Proof of Theorem itg1addlem2
Step | Hyp | Ref
| Expression |
1 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
(𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) = (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) |
2 | 1 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) = (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) |
3 | | i1fadd.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
4 | | i1fima 24747 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {𝑖}) ∈ dom vol) |
5 | 3, 4 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ {𝑖}) ∈ dom vol) |
6 | | i1fadd.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
7 | | i1fima 24747 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ dom ∫1
→ (◡𝐺 “ {𝑗}) ∈ dom vol) |
8 | 6, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐺 “ {𝑗}) ∈ dom vol) |
9 | | inmbl 24611 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ {𝑖}) ∈ dom vol ∧ (◡𝐺 “ {𝑗}) ∈ dom vol) → ((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) ∈ dom vol) |
10 | 5, 8, 9 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) ∈ dom vol) |
11 | 10 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → ((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) ∈ dom vol) |
12 | | mblvol 24599 |
. . . . . . . 8
⊢ (((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) ∈ dom vol → (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) = (vol*‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) |
13 | 11, 12 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) = (vol*‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) |
14 | 2, 13 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) = (vol*‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) |
15 | | neorian 3038 |
. . . . . . 7
⊢ ((𝑖 ≠ 0 ∨ 𝑗 ≠ 0) ↔ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) |
16 | | inss1 4159 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) ⊆ (◡𝐹 “ {𝑖}) |
17 | 5 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (◡𝐹 “ {𝑖}) ∈ dom vol) |
18 | | mblss 24600 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑖}) ∈ dom vol → (◡𝐹 “ {𝑖}) ⊆ ℝ) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (◡𝐹 “ {𝑖}) ⊆ ℝ) |
20 | | mblvol 24599 |
. . . . . . . . . . 11
⊢ ((◡𝐹 “ {𝑖}) ∈ dom vol → (vol‘(◡𝐹 “ {𝑖})) = (vol*‘(◡𝐹 “ {𝑖}))) |
21 | 17, 20 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(◡𝐹 “ {𝑖})) = (vol*‘(◡𝐹 “ {𝑖}))) |
22 | 3 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝐹 ∈ dom
∫1) |
23 | | simplrl 773 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ ℝ) |
24 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ≠ 0) |
25 | | eldifsn 4717 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (ℝ ∖ {0})
↔ (𝑖 ∈ ℝ
∧ 𝑖 ≠
0)) |
26 | 23, 24, 25 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ (ℝ ∖
{0})) |
27 | | i1fima2sn 24749 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑖 ∈ (ℝ
∖ {0})) → (vol‘(◡𝐹 “ {𝑖})) ∈ ℝ) |
28 | 22, 26, 27 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(◡𝐹 “ {𝑖})) ∈ ℝ) |
29 | 21, 28 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘(◡𝐹 “ {𝑖})) ∈ ℝ) |
30 | | ovolsscl 24555 |
. . . . . . . . 9
⊢ ((((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) ⊆ (◡𝐹 “ {𝑖}) ∧ (◡𝐹 “ {𝑖}) ⊆ ℝ ∧ (vol*‘(◡𝐹 “ {𝑖})) ∈ ℝ) →
(vol*‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) ∈ ℝ) |
31 | 16, 19, 29, 30 | mp3an2i 1464 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) ∈ ℝ) |
32 | | inss2 4160 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) ⊆ (◡𝐺 “ {𝑗}) |
33 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → 𝐺 ∈ dom
∫1) |
34 | 33, 7 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (◡𝐺 “ {𝑗}) ∈ dom vol) |
35 | 34 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (◡𝐺 “ {𝑗}) ∈ dom vol) |
36 | | mblss 24600 |
. . . . . . . . . 10
⊢ ((◡𝐺 “ {𝑗}) ∈ dom vol → (◡𝐺 “ {𝑗}) ⊆ ℝ) |
37 | 35, 36 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (◡𝐺 “ {𝑗}) ⊆ ℝ) |
38 | | mblvol 24599 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ {𝑗}) ∈ dom vol → (vol‘(◡𝐺 “ {𝑗})) = (vol*‘(◡𝐺 “ {𝑗}))) |
39 | 35, 38 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(◡𝐺 “ {𝑗})) = (vol*‘(◡𝐺 “ {𝑗}))) |
40 | 6 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝐺 ∈ dom
∫1) |
41 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ ℝ) |
42 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ≠ 0) |
43 | | eldifsn 4717 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (ℝ ∖ {0})
↔ (𝑗 ∈ ℝ
∧ 𝑗 ≠
0)) |
44 | 41, 42, 43 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ (ℝ ∖
{0})) |
45 | | i1fima2sn 24749 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑗 ∈ (ℝ
∖ {0})) → (vol‘(◡𝐺 “ {𝑗})) ∈ ℝ) |
46 | 40, 44, 45 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(◡𝐺 “ {𝑗})) ∈ ℝ) |
47 | 39, 46 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘(◡𝐺 “ {𝑗})) ∈ ℝ) |
48 | | ovolsscl 24555 |
. . . . . . . . 9
⊢ ((((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})) ⊆ (◡𝐺 “ {𝑗}) ∧ (◡𝐺 “ {𝑗}) ⊆ ℝ ∧ (vol*‘(◡𝐺 “ {𝑗})) ∈ ℝ) →
(vol*‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) ∈ ℝ) |
49 | 32, 37, 47, 48 | mp3an2i 1464 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) ∈ ℝ) |
50 | 31, 49 | jaodan 954 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ (𝑖 ≠ 0 ∨ 𝑗 ≠ 0)) → (vol*‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) ∈ ℝ) |
51 | 15, 50 | sylan2br 594 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol*‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))) ∈ ℝ) |
52 | 14, 51 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) ∈ ℝ) |
53 | 52 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) ∈ ℝ)) |
54 | | iftrue 4462 |
. . . . 5
⊢ ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) = 0) |
55 | | 0re 10908 |
. . . . 5
⊢ 0 ∈
ℝ |
56 | 54, 55 | eqeltrdi 2847 |
. . . 4
⊢ ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) ∈ ℝ) |
57 | 53, 56 | pm2.61d2 181 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) ∈ ℝ) |
58 | 57 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) ∈ ℝ) |
59 | | itg1add.3 |
. . 3
⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
60 | 59 | fmpo 7881 |
. 2
⊢
(∀𝑖 ∈
ℝ ∀𝑗 ∈
ℝ if((𝑖 = 0 ∧
𝑗 = 0), 0,
(vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗})))) ∈ ℝ ↔ 𝐼:(ℝ ×
ℝ)⟶ℝ) |
61 | 58, 60 | sylib 217 |
1
⊢ (𝜑 → 𝐼:(ℝ ×
ℝ)⟶ℝ) |