Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sibfof Structured version   Visualization version   GIF version

Theorem sibfof 31708
Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sibfof.c 𝐶 = (Base‘𝐾)
sibfof.0 (𝜑𝑊 ∈ TopSp)
sibfof.1 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
sibfof.2 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
sibfof.3 (𝜑𝐾 ∈ TopSp)
sibfof.4 (𝜑𝐽 ∈ Fre)
sibfof.5 (𝜑 → ( 0 + 0 ) = (0g𝐾))
Assertion
Ref Expression
sibfof (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))

Proof of Theorem sibfof
Dummy variables 𝑥 𝑦 𝑧 𝑝 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sibfof.1 . . . . . . . 8 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
2 sibfof.0 . . . . . . . . . . 11 (𝜑𝑊 ∈ TopSp)
3 sitgval.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
4 sitgval.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘𝑊)
53, 4tpsuni 21541 . . . . . . . . . . 11 (𝑊 ∈ TopSp → 𝐵 = 𝐽)
62, 5syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
76sqxpeqd 5551 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐵) = ( 𝐽 × 𝐽))
87feq2d 6473 . . . . . . . 8 (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐶+ :( 𝐽 × 𝐽)⟶𝐶))
91, 8mpbid 235 . . . . . . 7 (𝜑+ :( 𝐽 × 𝐽)⟶𝐶)
109fovrnda 7299 . . . . . 6 ((𝜑 ∧ (𝑧 𝐽𝑥 𝐽)) → (𝑧 + 𝑥) ∈ 𝐶)
11 sitgval.s . . . . . . 7 𝑆 = (sigaGen‘𝐽)
12 sitgval.0 . . . . . . 7 0 = (0g𝑊)
13 sitgval.x . . . . . . 7 · = ( ·𝑠𝑊)
14 sitgval.h . . . . . . 7 𝐻 = (ℝHom‘(Scalar‘𝑊))
15 sitgval.1 . . . . . . 7 (𝜑𝑊𝑉)
16 sitgval.2 . . . . . . 7 (𝜑𝑀 ran measures)
17 sibfmbl.1 . . . . . . 7 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
183, 4, 11, 12, 13, 14, 15, 16, 17sibff 31704 . . . . . 6 (𝜑𝐹: dom 𝑀 𝐽)
19 sibfof.2 . . . . . . 7 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
203, 4, 11, 12, 13, 14, 15, 16, 19sibff 31704 . . . . . 6 (𝜑𝐺: dom 𝑀 𝐽)
21 dmexg 7594 . . . . . . 7 (𝑀 ran measures → dom 𝑀 ∈ V)
22 uniexg 7446 . . . . . . 7 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
2316, 21, 223syl 18 . . . . . 6 (𝜑 dom 𝑀 ∈ V)
24 inidm 4145 . . . . . 6 ( dom 𝑀 dom 𝑀) = dom 𝑀
2510, 18, 20, 23, 23, 24off 7404 . . . . 5 (𝜑 → (𝐹f + 𝐺): dom 𝑀𝐶)
26 sibfof.3 . . . . . . . 8 (𝜑𝐾 ∈ TopSp)
27 sibfof.c . . . . . . . . 9 𝐶 = (Base‘𝐾)
28 eqid 2798 . . . . . . . . 9 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2927, 28tpsuni 21541 . . . . . . . 8 (𝐾 ∈ TopSp → 𝐶 = (TopOpen‘𝐾))
3026, 29syl 17 . . . . . . 7 (𝜑𝐶 = (TopOpen‘𝐾))
31 fvex 6658 . . . . . . . 8 (TopOpen‘𝐾) ∈ V
32 unisg 31512 . . . . . . . 8 ((TopOpen‘𝐾) ∈ V → (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾))
3331, 32ax-mp 5 . . . . . . 7 (sigaGen‘(TopOpen‘𝐾)) = (TopOpen‘𝐾)
3430, 33eqtr4di 2851 . . . . . 6 (𝜑𝐶 = (sigaGen‘(TopOpen‘𝐾)))
3534feq3d 6474 . . . . 5 (𝜑 → ((𝐹f + 𝐺): dom 𝑀𝐶 ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
3625, 35mpbid 235 . . . 4 (𝜑 → (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾)))
3731a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘𝐾) ∈ V)
3837sgsiga 31511 . . . . . 6 (𝜑 → (sigaGen‘(TopOpen‘𝐾)) ∈ ran sigAlgebra)
3938uniexd 7448 . . . . 5 (𝜑 (sigaGen‘(TopOpen‘𝐾)) ∈ V)
4039, 23elmapd 8403 . . . 4 (𝜑 → ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ↔ (𝐹f + 𝐺): dom 𝑀 (sigaGen‘(TopOpen‘𝐾))))
4136, 40mpbird 260 . . 3 (𝜑 → (𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀))
42 inundif 4385 . . . . . . 7 ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺))) = 𝑏
4342imaeq2i 5894 . . . . . 6 ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = ((𝐹f + 𝐺) “ 𝑏)
44 ffun 6490 . . . . . . . 8 ((𝐹f + 𝐺): dom 𝑀𝐶 → Fun (𝐹f + 𝐺))
45 unpreima 6810 . . . . . . . 8 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4625, 44, 453syl 18 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4746adantr 484 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ ((𝑏 ∩ ran (𝐹f + 𝐺)) ∪ (𝑏 ∖ ran (𝐹f + 𝐺)))) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
4843, 47syl5eqr 2847 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) = (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))))
49 dmmeas 31570 . . . . . . . 8 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
5016, 49syl 17 . . . . . . 7 (𝜑 → dom 𝑀 ran sigAlgebra)
5150adantr 484 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → dom 𝑀 ran sigAlgebra)
52 imaiun 6982 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧})
53 iunid 4947 . . . . . . . . 9 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧} = (𝑏 ∩ ran (𝐹f + 𝐺))
5453imaeq2i 5894 . . . . . . . 8 ((𝐹f + 𝐺) “ 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺)){𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
5552, 54eqtr3i 2823 . . . . . . 7 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) = ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺)))
56 inss2 4156 . . . . . . . . . 10 (𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺)
576feq3d 6474 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹: dom 𝑀𝐵𝐹: dom 𝑀 𝐽))
5818, 57mpbird 260 . . . . . . . . . . . . . 14 (𝜑𝐹: dom 𝑀𝐵)
596feq3d 6474 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺: dom 𝑀𝐵𝐺: dom 𝑀 𝐽))
6020, 59mpbird 260 . . . . . . . . . . . . . 14 (𝜑𝐺: dom 𝑀𝐵)
611ffnd 6488 . . . . . . . . . . . . . 14 (𝜑+ Fn (𝐵 × 𝐵))
6258, 60, 23, 61ofpreima2 30429 . . . . . . . . . . . . 13 (𝜑 → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6362adantr 484 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6450adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → dom 𝑀 ran sigAlgebra)
6550ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → dom 𝑀 ran sigAlgebra)
66 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
67 inss1 4155 . . . . . . . . . . . . . . . . . 18 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧})
68 cnvimass 5916 . . . . . . . . . . . . . . . . . . . 20 ( + “ {𝑧}) ⊆ dom +
6968, 1fssdm 6504 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7069adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ( + “ {𝑧}) ⊆ (𝐵 × 𝐵))
7167, 70sstrid 3926 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐵))
7271sselda 3915 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
7350adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → dom 𝑀 ran sigAlgebra)
74 sibfof.4 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ Fre)
7574sgsiga 31511 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (sigaGen‘𝐽) ∈ ran sigAlgebra)
7611, 75eqeltrid 2894 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ran sigAlgebra)
7776adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝑆 ran sigAlgebra)
783, 4, 11, 12, 13, 14, 15, 16, 17sibfmbl 31703 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (dom 𝑀MblFnM𝑆))
7978adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐹 ∈ (dom 𝑀MblFnM𝑆))
804tpstop 21542 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ TopSp → 𝐽 ∈ Top)
81 cldssbrsiga 31556 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
822, 80, 813syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8382adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (Clsd‘𝐽) ⊆ (sigaGen‘𝐽))
8474adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐽 ∈ Fre)
85 xp1st 7703 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (1st𝑝) ∈ 𝐵)
8685adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐵)
876adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐵 = 𝐽)
8886, 87eleqtrd 2892 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (1st𝑝) ∈ 𝐽)
89 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 𝐽 = 𝐽
9089t1sncld 21931 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (1st𝑝) ∈ 𝐽) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9184, 88, 90syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (Clsd‘𝐽))
9283, 91sseldd 3916 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ (sigaGen‘𝐽))
9392, 11eleqtrrdi 2901 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(1st𝑝)} ∈ 𝑆)
9473, 77, 79, 93mbfmcnvima 31625 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
9566, 72, 94syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀)
963, 4, 11, 12, 13, 14, 15, 16, 19sibfmbl 31703 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 ∈ (dom 𝑀MblFnM𝑆))
9796adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → 𝐺 ∈ (dom 𝑀MblFnM𝑆))
98 xp2nd 7704 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (𝐵 × 𝐵) → (2nd𝑝) ∈ 𝐵)
9998adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐵)
10099, 87eleqtrd 2892 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (2nd𝑝) ∈ 𝐽)
10189t1sncld 21931 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Fre ∧ (2nd𝑝) ∈ 𝐽) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10284, 100, 101syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (Clsd‘𝐽))
10383, 102sseldd 3916 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ (sigaGen‘𝐽))
104103, 11eleqtrrdi 2901 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → {(2nd𝑝)} ∈ 𝑆)
10573, 77, 97, 104mbfmcnvima 31625 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (𝐵 × 𝐵)) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
10666, 72, 105syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀)
107 inelsiga 31504 . . . . . . . . . . . . . . 15 ((dom 𝑀 ran sigAlgebra ∧ (𝐹 “ {(1st𝑝)}) ∈ dom 𝑀 ∧ (𝐺 “ {(2nd𝑝)}) ∈ dom 𝑀) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
10865, 95, 106, 107syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
109108ralrimiva 3149 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
1103, 4, 11, 12, 13, 14, 15, 16, 17sibfrn 31705 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐹 ∈ Fin)
1113, 4, 11, 12, 13, 14, 15, 16, 19sibfrn 31705 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝐺 ∈ Fin)
112 xpfi 8773 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
113110, 111, 112syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
114 inss2 4156 . . . . . . . . . . . . . . . 16 (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)
115 ssdomg 8538 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺)))
116113, 114, 115mpisyl 21 . . . . . . . . . . . . . . 15 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺))
117 isfinite 9099 . . . . . . . . . . . . . . . . 17 ((ran 𝐹 × ran 𝐺) ∈ Fin ↔ (ran 𝐹 × ran 𝐺) ≺ ω)
118117biimpi 219 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ∈ Fin → (ran 𝐹 × ran 𝐺) ≺ ω)
119 sdomdom 8520 . . . . . . . . . . . . . . . 16 ((ran 𝐹 × ran 𝐺) ≺ ω → (ran 𝐹 × ran 𝐺) ≼ ω)
120113, 118, 1193syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ran 𝐹 × ran 𝐺) ≼ ω)
121 domtr 8545 . . . . . . . . . . . . . . 15 (((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ (ran 𝐹 × ran 𝐺) ∧ (ran 𝐹 × ran 𝐺) ≼ ω) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
122116, 120, 121syl2anc 587 . . . . . . . . . . . . . 14 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
123122adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
124 nfcv 2955 . . . . . . . . . . . . . 14 𝑝(( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))
125124sigaclcuni 31487 . . . . . . . . . . . . 13 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12664, 109, 123, 125syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
12763, 126eqeltrd 2890 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ran (𝐹f + 𝐺)) → ((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
128127ralrimiva 3149 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
129 ssralv 3981 . . . . . . . . . 10 ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (∀𝑧 ∈ ran (𝐹f + 𝐺)((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀))
13056, 128, 129mpsyl 68 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
131130adantr 484 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
1321ffund 6491 . . . . . . . . . . . . 13 (𝜑 → Fun + )
133 imafi 8801 . . . . . . . . . . . . 13 ((Fun + ∧ (ran 𝐹 × ran 𝐺) ∈ Fin) → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
134132, 113, 133syl2anc 587 . . . . . . . . . . . 12 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin)
13518, 20, 9, 23ofrn2 30401 . . . . . . . . . . . 12 (𝜑 → ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
136 ssfi 8722 . . . . . . . . . . . 12 ((( + “ (ran 𝐹 × ran 𝐺)) ∈ Fin ∧ ran (𝐹f + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺))) → ran (𝐹f + 𝐺) ∈ Fin)
137134, 135, 136syl2anc 587 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ∈ Fin)
138 ssdomg 8538 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ∈ Fin → ((𝑏 ∩ ran (𝐹f + 𝐺)) ⊆ ran (𝐹f + 𝐺) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺)))
139137, 56, 138mpisyl 21 . . . . . . . . . 10 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺))
140 isfinite 9099 . . . . . . . . . . . 12 (ran (𝐹f + 𝐺) ∈ Fin ↔ ran (𝐹f + 𝐺) ≺ ω)
141137, 140sylib 221 . . . . . . . . . . 11 (𝜑 → ran (𝐹f + 𝐺) ≺ ω)
142 sdomdom 8520 . . . . . . . . . . 11 (ran (𝐹f + 𝐺) ≺ ω → ran (𝐹f + 𝐺) ≼ ω)
143141, 142syl 17 . . . . . . . . . 10 (𝜑 → ran (𝐹f + 𝐺) ≼ ω)
144 domtr 8545 . . . . . . . . . 10 (((𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ran (𝐹f + 𝐺) ∧ ran (𝐹f + 𝐺) ≼ ω) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
145139, 143, 144syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
146145adantr 484 . . . . . . . 8 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω)
147 nfcv 2955 . . . . . . . . 9 𝑧(𝑏 ∩ ran (𝐹f + 𝐺))
148147sigaclcuni 31487 . . . . . . . 8 ((dom 𝑀 ran sigAlgebra ∧ ∀𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀 ∧ (𝑏 ∩ ran (𝐹f + 𝐺)) ≼ ω) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
14951, 131, 146, 148syl3anc 1368 . . . . . . 7 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → 𝑧 ∈ (𝑏 ∩ ran (𝐹f + 𝐺))((𝐹f + 𝐺) “ {𝑧}) ∈ dom 𝑀)
15055, 149eqeltrrid 2895 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
151 difpreima 6812 . . . . . . . . . 10 (Fun (𝐹f + 𝐺) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
15225, 44, 1513syl 18 . . . . . . . . 9 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))))
153 cnvimarndm 5917 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺)) = dom (𝐹f + 𝐺)
154153difeq2i 4047 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺))
155 cnvimass 5916 . . . . . . . . . . 11 ((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺)
156 ssdif0 4277 . . . . . . . . . . 11 (((𝐹f + 𝐺) “ 𝑏) ⊆ dom (𝐹f + 𝐺) ↔ (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅)
157155, 156mpbi 233 . . . . . . . . . 10 (((𝐹f + 𝐺) “ 𝑏) ∖ dom (𝐹f + 𝐺)) = ∅
158154, 157eqtri 2821 . . . . . . . . 9 (((𝐹f + 𝐺) “ 𝑏) ∖ ((𝐹f + 𝐺) “ ran (𝐹f + 𝐺))) = ∅
159152, 158eqtrdi 2849 . . . . . . . 8 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) = ∅)
160 0elsiga 31483 . . . . . . . . 9 (dom 𝑀 ran sigAlgebra → ∅ ∈ dom 𝑀)
16116, 49, 1603syl 18 . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑀)
162159, 161eqeltrd 2890 . . . . . . 7 (𝜑 → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
163162adantr 484 . . . . . 6 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀)
164 unelsiga 31503 . . . . . 6 ((dom 𝑀 ran sigAlgebra ∧ ((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∈ dom 𝑀 ∧ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺))) ∈ dom 𝑀) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16551, 150, 163, 164syl3anc 1368 . . . . 5 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → (((𝐹f + 𝐺) “ (𝑏 ∩ ran (𝐹f + 𝐺))) ∪ ((𝐹f + 𝐺) “ (𝑏 ∖ ran (𝐹f + 𝐺)))) ∈ dom 𝑀)
16648, 165eqeltrd 2890 . . . 4 ((𝜑𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))) → ((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
167166ralrimiva 3149 . . 3 (𝜑 → ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)
16850, 38ismbfm 31620 . . 3 (𝜑 → ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ↔ ((𝐹f + 𝐺) ∈ ( (sigaGen‘(TopOpen‘𝐾)) ↑m dom 𝑀) ∧ ∀𝑏 ∈ (sigaGen‘(TopOpen‘𝐾))((𝐹f + 𝐺) “ 𝑏) ∈ dom 𝑀)))
16941, 167, 168mpbir2and 712 . 2 (𝜑 → (𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))))
17062adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ((𝐹f + 𝐺) “ {𝑧}) = 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
171170fveq2d 6649 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
172 measbasedom 31571 . . . . . . . . 9 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
17316, 172sylib 221 . . . . . . . 8 (𝜑𝑀 ∈ (measures‘dom 𝑀))
174173adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 𝑀 ∈ (measures‘dom 𝑀))
175 eldifi 4054 . . . . . . . 8 (𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}) → 𝑧 ∈ ran (𝐹f + 𝐺))
176175, 109sylan2 595 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
177122adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω)
178 sneq 4535 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → {𝑥} = {(1st𝑝)})
179178imaeq2d 5896 . . . . . . . . . 10 (𝑥 = (1st𝑝) → (𝐹 “ {𝑥}) = (𝐹 “ {(1st𝑝)}))
180 sneq 4535 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → {𝑦} = {(2nd𝑝)})
181180imaeq2d 5896 . . . . . . . . . 10 (𝑦 = (2nd𝑝) → (𝐺 “ {𝑦}) = (𝐺 “ {(2nd𝑝)}))
18218ffund 6491 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
183 sndisj 5021 . . . . . . . . . . 11 Disj 𝑥 ∈ ran 𝐹{𝑥}
184 disjpreima 30347 . . . . . . . . . . 11 ((Fun 𝐹Disj 𝑥 ∈ ran 𝐹{𝑥}) → Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
185182, 183, 184sylancl 589 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ran 𝐹(𝐹 “ {𝑥}))
18620ffund 6491 . . . . . . . . . . 11 (𝜑 → Fun 𝐺)
187 sndisj 5021 . . . . . . . . . . 11 Disj 𝑦 ∈ ran 𝐺{𝑦}
188 disjpreima 30347 . . . . . . . . . . 11 ((Fun 𝐺Disj 𝑦 ∈ ran 𝐺{𝑦}) → Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
189186, 187, 188sylancl 589 . . . . . . . . . 10 (𝜑Disj 𝑦 ∈ ran 𝐺(𝐺 “ {𝑦}))
190179, 181, 185, 189disjxpin 30351 . . . . . . . . 9 (𝜑Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
191 disjss1 5001 . . . . . . . . 9 ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺) → (Disj 𝑝 ∈ (ran 𝐹 × ran 𝐺)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
192114, 190, 191mpsyl 68 . . . . . . . 8 (𝜑Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
193192adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
194 measvuni 31583 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ∀𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀 ∧ ((( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ≼ ω ∧ Disj 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
195174, 176, 177, 193, 194syl112anc 1371 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
196 ssfi 8722 . . . . . . . . 9 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ (ran 𝐹 × ran 𝐺)) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
197113, 114, 196sylancl 589 . . . . . . . 8 (𝜑 → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
198197adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ∈ Fin)
199 simpll 766 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝜑)
200 simpr 488 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)))
201114, 200sseldi 3913 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (ran 𝐹 × ran 𝐺))
202 xp1st 7703 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (1st𝑝) ∈ ran 𝐹)
203201, 202syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ ran 𝐹)
204 xp2nd 7704 . . . . . . . . 9 (𝑝 ∈ (ran 𝐹 × ran 𝐺) → (2nd𝑝) ∈ ran 𝐺)
205201, 204syl 17 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ ran 𝐺)
206 oveq12 7144 . . . . . . . . . . . . . . . 16 ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = ( 0 + 0 ))
207 sibfof.5 . . . . . . . . . . . . . . . 16 (𝜑 → ( 0 + 0 ) = (0g𝐾))
208206, 207sylan9eqr 2855 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 = 0𝑦 = 0 )) → (𝑥 + 𝑦) = (0g𝐾))
209208ex 416 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 = 0𝑦 = 0 ) → (𝑥 + 𝑦) = (0g𝐾)))
210209necon3ad 3000 . . . . . . . . . . . . 13 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → ¬ (𝑥 = 0𝑦 = 0 )))
211 neorian 3081 . . . . . . . . . . . . 13 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
212210, 211syl6ibr 255 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
213212adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
214213ralrimivva 3156 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
215199, 214syl 17 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )))
21667a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺)) ⊆ ( + “ {𝑧}))
217216sselda 3915 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ( + “ {𝑧}))
218 fniniseg 6807 . . . . . . . . . . . . 13 ( + Fn (𝐵 × 𝐵) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
219199, 61, 2183syl 18 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ ( + “ {𝑧}) ↔ (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧)))
220217, 219mpbid 235 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧))
221 simpr 488 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = 𝑧)
222 1st2nd2 7710 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝐵 × 𝐵) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
223222fveq2d 6649 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩))
224 df-ov 7138 . . . . . . . . . . . . . 14 ((1st𝑝) + (2nd𝑝)) = ( + ‘⟨(1st𝑝), (2nd𝑝)⟩)
225223, 224eqtr4di 2851 . . . . . . . . . . . . 13 (𝑝 ∈ (𝐵 × 𝐵) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
226225adantr 484 . . . . . . . . . . . 12 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → ( +𝑝) = ((1st𝑝) + (2nd𝑝)))
227221, 226eqtr3d 2835 . . . . . . . . . . 11 ((𝑝 ∈ (𝐵 × 𝐵) ∧ ( +𝑝) = 𝑧) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
228220, 227syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 = ((1st𝑝) + (2nd𝑝)))
229 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)}))
230229eldifbd 3894 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ¬ 𝑧 ∈ {(0g𝐾)})
231 velsn 4541 . . . . . . . . . . . 12 (𝑧 ∈ {(0g𝐾)} ↔ 𝑧 = (0g𝐾))
232231necon3bbii 3034 . . . . . . . . . . 11 𝑧 ∈ {(0g𝐾)} ↔ 𝑧 ≠ (0g𝐾))
233230, 232sylib 221 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑧 ≠ (0g𝐾))
234228, 233eqnetrrd 3055 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾))
235175, 72sylanl2 680 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐵))
236235, 85syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (1st𝑝) ∈ 𝐵)
237235, 98syl 17 . . . . . . . . . 10 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (2nd𝑝) ∈ 𝐵)
238 oveq1 7142 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥 + 𝑦) = ((1st𝑝) + 𝑦))
239238neeq1d 3046 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥 + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + 𝑦) ≠ (0g𝐾)))
240 neeq1 3049 . . . . . . . . . . . . 13 (𝑥 = (1st𝑝) → (𝑥0 ↔ (1st𝑝) ≠ 0 ))
241240orbi1d 914 . . . . . . . . . . . 12 (𝑥 = (1st𝑝) → ((𝑥0𝑦0 ) ↔ ((1st𝑝) ≠ 0𝑦0 )))
242239, 241imbi12d 348 . . . . . . . . . . 11 (𝑥 = (1st𝑝) → (((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) ↔ (((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 ))))
243 oveq2 7143 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → ((1st𝑝) + 𝑦) = ((1st𝑝) + (2nd𝑝)))
244243neeq1d 3046 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) + 𝑦) ≠ (0g𝐾) ↔ ((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾)))
245 neeq1 3049 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑝) → (𝑦0 ↔ (2nd𝑝) ≠ 0 ))
246245orbi2d 913 . . . . . . . . . . . 12 (𝑦 = (2nd𝑝) → (((1st𝑝) ≠ 0𝑦0 ) ↔ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )))
247244, 246imbi12d 348 . . . . . . . . . . 11 (𝑦 = (2nd𝑝) → ((((1st𝑝) + 𝑦) ≠ (0g𝐾) → ((1st𝑝) ≠ 0𝑦0 )) ↔ (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
248242, 247rspc2v 3581 . . . . . . . . . 10 (((1st𝑝) ∈ 𝐵 ∧ (2nd𝑝) ∈ 𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
249236, 237, 248syl2anc 587 . . . . . . . . 9 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ≠ (0g𝐾) → (𝑥0𝑦0 )) → (((1st𝑝) + (2nd𝑝)) ≠ (0g𝐾) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))))
250215, 234, 249mp2d 49 . . . . . . . 8 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 ))
2513, 4, 11, 12, 13, 14, 15, 16, 17, 19, 2, 74sibfinima 31707 . . . . . . . 8 (((𝜑 ∧ (1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ∧ ((1st𝑝) ≠ 0 ∨ (2nd𝑝) ≠ 0 )) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
252199, 203, 205, 250, 251syl31anc 1370 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ (0[,)+∞))
253198, 252esumpfinval 31444 . . . . . 6 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ*𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
254171, 195, 2533eqtrd 2837 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) = Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
255 rge0ssre 12834 . . . . . . 7 (0[,)+∞) ⊆ ℝ
256255, 252sseldi 3913 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
257198, 256fsumrecl 15083 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) ∈ ℝ)
258254, 257eqeltrd 2890 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ)
259174adantr 484 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 𝑀 ∈ (measures‘dom 𝑀))
260175, 108sylanl2 680 . . . . . . 7 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀)
261 measge0 31576 . . . . . . 7 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∈ dom 𝑀) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
262259, 260, 261syl2anc 587 . . . . . 6 (((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) ∧ 𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))) → 0 ≤ (𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
263198, 256, 262fsumge0 15142 . . . . 5 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ Σ𝑝 ∈ (( + “ {𝑧}) ∩ (ran 𝐹 × ran 𝐺))(𝑀‘((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
264263, 254breqtrrd 5058 . . . 4 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧})))
265 elrege0 12832 . . . 4 ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞) ↔ ((𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ ℝ ∧ 0 ≤ (𝑀‘((𝐹f + 𝐺) “ {𝑧}))))
266258, 264, 265sylanbrc 586 . . 3 ((𝜑𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})) → (𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
267266ralrimiva 3149 . 2 (𝜑 → ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))
268 eqid 2798 . . 3 (sigaGen‘(TopOpen‘𝐾)) = (sigaGen‘(TopOpen‘𝐾))
269 eqid 2798 . . 3 (0g𝐾) = (0g𝐾)
270 eqid 2798 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
271 eqid 2798 . . 3 (ℝHom‘(Scalar‘𝐾)) = (ℝHom‘(Scalar‘𝐾))
27227, 28, 268, 269, 270, 271, 26, 16issibf 31701 . 2 (𝜑 → ((𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀) ↔ ((𝐹f + 𝐺) ∈ (dom 𝑀MblFnM(sigaGen‘(TopOpen‘𝐾))) ∧ ran (𝐹f + 𝐺) ∈ Fin ∧ ∀𝑧 ∈ (ran (𝐹f + 𝐺) ∖ {(0g𝐾)})(𝑀‘((𝐹f + 𝐺) “ {𝑧})) ∈ (0[,)+∞))))
273169, 137, 267, 272mpbir3and 1339 1 (𝜑 → (𝐹f + 𝐺) ∈ dom (𝐾sitg𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  cop 4531   cuni 4800   ciun 4881  Disj wdisj 4995   class class class wbr 5030   × cxp 5517  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  ωcom 7560  1st c1st 7669  2nd c2nd 7670  m cmap 8389  cdom 8490  csdm 8491  Fincfn 8492  cr 10525  0cc0 10526  +∞cpnf 10661  cle 10665  [,)cico 12728  Σcsu 15034  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  TopOpenctopn 16687  0gc0g 16705  Topctop 21498  TopSpctps 21537  Clsdccld 21621  Frect1 21912  ℝHomcrrh 31344  Σ*cesum 31396  sigAlgebracsiga 31477  sigaGencsigagen 31507  measurescmeas 31564  MblFnMcmbfm 31618  sitgcsitg 31697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-ordt 16766  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-ps 17802  df-tsr 17803  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-abv 19581  df-lmod 19629  df-scaf 19630  df-sra 19937  df-rgmod 19938  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-t1 21919  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-tmd 22677  df-tgp 22678  df-tsms 22732  df-trg 22765  df-xms 22927  df-ms 22928  df-tms 22929  df-nm 23189  df-ngp 23190  df-nrg 23192  df-nlm 23193  df-ii 23482  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-esum 31397  df-siga 31478  df-sigagen 31508  df-meas 31565  df-mbfm 31619  df-sitg 31698
This theorem is referenced by:  sitmcl  31719
  Copyright terms: Public domain W3C validator