 𝐺))))
15225, 44, 1513syl 18 . . . . . . . . 9 (πœ‘ β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺))) = ((β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) βˆ– (β—‘(𝐹 ∘f + 𝐺) β€œ ran (𝐹 ∘f + 𝐺))))
153 cnvimarndm 6082 . . . . . . . . . . 11 (β—‘(𝐹 ∘f + 𝐺) β€œ ran (𝐹 ∘f + 𝐺)) = dom (𝐹 ∘f + 𝐺)
154153difeq2i 4120 . . . . . . . . . 10 ((β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) βˆ– (β—‘(𝐹 ∘f + 𝐺) β€œ ran (𝐹 ∘f + 𝐺))) = ((β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) βˆ– dom (𝐹 ∘f + 𝐺))
155 cnvimass 6081 . . . . . . . . . . 11 (β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) βŠ† dom (𝐹 ∘f + 𝐺)
156 ssdif0 4364 . . . . . . . . . . 11 ((β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) βŠ† dom (𝐹 ∘f + 𝐺) ↔ ((β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) βˆ– dom (𝐹 ∘f + 𝐺)) = βˆ…)
157155, 156mpbi 229 . . . . . . . . . 10 ((β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) βˆ– dom (𝐹 ∘f + 𝐺)) = βˆ…
158154, 157eqtri 2761 . . . . . . . . 9 ((β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) βˆ– (β—‘(𝐹 ∘f + 𝐺) β€œ ran (𝐹 ∘f + 𝐺))) = βˆ…
159152, 158eqtrdi 2789 . . . . . . . 8 (πœ‘ β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺))) = βˆ…)
160 0elsiga 33143 . . . . . . . . 9 (dom 𝑀 ∈ βˆͺ ran sigAlgebra β†’ βˆ… ∈ dom 𝑀)
16116, 49, 1603syl 18 . . . . . . . 8 (πœ‘ β†’ βˆ… ∈ dom 𝑀)
162159, 161eqeltrd 2834 . . . . . . 7 (πœ‘ β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀)
163162adantr 482 . . . . . 6 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀)
164 unelsiga 33163 . . . . . 6 ((dom 𝑀 ∈ βˆͺ ran sigAlgebra ∧ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀 ∧ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺))) ∈ dom 𝑀) β†’ ((β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) βˆͺ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))) ∈ dom 𝑀)
16551, 150, 163, 164syl3anc 1372 . . . . 5 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ ((β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 ∩ ran (𝐹 ∘f + 𝐺))) βˆͺ (β—‘(𝐹 ∘f + 𝐺) β€œ (𝑏 βˆ– ran (𝐹 ∘f + 𝐺)))) ∈ dom 𝑀)
16648, 165eqeltrd 2834 . . . 4 ((πœ‘ ∧ 𝑏 ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) ∈ dom 𝑀)
167166ralrimiva 3147 . . 3 (πœ‘ β†’ βˆ€π‘ ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))(β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) ∈ dom 𝑀)
16850, 38ismbfm 33280 . . 3 (πœ‘ β†’ ((𝐹 ∘f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGenβ€˜(TopOpenβ€˜πΎ))) ↔ ((𝐹 ∘f + 𝐺) ∈ (βˆͺ (sigaGenβ€˜(TopOpenβ€˜πΎ)) ↑m βˆͺ dom 𝑀) ∧ βˆ€π‘ ∈ (sigaGenβ€˜(TopOpenβ€˜πΎ))(β—‘(𝐹 ∘f + 𝐺) β€œ 𝑏) ∈ dom 𝑀)))
16941, 167, 168mpbir2and 712 . 2 (πœ‘ β†’ (𝐹 ∘f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGenβ€˜(TopOpenβ€˜πΎ))))
17062adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ (β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}) = βˆͺ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})))
171170fveq2d 6896 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ (π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})) = (π‘€β€˜βˆͺ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))))
172 measbasedom 33231 . . . . . . . . 9 (𝑀 ∈ βˆͺ ran measures ↔ 𝑀 ∈ (measuresβ€˜dom 𝑀))
17316, 172sylib 217 . . . . . . . 8 (πœ‘ β†’ 𝑀 ∈ (measuresβ€˜dom 𝑀))
174173adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ 𝑀 ∈ (measuresβ€˜dom 𝑀))
175 eldifi 4127 . . . . . . . 8 (𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)}) β†’ 𝑧 ∈ ran (𝐹 ∘f + 𝐺))
176175, 109sylan2 594 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ βˆ€π‘ ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀)
177122adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) β‰Ό Ο‰)
178 sneq 4639 . . . . . . . . . . 11 (π‘₯ = (1st β€˜π‘) β†’ {π‘₯} = {(1st β€˜π‘)})
179178imaeq2d 6060 . . . . . . . . . 10 (π‘₯ = (1st β€˜π‘) β†’ (◑𝐹 β€œ {π‘₯}) = (◑𝐹 β€œ {(1st β€˜π‘)}))
180 sneq 4639 . . . . . . . . . . 11 (𝑦 = (2nd β€˜π‘) β†’ {𝑦} = {(2nd β€˜π‘)})
181180imaeq2d 6060 . . . . . . . . . 10 (𝑦 = (2nd β€˜π‘) β†’ (◑𝐺 β€œ {𝑦}) = (◑𝐺 β€œ {(2nd β€˜π‘)}))
18218ffund 6722 . . . . . . . . . . 11 (πœ‘ β†’ Fun 𝐹)
183 sndisj 5140 . . . . . . . . . . 11 Disj π‘₯ ∈ ran 𝐹{π‘₯}
184 disjpreima 31846 . . . . . . . . . . 11 ((Fun 𝐹 ∧ Disj π‘₯ ∈ ran 𝐹{π‘₯}) β†’ Disj π‘₯ ∈ ran 𝐹(◑𝐹 β€œ {π‘₯}))
185182, 183, 184sylancl 587 . . . . . . . . . 10 (πœ‘ β†’ Disj π‘₯ ∈ ran 𝐹(◑𝐹 β€œ {π‘₯}))
18620ffund 6722 . . . . . . . . . . 11 (πœ‘ β†’ Fun 𝐺)
187 sndisj 5140 . . . . . . . . . . 11 Disj 𝑦 ∈ ran 𝐺{𝑦}
188 disjpreima 31846 . . . . . . . . . . 11 ((Fun 𝐺 ∧ Disj 𝑦 ∈ ran 𝐺{𝑦}) β†’ Disj 𝑦 ∈ ran 𝐺(◑𝐺 β€œ {𝑦}))
189186, 187, 188sylancl 587 . . . . . . . . . 10 (πœ‘ β†’ Disj 𝑦 ∈ ran 𝐺(◑𝐺 β€œ {𝑦}))
190179, 181, 185, 189disjxpin 31850 . . . . . . . . 9 (πœ‘ β†’ Disj 𝑝 ∈ (ran 𝐹 Γ— ran 𝐺)((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})))
191 disjss1 5120 . . . . . . . . 9 (((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) βŠ† (ran 𝐹 Γ— ran 𝐺) β†’ (Disj 𝑝 ∈ (ran 𝐹 Γ— ran 𝐺)((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) β†’ Disj 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))))
192114, 190, 191mpsyl 68 . . . . . . . 8 (πœ‘ β†’ Disj 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})))
193192adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ Disj 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})))
194 measvuni 33243 . . . . . . 7 ((𝑀 ∈ (measuresβ€˜dom 𝑀) ∧ βˆ€π‘ ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀 ∧ (((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) β‰Ό Ο‰ ∧ Disj 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})))) β†’ (π‘€β€˜βˆͺ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))) = Ξ£*𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))(π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))))
195174, 176, 177, 193, 194syl112anc 1375 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ (π‘€β€˜βˆͺ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))) = Ξ£*𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))(π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))))
196 ssfi 9173 . . . . . . . . 9 (((ran 𝐹 Γ— ran 𝐺) ∈ Fin ∧ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) βŠ† (ran 𝐹 Γ— ran 𝐺)) β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) ∈ Fin)
197113, 114, 196sylancl 587 . . . . . . . 8 (πœ‘ β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) ∈ Fin)
198197adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) ∈ Fin)
199 simpll 766 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ πœ‘)
200 simpr 486 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)))
201114, 200sselid 3981 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 𝑝 ∈ (ran 𝐹 Γ— ran 𝐺))
202 xp1st 8007 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 Γ— ran 𝐺) β†’ (1st β€˜π‘) ∈ ran 𝐹)
203201, 202syl 17 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (1st β€˜π‘) ∈ ran 𝐹)
204 xp2nd 8008 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 Γ— ran 𝐺) β†’ (2nd β€˜π‘) ∈ ran 𝐺)
205201, 204syl 17 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (2nd β€˜π‘) ∈ ran 𝐺)
206 oveq12 7418 . . . . . . . . . . . . . . . 16 ((π‘₯ = 0 ∧ 𝑦 = 0 ) β†’ (π‘₯ + 𝑦) = ( 0 + 0 ))
207 sibfof.5 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ ( 0 + 0 ) = (0gβ€˜πΎ))
208206, 207sylan9eqr 2795 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (π‘₯ = 0 ∧ 𝑦 = 0 )) β†’ (π‘₯ + 𝑦) = (0gβ€˜πΎ))
209208ex 414 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((π‘₯ = 0 ∧ 𝑦 = 0 ) β†’ (π‘₯ + 𝑦) = (0gβ€˜πΎ)))
210209necon3ad 2954 . . . . . . . . . . . . 13 (πœ‘ β†’ ((π‘₯ + 𝑦) β‰  (0gβ€˜πΎ) β†’ Β¬ (π‘₯ = 0 ∧ 𝑦 = 0 )))
211 neorian 3038 . . . . . . . . . . . . 13 ((π‘₯ β‰  0 ∨ 𝑦 β‰  0 ) ↔ Β¬ (π‘₯ = 0 ∧ 𝑦 = 0 ))
212210, 211imbitrrdi 251 . . . . . . . . . . . 12 (πœ‘ β†’ ((π‘₯ + 𝑦) β‰  (0gβ€˜πΎ) β†’ (π‘₯ β‰  0 ∨ 𝑦 β‰  0 )))
213212adantr 482 . . . . . . . . . . 11 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ ((π‘₯ + 𝑦) β‰  (0gβ€˜πΎ) β†’ (π‘₯ β‰  0 ∨ 𝑦 β‰  0 )))
214213ralrimivva 3201 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) β‰  (0gβ€˜πΎ) β†’ (π‘₯ β‰  0 ∨ 𝑦 β‰  0 )))
215199, 214syl 17 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) β‰  (0gβ€˜πΎ) β†’ (π‘₯ β‰  0 ∨ 𝑦 β‰  0 )))
21667a1i 11 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺)) βŠ† (β—‘ + β€œ {𝑧}))
217216sselda 3983 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 𝑝 ∈ (β—‘ + β€œ {𝑧}))
218 fniniseg 7062 . . . . . . . . . . . . 13 ( + Fn (𝐡 Γ— 𝐡) β†’ (𝑝 ∈ (β—‘ + β€œ {𝑧}) ↔ (𝑝 ∈ (𝐡 Γ— 𝐡) ∧ ( + β€˜π‘) = 𝑧)))
219199, 61, 2183syl 18 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (𝑝 ∈ (β—‘ + β€œ {𝑧}) ↔ (𝑝 ∈ (𝐡 Γ— 𝐡) ∧ ( + β€˜π‘) = 𝑧)))
220217, 219mpbid 231 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (𝑝 ∈ (𝐡 Γ— 𝐡) ∧ ( + β€˜π‘) = 𝑧))
221 simpr 486 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐡 Γ— 𝐡) ∧ ( + β€˜π‘) = 𝑧) β†’ ( + β€˜π‘) = 𝑧)
222 1st2nd2 8014 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝐡 Γ— 𝐡) β†’ 𝑝 = ⟨(1st β€˜π‘), (2nd β€˜π‘)⟩)
223222fveq2d 6896 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐡 Γ— 𝐡) β†’ ( + β€˜π‘) = ( + β€˜βŸ¨(1st β€˜π‘), (2nd β€˜π‘)⟩))
224 df-ov 7412 . . . . . . . . . . . . . 14 ((1st β€˜π‘) + (2nd β€˜π‘)) = ( + β€˜βŸ¨(1st β€˜π‘), (2nd β€˜π‘)⟩)
225223, 224eqtr4di 2791 . . . . . . . . . . . . 13 (𝑝 ∈ (𝐡 Γ— 𝐡) β†’ ( + β€˜π‘) = ((1st β€˜π‘) + (2nd β€˜π‘)))
226225adantr 482 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐡 Γ— 𝐡) ∧ ( + β€˜π‘) = 𝑧) β†’ ( + β€˜π‘) = ((1st β€˜π‘) + (2nd β€˜π‘)))
227221, 226eqtr3d 2775 . . . . . . . . . . 11 ((𝑝 ∈ (𝐡 Γ— 𝐡) ∧ ( + β€˜π‘) = 𝑧) β†’ 𝑧 = ((1st β€˜π‘) + (2nd β€˜π‘)))
228220, 227syl 17 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 𝑧 = ((1st β€˜π‘) + (2nd β€˜π‘)))
229 simplr 768 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)}))
230229eldifbd 3962 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ Β¬ 𝑧 ∈ {(0gβ€˜πΎ)})
231 velsn 4645 . . . . . . . . . . . 12 (𝑧 ∈ {(0gβ€˜πΎ)} ↔ 𝑧 = (0gβ€˜πΎ))
232231necon3bbii 2989 . . . . . . . . . . 11 (Β¬ 𝑧 ∈ {(0gβ€˜πΎ)} ↔ 𝑧 β‰  (0gβ€˜πΎ))
233230, 232sylib 217 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 𝑧 β‰  (0gβ€˜πΎ))
234228, 233eqnetrrd 3010 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ ((1st β€˜π‘) + (2nd β€˜π‘)) β‰  (0gβ€˜πΎ))
235175, 72sylanl2 680 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 𝑝 ∈ (𝐡 Γ— 𝐡))
236235, 85syl 17 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (1st β€˜π‘) ∈ 𝐡)
237235, 98syl 17 . . . . . . . . . 10 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (2nd β€˜π‘) ∈ 𝐡)
238 oveq1 7416 . . . . . . . . . . . . 13 (π‘₯ = (1st β€˜π‘) β†’ (π‘₯ + 𝑦) = ((1st β€˜π‘) + 𝑦))
239238neeq1d 3001 . . . . . . . . . . . 12 (π‘₯ = (1st β€˜π‘) β†’ ((π‘₯ + 𝑦) β‰  (0gβ€˜πΎ) ↔ ((1st β€˜π‘) + 𝑦) β‰  (0gβ€˜πΎ)))
240 neeq1 3004 . . . . . . . . . . . . 13 (π‘₯ = (1st β€˜π‘) β†’ (π‘₯ β‰  0 ↔ (1st β€˜π‘) β‰  0 ))
241240orbi1d 916 . . . . . . . . . . . 12 (π‘₯ = (1st β€˜π‘) β†’ ((π‘₯ β‰  0 ∨ 𝑦 β‰  0 ) ↔ ((1st β€˜π‘) β‰  0 ∨ 𝑦 β‰  0 )))
242239, 241imbi12d 345 . . . . . . . . . . 11 (π‘₯ = (1st β€˜π‘) β†’ (((π‘₯ + 𝑦) β‰  (0gβ€˜πΎ) β†’ (π‘₯ β‰  0 ∨ 𝑦 β‰  0 )) ↔ (((1st β€˜π‘) + 𝑦) β‰  (0gβ€˜πΎ) β†’ ((1st β€˜π‘) β‰  0 ∨ 𝑦 β‰  0 ))))
243 oveq2 7417 . . . . . . . . . . . . 13 (𝑦 = (2nd β€˜π‘) β†’ ((1st β€˜π‘) + 𝑦) = ((1st β€˜π‘) + (2nd β€˜π‘)))
244243neeq1d 3001 . . . . . . . . . . . 12 (𝑦 = (2nd β€˜π‘) β†’ (((1st β€˜π‘) + 𝑦) β‰  (0gβ€˜πΎ) ↔ ((1st β€˜π‘) + (2nd β€˜π‘)) β‰  (0gβ€˜πΎ)))
245 neeq1 3004 . . . . . . . . . . . . 13 (𝑦 = (2nd β€˜π‘) β†’ (𝑦 β‰  0 ↔ (2nd β€˜π‘) β‰  0 ))
246245orbi2d 915 . . . . . . . . . . . 12 (𝑦 = (2nd β€˜π‘) β†’ (((1st β€˜π‘) β‰  0 ∨ 𝑦 β‰  0 ) ↔ ((1st β€˜π‘) β‰  0 ∨ (2nd β€˜π‘) β‰  0 )))
247244, 246imbi12d 345 . . . . . . . . . . 11 (𝑦 = (2nd β€˜π‘) β†’ ((((1st β€˜π‘) + 𝑦) β‰  (0gβ€˜πΎ) β†’ ((1st β€˜π‘) β‰  0 ∨ 𝑦 β‰  0 )) ↔ (((1st β€˜π‘) + (2nd β€˜π‘)) β‰  (0gβ€˜πΎ) β†’ ((1st β€˜π‘) β‰  0 ∨ (2nd β€˜π‘) β‰  0 ))))
248242, 247rspc2v 3623 . . . . . . . . . 10 (((1st β€˜π‘) ∈ 𝐡 ∧ (2nd β€˜π‘) ∈ 𝐡) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) β‰  (0gβ€˜πΎ) β†’ (π‘₯ β‰  0 ∨ 𝑦 β‰  0 )) β†’ (((1st β€˜π‘) + (2nd β€˜π‘)) β‰  (0gβ€˜πΎ) β†’ ((1st β€˜π‘) β‰  0 ∨ (2nd β€˜π‘) β‰  0 ))))
249236, 237, 248syl2anc 585 . . . . . . . . 9 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) β‰  (0gβ€˜πΎ) β†’ (π‘₯ β‰  0 ∨ 𝑦 β‰  0 )) β†’ (((1st β€˜π‘) + (2nd β€˜π‘)) β‰  (0gβ€˜πΎ) β†’ ((1st β€˜π‘) β‰  0 ∨ (2nd β€˜π‘) β‰  0 ))))
250215, 234, 249mp2d 49 . . . . . . . 8 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ ((1st β€˜π‘) β‰  0 ∨ (2nd β€˜π‘) β‰  0 ))
2513, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 74sibfinima 33369 . . . . . . . 8 (((πœ‘ ∧ (1st β€˜π‘) ∈ ran 𝐹 ∧ (2nd β€˜π‘) ∈ ran 𝐺) ∧ ((1st β€˜π‘) β‰  0 ∨ (2nd β€˜π‘) β‰  0 )) β†’ (π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))) ∈ (0[,)+∞))
252199, 203, 205, 250, 251syl31anc 1374 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))) ∈ (0[,)+∞))
253198, 252esumpfinval 33104 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ Ξ£*𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))(π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))) = Σ𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))(π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))))
254171, 195, 2533eqtrd 2777 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ (π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})) = Σ𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))(π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))))
255 rge0ssre 13433 . . . . . . 7 (0[,)+∞) βŠ† ℝ
256255, 252sselid 3981 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ (π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))) ∈ ℝ)
257198, 256fsumrecl 15680 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ Σ𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))(π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))) ∈ ℝ)
258254, 257eqeltrd 2834 . . . 4 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ (π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})) ∈ ℝ)
259174adantr 482 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 𝑀 ∈ (measuresβ€˜dom 𝑀))
260175, 108sylanl2 680 . . . . . . 7 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ ((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀)
261 measge0 33236 . . . . . . 7 ((𝑀 ∈ (measuresβ€˜dom 𝑀) ∧ ((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)})) ∈ dom 𝑀) β†’ 0 ≀ (π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))))
262259, 260, 261syl2anc 585 . . . . . 6 (((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) ∧ 𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))) β†’ 0 ≀ (π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))))
263198, 256, 262fsumge0 15741 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ 0 ≀ Σ𝑝 ∈ ((β—‘ + β€œ {𝑧}) ∩ (ran 𝐹 Γ— ran 𝐺))(π‘€β€˜((◑𝐹 β€œ {(1st β€˜π‘)}) ∩ (◑𝐺 β€œ {(2nd β€˜π‘)}))))
264263, 254breqtrrd 5177 . . . 4 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ 0 ≀ (π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})))
265 elrege0 13431 . . . 4 ((π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})) ∈ (0[,)+∞) ↔ ((π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})) ∈ ℝ ∧ 0 ≀ (π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧}))))
266258, 264, 265sylanbrc 584 . . 3 ((πœ‘ ∧ 𝑧 ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})) β†’ (π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})) ∈ (0[,)+∞))
267266ralrimiva 3147 . 2 (πœ‘ β†’ βˆ€π‘§ ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})(π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})) ∈ (0[,)+∞))
268 eqid 2733 . . 3 (sigaGenβ€˜(TopOpenβ€˜πΎ)) = (sigaGenβ€˜(TopOpenβ€˜πΎ))
269 eqid 2733 . . 3 (0gβ€˜πΎ) = (0gβ€˜πΎ)
270 eqid 2733 . . 3 ( ·𝑠 β€˜πΎ) = ( ·𝑠 β€˜πΎ)
271 eqid 2733 . . 3 (ℝHomβ€˜(Scalarβ€˜πΎ)) = (ℝHomβ€˜(Scalarβ€˜πΎ))
27227, 28, 268, 269, 270, 271, 26, 16issibf 33363 . 2 (πœ‘ β†’ ((𝐹 ∘f + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹 ∘f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGenβ€˜(TopOpenβ€˜πΎ))) ∧ ran (𝐹 ∘f + 𝐺) ∈ Fin ∧ βˆ€π‘§ ∈ (ran (𝐹 ∘f + 𝐺) βˆ– {(0gβ€˜πΎ)})(π‘€β€˜(β—‘(𝐹 ∘f + 𝐺) β€œ {𝑧})) ∈ (0[,)+∞))))
273169, 137, 267, 272mpbir3and 1343 1 (πœ‘ β†’ (𝐹 ∘f + 𝐺) ∈ dom (𝐾sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  Vcvv 3475   βˆ– cdif 3946   βˆͺ cun 3947   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323  {csn 4629  βŸ¨cop 4635  βˆͺ cuni 4909  βˆͺ ciun 4998  Disj wdisj 5114   class class class wbr 5149   Γ— cxp 5675  β—‘ccnv 5676  dom cdm 5677  ran crn 5678   β€œ cima 5680  Fun wfun 6538   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ∘f cof 7668  Ο‰com 7855  1st c1st 7973  2nd c2nd 7974   ↑m cmap 8820   β‰Ό cdom 8937   β‰Ί csdm 8938  Fincfn 8939  β„cr 11109  0cc0 11110  +∞cpnf 11245   ≀ cle 11249  [,)cico 13326  Ξ£csu 15632  Basecbs 17144  Scalarcsca 17200   ·𝑠 cvsca 17201  TopOpenctopn 17367  0gc0g 17385  Topctop 22395  TopSpctps 22434  Clsdccld 22520  Frect1 22811  β„Homcrrh 33004  Ξ£*cesum 33056  sigAlgebracsiga 33137  sigaGencsigagen 33167  measurescmeas 33224  MblFnMcmbfm 33278  sitgcsitg 33359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-ac2 10458  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-acn 9937  df-ac 10111  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ioc 13329  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-shft 15014  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-ef 16011  df-sin 16013  df-cos 16014  df-pi 16016  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-ordt 17447  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-ps 18519  df-tsr 18520  df-plusf 18560  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mulg 18951  df-subg 19003  df-cntz 19181  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-subrg 20317  df-abv 20425  df-lmod 20473  df-scaf 20474  df-sra 20785  df-rgmod 20786  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-lp 22640  df-perf 22641  df-cn 22731  df-cnp 22732  df-t1 22818  df-haus 22819  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-tmd 23576  df-tgp 23577  df-tsms 23631  df-trg 23664  df-xms 23826  df-ms 23827  df-tms 23828  df-nm 24091  df-ngp 24092  df-nrg 24094  df-nlm 24095  df-ii 24393  df-cncf 24394  df-limc 25383  df-dv 25384  df-log 26065  df-esum 33057  df-siga 33138  df-sigagen 33168  df-meas 33225  df-mbfm 33279  df-sitg 33360
This theorem is referenced by:  sitmcl  33381
  Copyright terms: Public domain W3C validator