Step | Hyp | Ref
| Expression |
1 | | sibfof.1 |
. . . . . . . 8
⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐶) |
2 | | sibfof.0 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ TopSp) |
3 | | sitgval.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑊) |
4 | | sitgval.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (TopOpen‘𝑊) |
5 | 3, 4 | tpsuni 21248 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ TopSp → 𝐵 = ∪
𝐽) |
6 | 2, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
7 | 6 | sqxpeqd 5439 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 × 𝐵) = (∪ 𝐽 × ∪ 𝐽)) |
8 | 7 | feq2d 6330 |
. . . . . . . 8
⊢ (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐶 ↔ + :(∪ 𝐽
× ∪ 𝐽)⟶𝐶)) |
9 | 1, 8 | mpbid 224 |
. . . . . . 7
⊢ (𝜑 → + :(∪ 𝐽
× ∪ 𝐽)⟶𝐶) |
10 | 9 | fovrnda 7135 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽)) → (𝑧 + 𝑥) ∈ 𝐶) |
11 | | sitgval.s |
. . . . . . 7
⊢ 𝑆 = (sigaGen‘𝐽) |
12 | | sitgval.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑊) |
13 | | sitgval.x |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑊) |
14 | | sitgval.h |
. . . . . . 7
⊢ 𝐻 =
(ℝHom‘(Scalar‘𝑊)) |
15 | | sitgval.1 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
16 | | sitgval.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) |
17 | | sibfmbl.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
18 | 3, 4, 11, 12, 13, 14, 15, 16, 17 | sibff 31236 |
. . . . . 6
⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶∪ 𝐽) |
19 | | sibfof.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ dom (𝑊sitg𝑀)) |
20 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | sibff 31236 |
. . . . . 6
⊢ (𝜑 → 𝐺:∪ dom 𝑀⟶∪ 𝐽) |
21 | | dmexg 7428 |
. . . . . . 7
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ V) |
22 | | uniexg 7285 |
. . . . . . 7
⊢ (dom
𝑀 ∈ V → ∪ dom 𝑀 ∈ V) |
23 | 16, 21, 22 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ∪ dom 𝑀 ∈ V) |
24 | | inidm 4083 |
. . . . . 6
⊢ (∪ dom 𝑀 ∩ ∪ dom
𝑀) = ∪ dom 𝑀 |
25 | 10, 18, 20, 23, 23, 24 | off 7242 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):∪
dom 𝑀⟶𝐶) |
26 | | sibfof.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ TopSp) |
27 | | sibfof.c |
. . . . . . . . 9
⊢ 𝐶 = (Base‘𝐾) |
28 | | eqid 2779 |
. . . . . . . . 9
⊢
(TopOpen‘𝐾) =
(TopOpen‘𝐾) |
29 | 27, 28 | tpsuni 21248 |
. . . . . . . 8
⊢ (𝐾 ∈ TopSp → 𝐶 = ∪
(TopOpen‘𝐾)) |
30 | 26, 29 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐶 = ∪
(TopOpen‘𝐾)) |
31 | | fvex 6512 |
. . . . . . . 8
⊢
(TopOpen‘𝐾)
∈ V |
32 | | unisg 31044 |
. . . . . . . 8
⊢
((TopOpen‘𝐾)
∈ V → ∪
(sigaGen‘(TopOpen‘𝐾)) = ∪
(TopOpen‘𝐾)) |
33 | 31, 32 | ax-mp 5 |
. . . . . . 7
⊢ ∪ (sigaGen‘(TopOpen‘𝐾)) = ∪
(TopOpen‘𝐾) |
34 | 30, 33 | syl6eqr 2833 |
. . . . . 6
⊢ (𝜑 → 𝐶 = ∪
(sigaGen‘(TopOpen‘𝐾))) |
35 | 34 | feq3d 6331 |
. . . . 5
⊢ (𝜑 → ((𝐹 ∘𝑓 + 𝐺):∪
dom 𝑀⟶𝐶 ↔ (𝐹 ∘𝑓 + 𝐺):∪
dom 𝑀⟶∪ (sigaGen‘(TopOpen‘𝐾)))) |
36 | 25, 35 | mpbid 224 |
. . . 4
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):∪
dom 𝑀⟶∪ (sigaGen‘(TopOpen‘𝐾))) |
37 | 31 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (TopOpen‘𝐾) ∈ V) |
38 | 37 | sgsiga 31043 |
. . . . . 6
⊢ (𝜑 →
(sigaGen‘(TopOpen‘𝐾)) ∈ ∪ ran
sigAlgebra) |
39 | | uniexg 7285 |
. . . . . 6
⊢
((sigaGen‘(TopOpen‘𝐾)) ∈ ∪ ran
sigAlgebra → ∪
(sigaGen‘(TopOpen‘𝐾)) ∈ V) |
40 | 38, 39 | syl 17 |
. . . . 5
⊢ (𝜑 → ∪ (sigaGen‘(TopOpen‘𝐾)) ∈ V) |
41 | 40, 23 | elmapd 8220 |
. . . 4
⊢ (𝜑 → ((𝐹 ∘𝑓 + 𝐺) ∈ (∪ (sigaGen‘(TopOpen‘𝐾)) ↑𝑚 ∪ dom 𝑀) ↔ (𝐹 ∘𝑓 + 𝐺):∪
dom 𝑀⟶∪ (sigaGen‘(TopOpen‘𝐾)))) |
42 | 36, 41 | mpbird 249 |
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (∪ (sigaGen‘(TopOpen‘𝐾)) ↑𝑚 ∪ dom 𝑀)) |
43 | | inundif 4310 |
. . . . . . 7
⊢ ((𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))) = 𝑏 |
44 | 43 | imaeq2i 5768 |
. . . . . 6
⊢ (◡(𝐹 ∘𝑓 + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺)))) = (◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) |
45 | | ffun 6347 |
. . . . . . . 8
⊢ ((𝐹 ∘𝑓
+ 𝐺):∪
dom 𝑀⟶𝐶 → Fun (𝐹 ∘𝑓 + 𝐺)) |
46 | | unpreima 6658 |
. . . . . . . 8
⊢ (Fun
(𝐹
∘𝑓 + 𝐺) → (◡(𝐹 ∘𝑓 + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺)))) = ((◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) ∪ (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))))) |
47 | 25, 45, 46 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (◡(𝐹 ∘𝑓 + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺)))) = ((◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) ∪ (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))))) |
48 | 47 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘𝑓 + 𝐺) “ ((𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ∪ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺)))) = ((◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) ∪ (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))))) |
49 | 44, 48 | syl5eqr 2829 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) = ((◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) ∪ (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))))) |
50 | | dmmeas 31102 |
. . . . . . . 8
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
51 | 16, 50 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
52 | 51 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
53 | | imaiun 6829 |
. . . . . . . 8
⊢ (◡(𝐹 ∘𝑓 + 𝐺) “ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)){𝑧}) = ∪
𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) |
54 | | iunid 4850 |
. . . . . . . . 9
⊢ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) |
55 | 54 | imaeq2i 5768 |
. . . . . . . 8
⊢ (◡(𝐹 ∘𝑓 + 𝐺) “ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)){𝑧}) = (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) |
56 | 53, 55 | eqtr3i 2805 |
. . . . . . 7
⊢ ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) = (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) |
57 | | inss2 4094 |
. . . . . . . . . 10
⊢ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ⊆ ran (𝐹 ∘𝑓
+ 𝐺) |
58 | 6 | feq3d 6331 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹:∪ dom 𝑀⟶𝐵 ↔ 𝐹:∪ dom 𝑀⟶∪ 𝐽)) |
59 | 18, 58 | mpbird 249 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:∪ dom 𝑀⟶𝐵) |
60 | 6 | feq3d 6331 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺:∪ dom 𝑀⟶𝐵 ↔ 𝐺:∪ dom 𝑀⟶∪ 𝐽)) |
61 | 20, 60 | mpbird 249 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺:∪ dom 𝑀⟶𝐵) |
62 | 1 | ffnd 6345 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → + Fn (𝐵 × 𝐵)) |
63 | 59, 61, 23, 62 | ofpreima2 30173 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) = ∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
64 | 63 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) → (◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) = ∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
65 | 51 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
66 | 51 | ad2antrr 713 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
67 | | simpll 754 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑) |
68 | | inss1 4093 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (◡ + “ {𝑧}) |
69 | | cnvimass 5789 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡ + “ {𝑧}) ⊆ dom + |
70 | 69, 1 | fssdm 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡ + “ {𝑧}) ⊆ (𝐵 × 𝐵)) |
71 | 70 | adantr 473 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) → (◡ + “ {𝑧}) ⊆ (𝐵 × 𝐵)) |
72 | 68, 71 | syl5ss 3870 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐵)) |
73 | 72 | sselda 3859 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵)) |
74 | 51 | adantr 473 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
75 | | sibfof.4 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽 ∈ Fre) |
76 | 75 | sgsiga 31043 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (sigaGen‘𝐽) ∈ ∪ ran sigAlgebra) |
77 | 11, 76 | syl5eqel 2871 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑆 ∈ ∪ ran
sigAlgebra) |
78 | 77 | adantr 473 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝑆 ∈ ∪ ran
sigAlgebra) |
79 | 3, 4, 11, 12, 13, 14, 15, 16, 17 | sibfmbl 31235 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
80 | 79 | adantr 473 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐹 ∈ (dom 𝑀MblFnM𝑆)) |
81 | 4 | tpstop 21249 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑊 ∈ TopSp → 𝐽 ∈ Top) |
82 | | cldssbrsiga 31088 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 ∈ Top →
(Clsd‘𝐽) ⊆
(sigaGen‘𝐽)) |
83 | 2, 81, 82 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
84 | 83 | adantr 473 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽)) |
85 | 75 | adantr 473 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐽 ∈ Fre) |
86 | | xp1st 7533 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (𝐵 × 𝐵) → (1st ‘𝑝) ∈ 𝐵) |
87 | 86 | adantl 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (1st ‘𝑝) ∈ 𝐵) |
88 | 6 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐵 = ∪ 𝐽) |
89 | 87, 88 | eleqtrd 2869 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (1st ‘𝑝) ∈ ∪ 𝐽) |
90 | | eqid 2779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ 𝐽 =
∪ 𝐽 |
91 | 90 | t1sncld 21638 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ Fre ∧
(1st ‘𝑝)
∈ ∪ 𝐽) → {(1st ‘𝑝)} ∈ (Clsd‘𝐽)) |
92 | 85, 89, 91 | syl2anc 576 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(1st ‘𝑝)} ∈ (Clsd‘𝐽)) |
93 | 84, 92 | sseldd 3860 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(1st ‘𝑝)} ∈ (sigaGen‘𝐽)) |
94 | 93, 11 | syl6eleqr 2878 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(1st ‘𝑝)} ∈ 𝑆) |
95 | 74, 78, 80, 94 | mbfmcnvima 31157 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (◡𝐹 “ {(1st ‘𝑝)}) ∈ dom 𝑀) |
96 | 67, 73, 95 | syl2anc 576 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (◡𝐹 “ {(1st ‘𝑝)}) ∈ dom 𝑀) |
97 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | sibfmbl 31235 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) |
98 | 97 | adantr 473 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → 𝐺 ∈ (dom 𝑀MblFnM𝑆)) |
99 | | xp2nd 7534 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ (𝐵 × 𝐵) → (2nd ‘𝑝) ∈ 𝐵) |
100 | 99 | adantl 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (2nd ‘𝑝) ∈ 𝐵) |
101 | 100, 88 | eleqtrd 2869 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (2nd ‘𝑝) ∈ ∪ 𝐽) |
102 | 90 | t1sncld 21638 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ Fre ∧
(2nd ‘𝑝)
∈ ∪ 𝐽) → {(2nd ‘𝑝)} ∈ (Clsd‘𝐽)) |
103 | 85, 101, 102 | syl2anc 576 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(2nd ‘𝑝)} ∈ (Clsd‘𝐽)) |
104 | 84, 103 | sseldd 3860 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(2nd ‘𝑝)} ∈ (sigaGen‘𝐽)) |
105 | 104, 11 | syl6eleqr 2878 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → {(2nd ‘𝑝)} ∈ 𝑆) |
106 | 74, 78, 98, 105 | mbfmcnvima 31157 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (𝐵 × 𝐵)) → (◡𝐺 “ {(2nd ‘𝑝)}) ∈ dom 𝑀) |
107 | 67, 73, 106 | syl2anc 576 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (◡𝐺 “ {(2nd ‘𝑝)}) ∈ dom 𝑀) |
108 | | inelsiga 31036 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ (◡𝐹 “ {(1st ‘𝑝)}) ∈ dom 𝑀 ∧ (◡𝐺 “ {(2nd ‘𝑝)}) ∈ dom 𝑀) → ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
109 | 66, 96, 107, 108 | syl3anc 1351 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) ∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
110 | 109 | ralrimiva 3133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) → ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
111 | 3, 4, 11, 12, 13, 14, 15, 16, 17 | sibfrn 31237 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
112 | 3, 4, 11, 12, 13, 14, 15, 16, 19 | sibfrn 31237 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
113 | | xpfi 8584 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝐹 ∈ Fin ∧ ran
𝐺 ∈ Fin) → (ran
𝐹 × ran 𝐺) ∈ Fin) |
114 | 111, 112,
113 | syl2anc 576 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin) |
115 | | inss2 4094 |
. . . . . . . . . . . . . . . 16
⊢ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) |
116 | | ssdomg 8352 |
. . . . . . . . . . . . . . . 16
⊢ ((ran
𝐹 × ran 𝐺) ∈ Fin → (((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺))) |
117 | 114, 115,
116 | mpisyl 21 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺)) |
118 | | isfinite 8909 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝐹 × ran 𝐺) ∈ Fin ↔ (ran 𝐹 × ran 𝐺) ≺ ω) |
119 | 118 | biimpi 208 |
. . . . . . . . . . . . . . . 16
⊢ ((ran
𝐹 × ran 𝐺) ∈ Fin → (ran 𝐹 × ran 𝐺) ≺ ω) |
120 | | sdomdom 8334 |
. . . . . . . . . . . . . . . 16
⊢ ((ran
𝐹 × ran 𝐺) ≺ ω → (ran
𝐹 × ran 𝐺) ≼
ω) |
121 | 114, 119,
120 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ran 𝐹 × ran 𝐺) ≼ ω) |
122 | | domtr 8359 |
. . . . . . . . . . . . . . 15
⊢ ((((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺) ∧ (ran 𝐹 × ran 𝐺) ≼ ω) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) |
123 | 117, 121,
122 | syl2anc 576 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) |
124 | 123 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) |
125 | | nfcv 2933 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑝((◡
+ “
{𝑧}) ∩ (ran 𝐹 × ran 𝐺)) |
126 | 125 | sigaclcuni 31019 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀 ∧ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) → ∪ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
127 | 65, 110, 124, 126 | syl3anc 1351 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) → ∪ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
128 | 64, 127 | eqeltrd 2867 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)) → (◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
129 | 128 | ralrimiva 3133 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
130 | | ssralv 3924 |
. . . . . . . . . 10
⊢ ((𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ⊆ ran (𝐹 ∘𝑓
+ 𝐺) → (∀𝑧 ∈ ran (𝐹 ∘𝑓 + 𝐺)(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀)) |
131 | 57, 129, 130 | mpsyl 68 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
132 | 131 | adantr 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
133 | 1 | ffund 6348 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun + ) |
134 | | imafi 8612 |
. . . . . . . . . . . . 13
⊢ ((Fun
+ ∧
(ran 𝐹 × ran 𝐺) ∈ Fin) → ( + “ (ran
𝐹 × ran 𝐺)) ∈ Fin) |
135 | 133, 114,
134 | syl2anc 576 |
. . . . . . . . . . . 12
⊢ (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin) |
136 | 18, 20, 9, 23 | ofrn2 30149 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) |
137 | | ssfi 8533 |
. . . . . . . . . . . 12
⊢ ((( + “ (ran
𝐹 × ran 𝐺)) ∈ Fin ∧ ran (𝐹 ∘𝑓
+ 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) → ran (𝐹 ∘𝑓 + 𝐺) ∈ Fin) |
138 | 135, 136,
137 | syl2anc 576 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) ∈ Fin) |
139 | | ssdomg 8352 |
. . . . . . . . . . 11
⊢ (ran
(𝐹
∘𝑓 + 𝐺) ∈ Fin → ((𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ⊆ ran (𝐹 ∘𝑓
+ 𝐺) → (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ≼ ran (𝐹 ∘𝑓
+ 𝐺))) |
140 | 138, 57, 139 | mpisyl 21 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ≼ ran (𝐹 ∘𝑓
+ 𝐺)) |
141 | | isfinite 8909 |
. . . . . . . . . . . 12
⊢ (ran
(𝐹
∘𝑓 + 𝐺) ∈ Fin ↔ ran (𝐹 ∘𝑓 + 𝐺) ≺
ω) |
142 | 138, 141 | sylib 210 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) ≺
ω) |
143 | | sdomdom 8334 |
. . . . . . . . . . 11
⊢ (ran
(𝐹
∘𝑓 + 𝐺) ≺ ω → ran (𝐹 ∘𝑓
+ 𝐺) ≼
ω) |
144 | 142, 143 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ran (𝐹 ∘𝑓 + 𝐺) ≼
ω) |
145 | | domtr 8359 |
. . . . . . . . . 10
⊢ (((𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ≼ ran (𝐹 ∘𝑓
+ 𝐺) ∧ ran (𝐹 ∘𝑓 + 𝐺) ≼ ω) → (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ≼
ω) |
146 | 140, 144,
145 | syl2anc 576 |
. . . . . . . . 9
⊢ (𝜑 → (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ≼
ω) |
147 | 146 | adantr 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ≼
ω) |
148 | | nfcv 2933 |
. . . . . . . . 9
⊢
Ⅎ𝑧(𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) |
149 | 148 | sigaclcuni 31019 |
. . . . . . . 8
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ ∀𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺)) ≼ ω) →
∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
150 | 52, 132, 147, 149 | syl3anc 1351 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∪ 𝑧 ∈ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) ∈ dom 𝑀) |
151 | 56, 150 | syl5eqelr 2872 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) ∈ dom 𝑀) |
152 | | difpreima 6660 |
. . . . . . . . . 10
⊢ (Fun
(𝐹
∘𝑓 + 𝐺) → (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))) = ((◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘𝑓 + 𝐺) “ ran (𝐹 ∘𝑓 + 𝐺)))) |
153 | 25, 45, 152 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))) = ((◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘𝑓 + 𝐺) “ ran (𝐹 ∘𝑓 + 𝐺)))) |
154 | | cnvimarndm 5790 |
. . . . . . . . . . 11
⊢ (◡(𝐹 ∘𝑓 + 𝐺) “ ran (𝐹 ∘𝑓 + 𝐺)) = dom (𝐹 ∘𝑓 + 𝐺) |
155 | 154 | difeq2i 3987 |
. . . . . . . . . 10
⊢ ((◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘𝑓 + 𝐺) “ ran (𝐹 ∘𝑓 + 𝐺))) = ((◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∖ dom (𝐹 ∘𝑓 + 𝐺)) |
156 | | cnvimass 5789 |
. . . . . . . . . . 11
⊢ (◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ⊆ dom (𝐹 ∘𝑓 + 𝐺) |
157 | | ssdif0 4210 |
. . . . . . . . . . 11
⊢ ((◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ⊆ dom (𝐹 ∘𝑓 + 𝐺) ↔ ((◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∖ dom (𝐹 ∘𝑓 + 𝐺)) = ∅) |
158 | 156, 157 | mpbi 222 |
. . . . . . . . . 10
⊢ ((◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∖ dom (𝐹 ∘𝑓 + 𝐺)) = ∅ |
159 | 155, 158 | eqtri 2803 |
. . . . . . . . 9
⊢ ((◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∖ (◡(𝐹 ∘𝑓 + 𝐺) “ ran (𝐹 ∘𝑓 + 𝐺))) = ∅ |
160 | 153, 159 | syl6eq 2831 |
. . . . . . . 8
⊢ (𝜑 → (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))) = ∅) |
161 | | 0elsiga 31015 |
. . . . . . . . 9
⊢ (dom
𝑀 ∈ ∪ ran sigAlgebra → ∅ ∈ dom 𝑀) |
162 | 16, 50, 161 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ dom 𝑀) |
163 | 160, 162 | eqeltrd 2867 |
. . . . . . 7
⊢ (𝜑 → (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))) ∈ dom 𝑀) |
164 | 163 | adantr 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))) ∈ dom 𝑀) |
165 | | unelsiga 31035 |
. . . . . 6
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) ∈ dom 𝑀 ∧ (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺))) ∈ dom 𝑀) → ((◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) ∪ (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺)))) ∈ dom 𝑀) |
166 | 52, 151, 164, 165 | syl3anc 1351 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∩ ran (𝐹 ∘𝑓 + 𝐺))) ∪ (◡(𝐹 ∘𝑓 + 𝐺) “ (𝑏 ∖ ran (𝐹 ∘𝑓 + 𝐺)))) ∈ dom 𝑀) |
167 | 49, 166 | eqeltrd 2867 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∈ dom 𝑀) |
168 | 167 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))(◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∈ dom 𝑀) |
169 | 51, 38 | ismbfm 31152 |
. . 3
⊢ (𝜑 → ((𝐹 ∘𝑓 + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ↔ ((𝐹 ∘𝑓 + 𝐺) ∈ (∪ (sigaGen‘(TopOpen‘𝐾)) ↑𝑚 ∪ dom 𝑀) ∧ ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))(◡(𝐹 ∘𝑓 + 𝐺) “ 𝑏) ∈ dom 𝑀))) |
170 | 42, 168, 169 | mpbir2and 700 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾)))) |
171 | 63 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ (◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}) = ∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
172 | 171 | fveq2d 6503 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ (𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧})) = (𝑀‘∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
173 | | measbasedom 31103 |
. . . . . . . . 9
⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
174 | 16, 173 | sylib 210 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (measures‘dom 𝑀)) |
175 | 174 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ 𝑀 ∈
(measures‘dom 𝑀)) |
176 | | eldifi 3994 |
. . . . . . . 8
⊢ (𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)})
→ 𝑧 ∈ ran (𝐹 ∘𝑓
+ 𝐺)) |
177 | 176, 110 | sylan2 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ ∀𝑝 ∈
((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
178 | 123 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) |
179 | | sneq 4451 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → {𝑥} = {(1st ‘𝑝)}) |
180 | 179 | imaeq2d 5770 |
. . . . . . . . . 10
⊢ (𝑥 = (1st ‘𝑝) → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {(1st ‘𝑝)})) |
181 | | sneq 4451 |
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘𝑝) → {𝑦} = {(2nd ‘𝑝)}) |
182 | 181 | imaeq2d 5770 |
. . . . . . . . . 10
⊢ (𝑦 = (2nd ‘𝑝) → (◡𝐺 “ {𝑦}) = (◡𝐺 “ {(2nd ‘𝑝)})) |
183 | 18 | ffund 6348 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐹) |
184 | | sndisj 4921 |
. . . . . . . . . . 11
⊢
Disj 𝑥 ∈
ran 𝐹{𝑥} |
185 | | disjpreima 30100 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ Disj 𝑥 ∈ ran 𝐹{𝑥}) → Disj 𝑥 ∈ ran 𝐹(◡𝐹 “ {𝑥})) |
186 | 183, 184,
185 | sylancl 577 |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑥 ∈ ran 𝐹(◡𝐹 “ {𝑥})) |
187 | 20 | ffund 6348 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐺) |
188 | | sndisj 4921 |
. . . . . . . . . . 11
⊢
Disj 𝑦 ∈
ran 𝐺{𝑦} |
189 | | disjpreima 30100 |
. . . . . . . . . . 11
⊢ ((Fun
𝐺 ∧ Disj 𝑦 ∈ ran 𝐺{𝑦}) → Disj 𝑦 ∈ ran 𝐺(◡𝐺 “ {𝑦})) |
190 | 187, 188,
189 | sylancl 577 |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑦 ∈ ran 𝐺(◡𝐺 “ {𝑦})) |
191 | 180, 182,
186, 190 | disjxpin 30104 |
. . . . . . . . 9
⊢ (𝜑 → Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
192 | | disjss1 4903 |
. . . . . . . . 9
⊢ (((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) → Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
193 | 115, 191,
192 | mpsyl 68 |
. . . . . . . 8
⊢ (𝜑 → Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
194 | 193 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ Disj 𝑝 ∈
((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
195 | | measvuni 31115 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ∀𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀 ∧ (((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω ∧ Disj 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) → (𝑀‘∪
𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) = Σ*𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
196 | 175, 177,
178, 194, 195 | syl112anc 1354 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ (𝑀‘∪ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) = Σ*𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
197 | | ssfi 8533 |
. . . . . . . . 9
⊢ (((ran
𝐹 × ran 𝐺) ∈ Fin ∧ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)) → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin) |
198 | 114, 115,
197 | sylancl 577 |
. . . . . . . 8
⊢ (𝜑 → ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin) |
199 | 198 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin) |
200 | | simpll 754 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑) |
201 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) |
202 | 115, 201 | sseldi 3857 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (ran 𝐹 × ran 𝐺)) |
203 | | xp1st 7533 |
. . . . . . . . 9
⊢ (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st ‘𝑝) ∈ ran 𝐹) |
204 | 202, 203 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st ‘𝑝) ∈ ran 𝐹) |
205 | | xp2nd 7534 |
. . . . . . . . 9
⊢ (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd ‘𝑝) ∈ ran 𝐺) |
206 | 202, 205 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd ‘𝑝) ∈ ran 𝐺) |
207 | | oveq12 6985 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 0 ∧ 𝑦 = 0 ) → (𝑥 + 𝑦) = ( 0 + 0 )) |
208 | | sibfof.5 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ( 0 + 0 ) =
(0g‘𝐾)) |
209 | 207, 208 | sylan9eqr 2837 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 = 0 ∧ 𝑦 = 0 )) → (𝑥 + 𝑦) = (0g‘𝐾)) |
210 | 209 | ex 405 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 = 0 ∧ 𝑦 = 0 ) → (𝑥 + 𝑦) = (0g‘𝐾))) |
211 | 210 | necon3ad 2981 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑥 + 𝑦) ≠ (0g‘𝐾) → ¬ (𝑥 = 0 ∧ 𝑦 = 0 ))) |
212 | | neorian 3063 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ¬ (𝑥 = 0 ∧ 𝑦 = 0 )) |
213 | 211, 212 | syl6ibr 244 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) |
214 | 213 | adantr 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) |
215 | 214 | ralrimivva 3142 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) |
216 | 200, 215 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ))) |
217 | 68 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (◡ + “ {𝑧})) |
218 | 217 | sselda 3859 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (◡ + “ {𝑧})) |
219 | | fniniseg 6655 |
. . . . . . . . . . . . 13
⊢ ( + Fn (𝐵 × 𝐵) → (𝑝 ∈ (◡ + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧))) |
220 | 200, 62, 219 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (◡ + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧))) |
221 | 218, 220 | mpbid 224 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧)) |
222 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧) → ( + ‘𝑝) = 𝑧) |
223 | | 1st2nd2 7540 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ (𝐵 × 𝐵) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
224 | 223 | fveq2d 6503 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ (𝐵 × 𝐵) → ( + ‘𝑝) = ( +
‘〈(1st ‘𝑝), (2nd ‘𝑝)〉)) |
225 | | df-ov 6979 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑝) + (2nd
‘𝑝)) = ( +
‘〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
226 | 224, 225 | syl6eqr 2833 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ (𝐵 × 𝐵) → ( + ‘𝑝) = ((1st ‘𝑝) + (2nd
‘𝑝))) |
227 | 226 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧) → ( + ‘𝑝) = ((1st ‘𝑝) + (2nd
‘𝑝))) |
228 | 222, 227 | eqtr3d 2817 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( + ‘𝑝) = 𝑧) → 𝑧 = ((1st ‘𝑝) + (2nd
‘𝑝))) |
229 | 221, 228 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 = ((1st ‘𝑝) + (2nd
‘𝑝))) |
230 | | simplr 756 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)})) |
231 | 230 | eldifbd 3843 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ¬ 𝑧 ∈ {(0g‘𝐾)}) |
232 | | velsn 4457 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈
{(0g‘𝐾)}
↔ 𝑧 =
(0g‘𝐾)) |
233 | 232 | necon3bbii 3015 |
. . . . . . . . . . 11
⊢ (¬
𝑧 ∈
{(0g‘𝐾)}
↔ 𝑧 ≠
(0g‘𝐾)) |
234 | 231, 233 | sylib 210 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ≠ (0g‘𝐾)) |
235 | 229, 234 | eqnetrrd 3036 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st ‘𝑝) + (2nd
‘𝑝)) ≠
(0g‘𝐾)) |
236 | 176, 73 | sylanl2 668 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵)) |
237 | 236, 86 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st ‘𝑝) ∈ 𝐵) |
238 | 236, 99 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd ‘𝑝) ∈ 𝐵) |
239 | | oveq1 6983 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑝) → (𝑥 + 𝑦) = ((1st ‘𝑝) + 𝑦)) |
240 | 239 | neeq1d 3027 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → ((𝑥 + 𝑦) ≠ (0g‘𝐾) ↔ ((1st ‘𝑝) + 𝑦) ≠ (0g‘𝐾))) |
241 | | neeq1 3030 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (1st ‘𝑝) → (𝑥 ≠ 0 ↔ (1st
‘𝑝) ≠ 0
)) |
242 | 241 | orbi1d 900 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘𝑝) → ((𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ((1st
‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 ))) |
243 | 240, 242 | imbi12d 337 |
. . . . . . . . . . 11
⊢ (𝑥 = (1st ‘𝑝) → (((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 )) ↔
(((1st ‘𝑝)
+ 𝑦) ≠
(0g‘𝐾)
→ ((1st ‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 )))) |
244 | | oveq2 6984 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘𝑝) → ((1st
‘𝑝) + 𝑦) = ((1st
‘𝑝) +
(2nd ‘𝑝))) |
245 | 244 | neeq1d 3027 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘𝑝) → (((1st
‘𝑝) + 𝑦) ≠
(0g‘𝐾)
↔ ((1st ‘𝑝) + (2nd
‘𝑝)) ≠
(0g‘𝐾))) |
246 | | neeq1 3030 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘𝑝) → (𝑦 ≠ 0 ↔ (2nd
‘𝑝) ≠ 0
)) |
247 | 246 | orbi2d 899 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘𝑝) → (((1st
‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ((1st
‘𝑝) ≠ 0 ∨
(2nd ‘𝑝)
≠ 0
))) |
248 | 245, 247 | imbi12d 337 |
. . . . . . . . . . 11
⊢ (𝑦 = (2nd ‘𝑝) → ((((1st
‘𝑝) + 𝑦) ≠
(0g‘𝐾)
→ ((1st ‘𝑝) ≠ 0 ∨ 𝑦 ≠ 0 )) ↔
(((1st ‘𝑝)
+
(2nd ‘𝑝))
≠ (0g‘𝐾) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)))) |
249 | 243, 248 | rspc2v 3549 |
. . . . . . . . . 10
⊢
(((1st ‘𝑝) ∈ 𝐵 ∧ (2nd ‘𝑝) ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 )) →
(((1st ‘𝑝)
+
(2nd ‘𝑝))
≠ (0g‘𝐾) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)))) |
250 | 237, 238,
249 | syl2anc 576 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ≠ (0g‘𝐾) → (𝑥 ≠ 0 ∨ 𝑦 ≠ 0 )) →
(((1st ‘𝑝)
+
(2nd ‘𝑝))
≠ (0g‘𝐾) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)))) |
251 | 216, 235,
250 | mp2d 49 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st ‘𝑝) ≠ 0 ∨ (2nd
‘𝑝) ≠ 0
)) |
252 | 3, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 75 | sibfinima 31239 |
. . . . . . . 8
⊢ (((𝜑 ∧ (1st
‘𝑝) ∈ ran 𝐹 ∧ (2nd
‘𝑝) ∈ ran 𝐺) ∧ ((1st
‘𝑝) ≠ 0 ∨
(2nd ‘𝑝)
≠ 0 ))
→ (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
(0[,)+∞)) |
253 | 200, 204,
206, 251, 252 | syl31anc 1353 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
(0[,)+∞)) |
254 | 199, 253 | esumpfinval 30975 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ Σ*𝑝
∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) = Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
255 | 172, 196,
254 | 3eqtrd 2819 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ (𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧})) = Σ𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
256 | | rge0ssre 12660 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ |
257 | 256, 253 | sseldi 3857 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
ℝ) |
258 | 199, 257 | fsumrecl 14951 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ Σ𝑝 ∈
((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) ∈
ℝ) |
259 | 255, 258 | eqeltrd 2867 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ (𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧})) ∈ ℝ) |
260 | 175 | adantr 473 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑀 ∈ (measures‘dom 𝑀)) |
261 | 176, 109 | sylanl2 668 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) |
262 | | measge0 31108 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ∈ dom 𝑀) → 0 ≤ (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
263 | 260, 261,
262 | syl2anc 576 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
∧ 𝑝 ∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 0 ≤ (𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
264 | 199, 257,
263 | fsumge0 15010 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ 0 ≤ Σ𝑝
∈ ((◡ + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
265 | 264, 255 | breqtrrd 4957 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ 0 ≤ (𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧}))) |
266 | | elrege0 12658 |
. . . 4
⊢ ((𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧})) ∈ (0[,)+∞) ↔ ((𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧})) ∈ ℝ ∧ 0 ≤ (𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧})))) |
267 | 259, 265,
266 | sylanbrc 575 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)}))
→ (𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧})) ∈ (0[,)+∞)) |
268 | 267 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)})(𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧})) ∈ (0[,)+∞)) |
269 | | eqid 2779 |
. . 3
⊢
(sigaGen‘(TopOpen‘𝐾)) = (sigaGen‘(TopOpen‘𝐾)) |
270 | | eqid 2779 |
. . 3
⊢
(0g‘𝐾) = (0g‘𝐾) |
271 | | eqid 2779 |
. . 3
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) |
272 | | eqid 2779 |
. . 3
⊢
(ℝHom‘(Scalar‘𝐾)) = (ℝHom‘(Scalar‘𝐾)) |
273 | 27, 28, 269, 270, 271, 272, 26, 16 | issibf 31233 |
. 2
⊢ (𝜑 → ((𝐹 ∘𝑓 + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹 ∘𝑓 + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ∧ ran (𝐹 ∘𝑓 + 𝐺) ∈ Fin ∧ ∀𝑧 ∈ (ran (𝐹 ∘𝑓 + 𝐺) ∖
{(0g‘𝐾)})(𝑀‘(◡(𝐹 ∘𝑓 + 𝐺) “ {𝑧})) ∈ (0[,)+∞)))) |
274 | 170, 138,
268, 273 | mpbir3and 1322 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ dom (𝐾sitg𝑀)) |