MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeaddlem Structured version   Visualization version   GIF version

Theorem coeaddlem 26171
Description: Lemma for coeadd 26173 and dgradd 26190. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coeadd.3 𝑀 = (deg‘𝐹)
coeadd.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coeaddlem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f + 𝐺)) = (𝐴f + 𝐵) ∧ (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀)))

Proof of Theorem coeaddlem
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyaddcl 26142 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
2 coeadd.4 . . . . . 6 𝑁 = (deg‘𝐺)
3 dgrcl 26155 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
42, 3eqeltrid 2832 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
54adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
6 coeadd.3 . . . . . 6 𝑀 = (deg‘𝐹)
7 dgrcl 26155 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
86, 7eqeltrid 2832 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
98adantr 480 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
105, 9ifcld 4525 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
11 addcl 11110 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1211adantl 481 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
13 coefv0.1 . . . . . 6 𝐴 = (coeff‘𝐹)
1413coef3 26154 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
1514adantr 480 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
16 coeadd.2 . . . . . 6 𝐵 = (coeff‘𝐺)
1716coef3 26154 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
1817adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
19 nn0ex 12409 . . . . 5 0 ∈ V
2019a1i 11 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ℕ0 ∈ V)
21 inidm 4180 . . . 4 (ℕ0 ∩ ℕ0) = ℕ0
2212, 15, 18, 20, 20, 21off 7635 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴f + 𝐵):ℕ0⟶ℂ)
23 oveq12 7362 . . . . . . . . . 10 (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴𝑘) + (𝐵𝑘)) = (0 + 0))
24 00id 11310 . . . . . . . . . 10 (0 + 0) = 0
2523, 24eqtrdi 2780 . . . . . . . . 9 (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴𝑘) + (𝐵𝑘)) = 0)
2615ffnd 6657 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴 Fn ℕ0)
2718ffnd 6657 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵 Fn ℕ0)
28 eqidd 2730 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) = (𝐴𝑘))
29 eqidd 2730 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) = (𝐵𝑘))
3026, 27, 20, 20, 21, 28, 29ofval 7628 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴f + 𝐵)‘𝑘) = ((𝐴𝑘) + (𝐵𝑘)))
3130eqeq1d 2731 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) = 0 ↔ ((𝐴𝑘) + (𝐵𝑘)) = 0))
3225, 31imbitrrid 246 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0) → ((𝐴f + 𝐵)‘𝑘) = 0))
3332necon3ad 2938 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) ≠ 0 → ¬ ((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0)))
34 neorian 3020 . . . . . . 7 (((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0) ↔ ¬ ((𝐴𝑘) = 0 ∧ (𝐵𝑘) = 0))
3533, 34imbitrrdi 252 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) ≠ 0 → ((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0)))
3613, 6dgrub2 26157 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
3736adantr 480 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
38 plyco0 26114 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
399, 15, 38syl2anc 584 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴 “ (ℤ‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀)))
4037, 39mpbid 232 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
4140r19.21bi 3221 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
429adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
4342nn0red 12465 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℝ)
445adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ0)
4544nn0red 12465 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℝ)
46 max1 13106 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
4743, 45, 46syl2anc 584 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
48 nn0re 12412 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
4948adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
5010adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
5150nn0red 12465 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ)
52 letr 11229 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ) → ((𝑘𝑀𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5349, 43, 51, 52syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝑘𝑀𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5447, 53mpan2d 694 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑀𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5541, 54syld 47 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
5616, 2dgrub2 26157 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
5756adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
58 plyco0 26114 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐵:ℕ0⟶ℂ) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
595, 18, 58syl2anc 584 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐵 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁)))
6057, 59mpbid 232 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
6160r19.21bi 3221 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘𝑁))
62 max2 13108 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
6343, 45, 62syl2anc 584 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
64 letr 11229 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ) → ((𝑘𝑁𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6549, 45, 51, 64syl3anc 1373 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝑘𝑁𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6663, 65mpan2d 694 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (𝑘𝑁𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6761, 66syld 47 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6855, 67jaod 859 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) ≠ 0 ∨ (𝐵𝑘) ≠ 0) → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
6935, 68syld 47 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ℕ0) → (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
7069ralrimiva 3121 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑘 ∈ ℕ0 (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
71 plyco0 26114 . . . . 5 ((if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0 ∧ (𝐴f + 𝐵):ℕ0⟶ℂ) → (((𝐴f + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
7210, 22, 71syl2anc 584 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (((𝐴f + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((𝐴f + 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
7370, 72mpbird 257 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴f + 𝐵) “ (ℤ‘(if(𝑀𝑁, 𝑁, 𝑀) + 1))) = {0})
74 simpl 482 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
75 simpr 484 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
7613, 6coeid 26160 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
7776adantr 480 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
7816, 2coeid 26160 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
7978adantl 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
8074, 75, 9, 5, 15, 18, 37, 57, 77, 79plyaddlem1 26135 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘))))
811, 10, 22, 73, 80coeeq 26149 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + 𝐺)) = (𝐴f + 𝐵))
82 elfznn0 13542 . . . 4 (𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0)
83 ffvelcdm 7019 . . . 4 (((𝐴f + 𝐵):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴f + 𝐵)‘𝑘) ∈ ℂ)
8422, 82, 83syl2an 596 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐴f + 𝐵)‘𝑘) ∈ ℂ)
851, 10, 84, 80dgrle 26165 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
8681, 85jca 511 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f + 𝐺)) = (𝐴f + 𝐵) ∧ (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  ifcif 4478  {csn 4579   class class class wbr 5095  cmpt 5176  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  0cn0 12403  cuz 12754  ...cfz 13429  cexp 13987  Σcsu 15612  Polycply 26106  coeffccoe 26108  degcdgr 26109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-rlim 15415  df-sum 15613  df-0p 25588  df-ply 26110  df-coe 26112  df-dgr 26113
This theorem is referenced by:  coeadd  26173  dgradd  26190
  Copyright terms: Public domain W3C validator