MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem2 Structured version   Visualization version   GIF version

Theorem itg1addlem2 25598
Description: Lemma for itg1add 25602. The function 𝐼 represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both 𝑖 and 𝑗 are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 25600 and itg1addlem5 25601. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
itg1add.3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
Assertion
Ref Expression
itg1addlem2 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Distinct variable groups:   𝑖,𝑗,𝐹   𝑖,𝐺,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑖,𝑗)

Proof of Theorem itg1addlem2
StepHypRef Expression
1 iffalse 4497 . . . . . . . 8 (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
21adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
3 i1fadd.1 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ∫1)
4 i1fima 25579 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑖}) ∈ dom vol)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑖}) ∈ dom vol)
6 i1fadd.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ dom ∫1)
7 i1fima 25579 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑗}) ∈ dom vol)
86, 7syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 “ {𝑗}) ∈ dom vol)
9 inmbl 25443 . . . . . . . . . 10 (((𝐹 “ {𝑖}) ∈ dom vol ∧ (𝐺 “ {𝑗}) ∈ dom vol) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
105, 8, 9syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
1110ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
12 mblvol 25431 . . . . . . . 8 (((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
1311, 12syl 17 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
142, 13eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
15 neorian 3020 . . . . . . 7 ((𝑖 ≠ 0 ∨ 𝑗 ≠ 0) ↔ ¬ (𝑖 = 0 ∧ 𝑗 = 0))
16 inss1 4200 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖})
175ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ∈ dom vol)
18 mblss 25432 . . . . . . . . . 10 ((𝐹 “ {𝑖}) ∈ dom vol → (𝐹 “ {𝑖}) ⊆ ℝ)
1917, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ⊆ ℝ)
20 mblvol 25431 . . . . . . . . . . 11 ((𝐹 “ {𝑖}) ∈ dom vol → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
2117, 20syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
223ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝐹 ∈ dom ∫1)
23 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ ℝ)
24 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ≠ 0)
25 eldifsn 4750 . . . . . . . . . . . 12 (𝑖 ∈ (ℝ ∖ {0}) ↔ (𝑖 ∈ ℝ ∧ 𝑖 ≠ 0))
2623, 24, 25sylanbrc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ (ℝ ∖ {0}))
27 i1fima2sn 25581 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑖 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2822, 26, 27syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2921, 28eqeltrrd 2829 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘(𝐹 “ {𝑖})) ∈ ℝ)
30 ovolsscl 25387 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖}) ∧ (𝐹 “ {𝑖}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑖})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
3116, 19, 29, 30mp3an2i 1468 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
32 inss2 4201 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗})
336adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → 𝐺 ∈ dom ∫1)
3433, 7syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝐺 “ {𝑗}) ∈ dom vol)
3534adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ∈ dom vol)
36 mblss 25432 . . . . . . . . . 10 ((𝐺 “ {𝑗}) ∈ dom vol → (𝐺 “ {𝑗}) ⊆ ℝ)
3735, 36syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ⊆ ℝ)
38 mblvol 25431 . . . . . . . . . . 11 ((𝐺 “ {𝑗}) ∈ dom vol → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
3935, 38syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
406ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝐺 ∈ dom ∫1)
41 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ ℝ)
42 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ≠ 0)
43 eldifsn 4750 . . . . . . . . . . . 12 (𝑗 ∈ (ℝ ∖ {0}) ↔ (𝑗 ∈ ℝ ∧ 𝑗 ≠ 0))
4441, 42, 43sylanbrc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ (ℝ ∖ {0}))
45 i1fima2sn 25581 . . . . . . . . . . 11 ((𝐺 ∈ dom ∫1𝑗 ∈ (ℝ ∖ {0})) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4640, 44, 45syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4739, 46eqeltrrd 2829 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘(𝐺 “ {𝑗})) ∈ ℝ)
48 ovolsscl 25387 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗}) ∧ (𝐺 “ {𝑗}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑗})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
4932, 37, 47, 48mp3an2i 1468 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5031, 49jaodan 959 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ (𝑖 ≠ 0 ∨ 𝑗 ≠ 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5115, 50sylan2br 595 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5214, 51eqeltrd 2828 . . . . 5 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5352ex 412 . . . 4 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ))
54 iftrue 4494 . . . . 5 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = 0)
55 0re 11176 . . . . 5 0 ∈ ℝ
5654, 55eqeltrdi 2836 . . . 4 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5753, 56pm2.61d2 181 . . 3 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5857ralrimivva 3180 . 2 (𝜑 → ∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
59 itg1add.3 . . 3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
6059fmpo 8047 . 2 (∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ ↔ 𝐼:(ℝ × ℝ)⟶ℝ)
6158, 60sylib 218 1 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  cin 3913  wss 3914  ifcif 4488  {csn 4589   × cxp 5636  ccnv 5637  dom cdm 5638  cima 5641  wf 6507  cfv 6511  cmpo 7389  cr 11067  0cc0 11068  vol*covol 25363  volcvol 25364  1citg1 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521
This theorem is referenced by:  itg1addlem4  25600  itg1addlem5  25601
  Copyright terms: Public domain W3C validator