MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeaddlem Structured version   Visualization version   GIF version

Theorem coeaddlem 26154
Description: Lemma for coeadd 26156 and dgradd 26173. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coeadd.3 𝑀 = (deg‘𝐹)
coeadd.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coeaddlem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f + 𝐺)) = (𝐴f + 𝐵) ∧ (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀)))

Proof of Theorem coeaddlem
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyaddcl 26125 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
2 coeadd.4 . . . . . 6 𝑁 = (deg‘𝐺)
3 dgrcl 26138 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
42, 3eqeltrid 2832 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
54adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
6 coeadd.3 . . . . . 6 𝑀 = (deg‘𝐹)
7 dgrcl 26138 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
86, 7eqeltrid 2832 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
98adantr 480 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
105, 9ifcld 4535 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
11 addcl 11150 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1211adantl 481 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
13 coefv0.1 . . . . . 6 𝐴 = (coeff‘𝐹)
1413coef3 26137 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
1514adantr 480 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
16 coeadd.2 . . . . . 6 𝐵 = (coeff‘𝐺)
1716coef3 26137 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
1817adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
19 nn0ex 12448 . . . . 5 0 ∈ V
2019a1i 11 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ℕ0 ∈ V)
21 inidm 4190 . . . 4 (ℕ0 ∩ ℕ0) = ℕ0
2212, 15, 18, 20, 20, 21off 7671 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + 𝐵):ℕ0⟶ℂ)
23 oveq12 7396 . . . . . . . . . 10 (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴𝑘) + (𝐵𝑘)) = (0 + 0))
24 00id 11349 . . . . . . . . . 10 (0 + 0) = 0
2523, 24eqtrdi 2780 . . . . . . . . 9 (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴𝑘) + (𝐵𝑘)) = 0)
2615ffnd 6689 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴 Fn ℕ0)
2718ffnd 6689 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵 Fn ℕ0)
28 eqidd 2730 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) = (𝐴𝑘))
29 eqidd 2730 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) = (𝐵𝑘))
3026, 27, 20, 20, 21, 28, 29ofval 7664 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴f + 𝐵)‘𝑘) = ((𝐴𝑘) + (𝐵𝑘)))
3130eqeq1d 2731 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) = 0 ↔ ((𝐴𝑘) + (𝐵𝑘)) = 0))
3225, 31imbitrrid 246 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴f + 𝐵)‘𝑘) = 0))
3332necon3ad 2938 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) ≠ 0 → ¬ ((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0)))
34 neorian 3020 . . . . . . 7 (((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0) ↔ ¬ ((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0))
3533, 34imbitrrdi 252 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) ≠ 0 → ((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0)))
3613, 6dgrub2 26140 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
3736adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
38 plyco0 26097 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
399, 15, 38syl2anc 584 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
4037, 39mpbid 232 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
4140r19.21bi 3229 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
429adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
4342nn0red 12504 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℝ)
445adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ0)
4544nn0red 12504 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℝ)
46 max1 13145 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4743, 45, 46syl2anc 584 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
48 nn0re 12451 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
4948adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
5010adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
5150nn0red 12504 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ)
52 letr 11268 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ) → ((𝑘𝑀𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5349, 43, 51, 52syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝑘𝑀𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5447, 53mpan2d 694 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑀𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5541, 54syld 47 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5616, 2dgrub2 26140 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
5756adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
58 plyco0 26097 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐵:ℕ0⟶ℂ) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
595, 18, 58syl2anc 584 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
6057, 59mpbid 232 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
6160r19.21bi 3229 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
62 max2 13147 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
6343, 45, 62syl2anc 584 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
64 letr 11268 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ) → ((𝑘𝑁𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6549, 45, 51, 64syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝑘𝑁𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6663, 65mpan2d 694 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑁𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6761, 66syld 47 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6855, 67jaod 859 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6935, 68syld 47 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
7069ralrimiva 3125 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
71 plyco0 26097 . . . . 5 ((if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0 ∧ (𝐴f + 𝐵):ℕ0⟶ℂ) → (((𝐴f + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
7210, 22, 71syl2anc 584 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (((𝐴f + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
7370, 72mpbird 257 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴f + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0})
74 simpl 482 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
75 simpr 484 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
7613, 6coeid 26143 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
7776adantr 480 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
7816, 2coeid 26143 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
7978adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
8074, 75, 9, 5, 15, 18, 37, 57, 77, 79plyaddlem1 26118 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘))))
811, 10, 22, 73, 80coeeq 26132 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + 𝐺)) = (𝐴f + 𝐵))
82 elfznn0 13581 . . . 4 (𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0)
83 ffvelcdm 7053 . . . 4 (((𝐴f + 𝐵):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴f + 𝐵)‘𝑘) ∈ ℂ)
8422, 82, 83syl2an 596 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐴f + 𝐵)‘𝑘) ∈ ℂ)
851, 10, 84, 80dgrle 26148 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
8681, 85jca 511 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f + 𝐺)) = (𝐴f + 𝐵) ∧ (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  ifcif 4488  {csn 4589   class class class wbr 5107  cmpt 5188  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  0cn0 12442  cuz 12793  ...cfz 13468  cexp 14026  Σcsu 15652  Polycply 26089  coeffccoe 26091  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096
This theorem is referenced by:  coeadd  26156  dgradd  26173
  Copyright terms: Public domain W3C validator