Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfof Structured version   Visualization version   GIF version

Theorem sibfof 34314
Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfof.c 𝐶 = (Base‘𝐾)
sibfof.0 (𝜑𝑊 ∈ TopSp)
sibfof.1 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
sibfof.2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfof.3 (𝜑𝐾 ∈ TopSp)
sibfof.4 (𝜑𝐽 ∈ Fre)
sibfof.5 (𝜑 → ( 0 + 0 ) = (0g𝐾))
Assertion
Ref Expression
sibfof (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))

Proof of Theorem sibfof
Dummy variables 𝑥 𝑦 𝑧 𝑝 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sibfof.1 . . . . . . . 8 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
2 sibfof.0 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
3 sitgval.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
4 sitgval.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑊)
53, 4tpsuni 22821 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
62, 5syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
76sqxpeqd 5651 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ( 𝐽 × 𝐽))
87feq2d 6636 . . . . . . . 8 (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐶+ :( 𝐽 × 𝐽)⟶𝐶))
91, 8mpbid 232 . . . . . . 7 (𝜑+ :( 𝐽 × 𝐽)⟶𝐶)
109fovcdmda 7520 . . . . . 6 ((𝜑 ∧ (𝑧 𝐽𝑥 𝐽)) → (𝑧 + 𝑥) ∈ 𝐶)
11 sitgval.s . . . . . . 7 𝑆 = (sigaGen‘𝐽)
12 sitgval.0 . . . . . . 7 0 = (0g𝑊)
13 sitgval.x . . . . . . 7 · = ( ·𝑠𝑊)
14 sitgval.h . . . . . . 7 𝐻 = (ℝHom‘(Scalar‘𝑊))
15 sitgval.1 . . . . . . 7 (𝜑𝑊𝑉)
16 sitgval.2 . . . . . . 7 (𝜑𝑀 ran measures)
17 sibfmbl.1 . . . . . . 7 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
183, 4, 11, 12, 13, 14, 15, 16, 17sibff 34310 . . . . . 6 (𝜑𝐹: dom 𝑀 𝐽)
19 sibfof.2 . . . . . . 7 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
203, 4, 11, 12, 13, 14, 15, 16, 19sibff 34310 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
21 dmexg 7834 . . . . . . 7 (𝑀 ran measures → dom 𝑀 ∈ V)
22 uniexg 7676 . . . . . . 7 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
2316, 21, 223syl 18 . . . . . 6 (𝜑 dom 𝑀 ∈ V)
24 inidm 4178 . . . . . 6 ( dom 𝑀 dom 𝑀) = dom 𝑀
2510, 18, 20, 23, 23, 24off 7631 . . . . 5 (𝜑 → (𝐹f + 𝐺): dom 𝑀𝐶)
26 sibfof.3 . . . . . . . 8 (𝜑𝐾 ∈ TopSp)
27 sibfof.c . . . . . . . . 9 𝐶 = (Base‘𝐾)
28 eqid 2729 . . . . . . . . 9 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2927, 28tpsuni 22821 . . . . . . . 8 (𝐾 ∈ TopSp → 𝐶 = (TopOpen‘𝐾))
3026, 29syl 17 . . . . . . 7 (𝜑𝐶 = (TopOpen‘𝐾))
31 fvex 6835 . . . . . . . 8 (TopOpen‘𝐾) ∈ V
32 unisg 34116 . . . . . . . 8 ((TopOpen‘𝐾) ∈ V → (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾))
3331, 32ax-mp 5 . . . . . . 7 (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾)
3430, 33eqtr4di 2782 . . . . . 6 (𝜑𝐶 = (sigaGen‘(TopOpen‘𝐾)))
3534feq3d 6637 . . . . 5 (𝜑 → ((𝐹f + 𝐺): dom 𝑀𝐶 ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
3625, 35mpbid 232 . . . 4 (𝜑 → (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾)))
3731a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘𝐾) ∈ V)
3837sgsiga 34115 . . . . . 6 (𝜑 → (sigaGen‘(TopOpen‘𝐾)) ∈ ran sigAlgebra)
3938uniexd 7678 . . . . 5 (𝜑 (sigaGen‘(TopOpen‘𝐾)) ∈ V)
4039, 23elmapd 8767 . . . 4 (𝜑 → ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
4136, 40mpbird 257 . . 3 (𝜑 → (𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀))
42 inundif 4430 . . . . . . 7 ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺))) = 𝑏
4342imaeq2i 6009 . . . . . 6 ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = ((𝐹f + 𝐺) “ 𝑏)
44 ffun 6655 . . . . . . . 8 ((𝐹f + 𝐺): dom 𝑀𝐶 → Fun (𝐹f + 𝐺))
45 unpreima 6997 . . . . . . . 8 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4625, 44, 453syl 18 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4746adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4843, 47eqtr3id 2778 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
49 dmmeas 34174 . . . . . . . 8 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
5016, 49syl 17 . . . . . . 7 (𝜑 → dom 𝑀 ran sigAlgebra)
5150adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → dom 𝑀 ran sigAlgebra)
52 imaiun 7181 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧})
53 iunid 5009 . . . . . . . . 9 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹f + 𝐺))
5453imaeq2i 6009 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
5552, 54eqtr3i 2754 . . . . . . 7 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
56 inss2 4189 . . . . . . . . . 10 (𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺)
576feq3d 6637 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹: dom 𝑀𝐵𝐹: dom 𝑀 𝐽))
5818, 57mpbird 257 . . . . . . . . . . . . . 14 (𝜑𝐹: dom 𝑀𝐵)
596feq3d 6637 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6020, 59mpbird 257 . . . . . . . . . . . . . 14 (𝜑𝐺: dom 𝑀𝐵)
611ffnd 6653 . . . . . . . . . . . . . 14 (𝜑+ Fn (𝐵 × 𝐵))
6258, 60, 23, 61ofpreima2 32610 . . . . . . . . . . . . 13 (𝜑 → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6362adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6450adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → dom 𝑀 ran sigAlgebra)
6550ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → dom 𝑀 ran sigAlgebra)
66 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
67 inss1 4188 . . . . . . . . . . . . . . . . . 18 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧})
68 cnvimass 6033 . . . . . . . . . . . . . . . . . . . 20 ( + “ {𝑧}) ⊆ dom +
6968, 1fssdm 6671 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7069adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7167, 70sstrid 3947 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐵))
7271sselda 3935 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
7350adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → dom 𝑀 ran sigAlgebra)
74 sibfof.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ Fre)
7574sgsiga 34115 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7611, 75eqeltrid 2832 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ran sigAlgebra)
7776adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝑆 ran sigAlgebra)
783, 4, 11, 12, 13, 14, 15, 16, 17sibfmbl 34309 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
7978adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
804tpstop 22822 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
81 cldssbrsiga 34160 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
822, 80, 813syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8382adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8474adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐽 ∈ Fre)
85 xp1st 7956 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (1st𝑝) ∈ 𝐵)
8685adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐵)
876adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐵 = 𝐽)
8886, 87eleqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐽)
89 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 𝐽 = 𝐽
9089t1sncld 23211 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (1st𝑝) ∈ 𝐽) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9184, 88, 90syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9283, 91sseldd 3936 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (sigaGen‘𝐽))
9392, 11eleqtrrdi 2839 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ 𝑆)
9473, 77, 79, 93mbfmcnvima 34229 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
9566, 72, 94syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
963, 4, 11, 12, 13, 14, 15, 16, 19sibfmbl 34309 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
9796adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
98 xp2nd 7957 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (2nd𝑝) ∈ 𝐵)
9998adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐵)
10099, 87eleqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐽)
10189t1sncld 23211 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (2nd𝑝) ∈ 𝐽) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10284, 100, 101syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10383, 102sseldd 3936 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (sigaGen‘𝐽))
104103, 11eleqtrrdi 2839 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ 𝑆)
10573, 77, 97, 104mbfmcnvima 34229 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
10666, 72, 105syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
107 inelsiga 34108 . . . . . . . . . . . . . . 15 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀 ∧ (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
10865, 95, 106, 107syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
109108ralrimiva 3121 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
1103, 4, 11, 12, 13, 14, 15, 16, 17sibfrn 34311 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ∈ Fin)
1113, 4, 11, 12, 13, 14, 15, 16, 19sibfrn 34311 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐺 ∈ Fin)
112 xpfi 9209 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
113110, 111, 112syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
114 inss2 4189 . . . . . . . . . . . . . . . 16 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)
115 ssdomg 8925 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺)))
116113, 114, 115mpisyl 21 . . . . . . . . . . . . . . 15 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺))
117 isfinite 9548 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 × ran 𝐺) ∈ Fin ↔ (ran 𝐹 × ran 𝐺) ≺ ω)
118117biimpi 216 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → (ran 𝐹 × ran 𝐺) ≺ ω)
119 sdomdom 8905 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ≺ ω → (ran 𝐹 × ran 𝐺) ≼ ω)
120113, 118, 1193syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ran 𝐹 × ran 𝐺) ≼ ω)
121 domtr 8932 . . . . . . . . . . . . . . 15 (((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺) ∧ (ran 𝐹 × ran 𝐺) ≼ ω) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
122116, 120, 121syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
123122adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
124 nfcv 2891 . . . . . . . . . . . . . 14 𝑝(( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))
125124sigaclcuni 34091 . . . . . . . . . . . . 13 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12664, 109, 123, 125syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12763, 126eqeltrd 2828 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
128127ralrimiva 3121 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
129 ssralv 4004 . . . . . . . . . 10 ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀))
13056, 128, 129mpsyl 68 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
131130adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
1321ffund 6656 . . . . . . . . . . . . 13 (𝜑 → Fun + )
133 imafi 9204 . . . . . . . . . . . . 13 ((Fun + ∧ (ran 𝐹 × ran 𝐺) ∈ Fin) → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
134132, 113, 133syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
13518, 20, 9, 23ofrn2 32584 . . . . . . . . . . . 12 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
136 ssfi 9087 . . . . . . . . . . . 12 ((( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin ∧ ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) → ran (𝐹f + 𝐺) ∈ Fin)
137134, 135, 136syl2anc 584 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ∈ Fin)
138 ssdomg 8925 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ∈ Fin → ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺)))
139137, 56, 138mpisyl 21 . . . . . . . . . 10 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺))
140 isfinite 9548 . . . . . . . . . . . 12 (ran (𝐹f + 𝐺) ∈ Fin ↔ ran (𝐹f + 𝐺) ≺ ω)
141137, 140sylib 218 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ≺ ω)
142 sdomdom 8905 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ≺ ω → ran (𝐹f + 𝐺) ≼ ω)
143141, 142syl 17 . . . . . . . . . 10 (𝜑 → ran (𝐹f + 𝐺) ≼ ω)
144 domtr 8932 . . . . . . . . . 10 (((𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺) ∧ ran (𝐹f + 𝐺) ≼ ω) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
145139, 143, 144syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
146145adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
147 nfcv 2891 . . . . . . . . 9 𝑧(𝑏 ∩ ran (𝐹f + 𝐺))
148147sigaclcuni 34091 . . . . . . . 8 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
14951, 131, 146, 148syl3anc 1373 . . . . . . 7 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
15055, 149eqeltrrid 2833 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
151 difpreima 6999 . . . . . . . . . 10 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
15225, 44, 1513syl 18 . . . . . . . . 9 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
153 cnvimarndm 6034 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺)) = dom (𝐹f + 𝐺)
154153difeq2i 4074 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺))
155 cnvimass 6033 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺)
156 ssdif0 4317 . . . . . . . . . . 11 (((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺) ↔ (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅)
157155, 156mpbi 230 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅
158154, 157eqtri 2752 . . . . . . . . 9 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = ∅
159152, 158eqtrdi 2780 . . . . . . . 8 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = ∅)
160 0elsiga 34087 . . . . . . . . 9 (dom 𝑀 ran sigAlgebra → ∅ ∈ dom 𝑀)
16116, 49, 1603syl 18 . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑀)
162159, 161eqeltrd 2828 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
163162adantr 480 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
164 unelsiga 34107 . . . . . 6 ((dom 𝑀 ran sigAlgebra ∧ ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀 ∧ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16551, 150, 163, 164syl3anc 1373 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16648, 165eqeltrd 2828 . . . 4 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
167166ralrimiva 3121 . . 3 (𝜑 → ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
16850, 38ismbfm 34224 . . 3 (𝜑 → ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ↔ ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ∧ ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)))
16941, 167, 168mpbir2and 713 . 2 (𝜑 → (𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))))
17062adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
171170fveq2d 6826 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
172 measbasedom 34175 . . . . . . . . 9 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
17316, 172sylib 218 . . . . . . . 8 (𝜑𝑀 ∈ (measures‘dom 𝑀))
174173adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 𝑀 ∈ (measures‘dom 𝑀))
175 eldifi 4082 . . . . . . . 8 (𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}) → 𝑧 ∈ ran (𝐹f + 𝐺))
176175, 109sylan2 593 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
177122adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
178 sneq 4587 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → {𝑥} = {(1st𝑝)})
179178imaeq2d 6011 . . . . . . . . . 10 (𝑥 = (1st𝑝) → (𝐹 “ {𝑥}) = (𝐹 “ {(1st𝑝)}))
180 sneq 4587 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → {𝑦} = {(2nd𝑝)})
181180imaeq2d 6011 . . . . . . . . . 10 (𝑦 = (2nd𝑝) → (𝐺 “ {𝑦}) = (𝐺 “ {(2nd𝑝)}))
18218ffund 6656 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
183 sndisj 5084 . . . . . . . . . . 11 Disj 𝑥 ∈ ran 𝐹{𝑥}
184 disjpreima 32528 . . . . . . . . . . 11 ((Fun 𝐹Disj 𝑥 ∈ ran 𝐹{𝑥}) → Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
185182, 183, 184sylancl 586 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
18620ffund 6656 . . . . . . . . . . 11 (𝜑 → Fun 𝐺)
187 sndisj 5084 . . . . . . . . . . 11 Disj 𝑦 ∈ ran 𝐺{𝑦}
188 disjpreima 32528 . . . . . . . . . . 11 ((Fun 𝐺Disj 𝑦 ∈ ran 𝐺{𝑦}) → Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
189186, 187, 188sylancl 586 . . . . . . . . . 10 (𝜑Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
190179, 181, 185, 189disjxpin 32532 . . . . . . . . 9 (𝜑Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
191 disjss1 5065 . . . . . . . . 9 ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
192114, 190, 191mpsyl 68 . . . . . . . 8 (𝜑Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
193192adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
194 measvuni 34187 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω ∧ Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
195174, 176, 177, 193, 194syl112anc 1376 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
196 ssfi 9087 . . . . . . . . 9 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
197113, 114, 196sylancl 586 . . . . . . . 8 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
198197adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
199 simpll 766 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
200 simpr 484 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)))
201114, 200sselid 3933 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
202 xp1st 7956 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
203201, 202syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ ran 𝐹)
204 xp2nd 7957 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
205201, 204syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ ran 𝐺)
206 oveq12 7358 . . . . . . . . . . . . . . . 16 ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = ( 0 + 0 ))
207 sibfof.5 . . . . . . . . . . . . . . . 16 (𝜑 → ( 0 + 0 ) = (0g𝐾))
208206, 207sylan9eqr 2786 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 = 0𝑦 = 0 )) → (𝑥 + 𝑦) = (0g𝐾))
209208ex 412 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = (0g𝐾)))
210209necon3ad 2938 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → ¬ (𝑥 = 0𝑦 = 0 )))
211 neorian 3020 . . . . . . . . . . . . 13 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
212210, 211imbitrrdi 252 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
213212adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
214213ralrimivva 3172 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
215199, 214syl 17 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
21667a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧}))
217216sselda 3935 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ( + “ {𝑧}))
218 fniniseg 6994 . . . . . . . . . . . . 13 ( + Fn (𝐵 × 𝐵) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
219199, 61, 2183syl 18 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
220217, 219mpbid 232 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧))
221 simpr 484 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = 𝑧)
222 1st2nd2 7963 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝐵 × 𝐵) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
223222fveq2d 6826 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩))
224 df-ov 7352 . . . . . . . . . . . . . 14 ((1st𝑝) + (2nd𝑝)) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩)
225223, 224eqtr4di 2782 . . . . . . . . . . . . 13 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
226225adantr 480 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
227221, 226eqtr3d 2766 . . . . . . . . . . 11 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
228220, 227syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
229 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}))
230229eldifbd 3916 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ¬ 𝑧 ∈ {(0g𝐾)})
231 velsn 4593 . . . . . . . . . . . 12 (𝑧 ∈ {(0g𝐾)} ↔ 𝑧 = (0g𝐾))
232231necon3bbii 2972 . . . . . . . . . . 11 𝑧 ∈ {(0g𝐾)} ↔ 𝑧 ≠ (0g𝐾))
233230, 232sylib 218 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ≠ (0g𝐾))
234228, 233eqnetrrd 2993 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾))
235175, 72sylanl2 681 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
236235, 85syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ 𝐵)
237235, 98syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ 𝐵)
238 oveq1 7356 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥 + 𝑦) = ((1st𝑝) + 𝑦))
239238neeq1d 2984 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥 + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + 𝑦) ≠ (0g𝐾)))
240 neeq1 2987 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥0 ↔ (1st𝑝) ≠ 0 ))
241240orbi1d 916 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥0𝑦0 ) ↔ ((1st𝑝) ≠ 0𝑦0 )))
242239, 241imbi12d 344 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → (((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) ↔ (((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 ))))
243 oveq2 7357 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → ((1st𝑝) + 𝑦) = ((1st𝑝) + (2nd𝑝)))
244243neeq1d 2984 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾)))
245 neeq1 2987 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → (𝑦0 ↔ (2nd𝑝) ≠ 0 ))
246245orbi2d 915 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) ≠ 0𝑦0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )))
247244, 246imbi12d 344 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → ((((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 )) ↔ (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
248242, 247rspc2v 3588 . . . . . . . . . 10 (((1st𝑝) ∈ 𝐵 ∧ (2nd𝑝) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
249236, 237, 248syl2anc 584 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
250215, 234, 249mp2d 49 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
2513, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 74sibfinima 34313 . . . . . . . 8 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
252199, 203, 205, 250, 251syl31anc 1375 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
253198, 252esumpfinval 34048 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
254171, 195, 2533eqtrd 2768 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
255 rge0ssre 13359 . . . . . . 7 (0[,)+∞) ⊆ ℝ
256255, 252sselid 3933 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
257198, 256fsumrecl 15641 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
258254, 257eqeltrd 2828 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ)
259174adantr 480 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑀 ∈ (measures‘dom 𝑀))
260175, 108sylanl2 681 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
261 measge0 34180 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
262259, 260, 261syl2anc 584 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
263198, 256, 262fsumge0 15702 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
264263, 254breqtrrd 5120 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧})))
265 elrege0 13357 . . . 4 ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧}))))
266258, 264, 265sylanbrc 583 . . 3 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
267266ralrimiva 3121 . 2 (𝜑 → ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
268 eqid 2729 . . 3 (sigaGen‘(TopOpen‘𝐾)) = (sigaGen‘(TopOpen‘𝐾))
269 eqid 2729 . . 3 (0g𝐾) = (0g𝐾)
270 eqid 2729 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
271 eqid 2729 . . 3 (ℝHom‘(Scalar‘𝐾)) = (ℝHom‘(Scalar‘𝐾))
27227, 28, 268, 269, 270, 271, 26, 16issibf 34307 . 2 (𝜑 → ((𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ∧ ran (𝐹f + 𝐺) ∈ Fin ∧ ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))))
273169, 137, 267, 272mpbir3and 1343 1 (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  {csn 4577  cop 4583   cuni 4858   ciun 4941  Disj wdisj 5059   class class class wbr 5092   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  ωcom 7799  1st c1st 7922  2nd c2nd 7923  m cmap 8753  cdom 8870  csdm 8871  Fincfn 8872  cr 11008  0cc0 11009  +∞cpnf 11146  cle 11150  [,)cico 13250  Σcsu 15593  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  TopOpenctopn 17325  0gc0g 17343  Topctop 22778  TopSpctps 22817  Clsdccld 22901  Frect1 23192  ℝHomcrrh 33966  Σ*cesum 34000  sigAlgebracsiga 34081  sigaGencsigagen 34111  measurescmeas 34168  MblFnMcmbfm 34222  sitgcsitg 34303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20765  df-scaf 20766  df-sra 21077  df-rgmod 21078  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-t1 23199  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tmd 23957  df-tgp 23958  df-tsms 24012  df-trg 24045  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469  df-nrg 24471  df-nlm 24472  df-ii 24768  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-esum 34001  df-siga 34082  df-sigagen 34112  df-meas 34169  df-mbfm 34223  df-sitg 34304
This theorem is referenced by:  sitmcl  34325
  Copyright terms: Public domain W3C validator