MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem2 Structured version   Visualization version   GIF version

Theorem itg1addlem2 24290
Description: Lemma for itg1add 24294. The function 𝐼 represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both 𝑖 and 𝑗 are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 24292 and itg1addlem5 24293. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
itg1add.3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
Assertion
Ref Expression
itg1addlem2 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Distinct variable groups:   𝑖,𝑗,𝐹   𝑖,𝐺,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑖,𝑗)

Proof of Theorem itg1addlem2
StepHypRef Expression
1 iffalse 4457 . . . . . . . 8 (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
21adantl 485 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
3 i1fadd.1 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ∫1)
4 i1fima 24271 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑖}) ∈ dom vol)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑖}) ∈ dom vol)
6 i1fadd.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ dom ∫1)
7 i1fima 24271 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑗}) ∈ dom vol)
86, 7syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 “ {𝑗}) ∈ dom vol)
9 inmbl 24135 . . . . . . . . . 10 (((𝐹 “ {𝑖}) ∈ dom vol ∧ (𝐺 “ {𝑗}) ∈ dom vol) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
105, 8, 9syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
1110ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
12 mblvol 24123 . . . . . . . 8 (((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
1311, 12syl 17 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
142, 13eqtrd 2859 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
15 neorian 3107 . . . . . . 7 ((𝑖 ≠ 0 ∨ 𝑗 ≠ 0) ↔ ¬ (𝑖 = 0 ∧ 𝑗 = 0))
16 inss1 4188 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖})
175ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ∈ dom vol)
18 mblss 24124 . . . . . . . . . 10 ((𝐹 “ {𝑖}) ∈ dom vol → (𝐹 “ {𝑖}) ⊆ ℝ)
1917, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ⊆ ℝ)
20 mblvol 24123 . . . . . . . . . . 11 ((𝐹 “ {𝑖}) ∈ dom vol → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
2117, 20syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
223ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝐹 ∈ dom ∫1)
23 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ ℝ)
24 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ≠ 0)
25 eldifsn 4700 . . . . . . . . . . . 12 (𝑖 ∈ (ℝ ∖ {0}) ↔ (𝑖 ∈ ℝ ∧ 𝑖 ≠ 0))
2623, 24, 25sylanbrc 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ (ℝ ∖ {0}))
27 i1fima2sn 24273 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑖 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2822, 26, 27syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2921, 28eqeltrrd 2917 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘(𝐹 “ {𝑖})) ∈ ℝ)
30 ovolsscl 24079 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖}) ∧ (𝐹 “ {𝑖}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑖})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
3116, 19, 29, 30mp3an2i 1463 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
32 inss2 4189 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗})
336adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → 𝐺 ∈ dom ∫1)
3433, 7syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝐺 “ {𝑗}) ∈ dom vol)
3534adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ∈ dom vol)
36 mblss 24124 . . . . . . . . . 10 ((𝐺 “ {𝑗}) ∈ dom vol → (𝐺 “ {𝑗}) ⊆ ℝ)
3735, 36syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ⊆ ℝ)
38 mblvol 24123 . . . . . . . . . . 11 ((𝐺 “ {𝑗}) ∈ dom vol → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
3935, 38syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
406ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝐺 ∈ dom ∫1)
41 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ ℝ)
42 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ≠ 0)
43 eldifsn 4700 . . . . . . . . . . . 12 (𝑗 ∈ (ℝ ∖ {0}) ↔ (𝑗 ∈ ℝ ∧ 𝑗 ≠ 0))
4441, 42, 43sylanbrc 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ (ℝ ∖ {0}))
45 i1fima2sn 24273 . . . . . . . . . . 11 ((𝐺 ∈ dom ∫1𝑗 ∈ (ℝ ∖ {0})) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4640, 44, 45syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4739, 46eqeltrrd 2917 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘(𝐺 “ {𝑗})) ∈ ℝ)
48 ovolsscl 24079 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗}) ∧ (𝐺 “ {𝑗}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑗})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
4932, 37, 47, 48mp3an2i 1463 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5031, 49jaodan 955 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ (𝑖 ≠ 0 ∨ 𝑗 ≠ 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5115, 50sylan2br 597 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5214, 51eqeltrd 2916 . . . . 5 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5352ex 416 . . . 4 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ))
54 iftrue 4454 . . . . 5 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = 0)
55 0re 10628 . . . . 5 0 ∈ ℝ
5654, 55eqeltrdi 2924 . . . 4 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5753, 56pm2.61d2 184 . . 3 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5857ralrimivva 3185 . 2 (𝜑 → ∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
59 itg1add.3 . . 3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
6059fmpo 7749 . 2 (∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ ↔ 𝐼:(ℝ × ℝ)⟶ℝ)
6158, 60sylib 221 1 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3013  wral 3132  cdif 3915  cin 3917  wss 3918  ifcif 4448  {csn 4548   × cxp 5534  ccnv 5535  dom cdm 5536  cima 5539  wf 6332  cfv 6336  cmpo 7140  cr 10521  0cc0 10522  vol*covol 24055  volcvol 24056  1citg1 24208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-z 11968  df-uz 12230  df-q 12335  df-rp 12376  df-xadd 12494  df-ioo 12728  df-ico 12730  df-icc 12731  df-fz 12884  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13424  df-hash 13685  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-clim 14834  df-sum 15032  df-xmet 20524  df-met 20525  df-ovol 24057  df-vol 24058  df-mbf 24212  df-itg1 24213
This theorem is referenced by:  itg1addlem4  24292  itg1addlem5  24293
  Copyright terms: Public domain W3C validator