MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem2 Structured version   Visualization version   GIF version

Theorem itg1addlem2 25619
Description: Lemma for itg1add 25624. The function 𝐼 represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both 𝑖 and 𝑗 are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 25621 and itg1addlem5 25623. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
itg1add.3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
Assertion
Ref Expression
itg1addlem2 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Distinct variable groups:   𝑖,𝑗,𝐹   𝑖,𝐺,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑖,𝑗)

Proof of Theorem itg1addlem2
StepHypRef Expression
1 iffalse 4533 . . . . . . . 8 (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
21adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
3 i1fadd.1 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ∫1)
4 i1fima 25600 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑖}) ∈ dom vol)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑖}) ∈ dom vol)
6 i1fadd.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ dom ∫1)
7 i1fima 25600 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑗}) ∈ dom vol)
86, 7syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 “ {𝑗}) ∈ dom vol)
9 inmbl 25464 . . . . . . . . . 10 (((𝐹 “ {𝑖}) ∈ dom vol ∧ (𝐺 “ {𝑗}) ∈ dom vol) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
105, 8, 9syl2anc 583 . . . . . . . . 9 (𝜑 → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
1110ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
12 mblvol 25452 . . . . . . . 8 (((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
1311, 12syl 17 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
142, 13eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
15 neorian 3033 . . . . . . 7 ((𝑖 ≠ 0 ∨ 𝑗 ≠ 0) ↔ ¬ (𝑖 = 0 ∧ 𝑗 = 0))
16 inss1 4224 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖})
175ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ∈ dom vol)
18 mblss 25453 . . . . . . . . . 10 ((𝐹 “ {𝑖}) ∈ dom vol → (𝐹 “ {𝑖}) ⊆ ℝ)
1917, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ⊆ ℝ)
20 mblvol 25452 . . . . . . . . . . 11 ((𝐹 “ {𝑖}) ∈ dom vol → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
2117, 20syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
223ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝐹 ∈ dom ∫1)
23 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ ℝ)
24 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ≠ 0)
25 eldifsn 4786 . . . . . . . . . . . 12 (𝑖 ∈ (ℝ ∖ {0}) ↔ (𝑖 ∈ ℝ ∧ 𝑖 ≠ 0))
2623, 24, 25sylanbrc 582 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ (ℝ ∖ {0}))
27 i1fima2sn 25602 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑖 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2822, 26, 27syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2921, 28eqeltrrd 2830 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘(𝐹 “ {𝑖})) ∈ ℝ)
30 ovolsscl 25408 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖}) ∧ (𝐹 “ {𝑖}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑖})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
3116, 19, 29, 30mp3an2i 1463 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
32 inss2 4225 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗})
336adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → 𝐺 ∈ dom ∫1)
3433, 7syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝐺 “ {𝑗}) ∈ dom vol)
3534adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ∈ dom vol)
36 mblss 25453 . . . . . . . . . 10 ((𝐺 “ {𝑗}) ∈ dom vol → (𝐺 “ {𝑗}) ⊆ ℝ)
3735, 36syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ⊆ ℝ)
38 mblvol 25452 . . . . . . . . . . 11 ((𝐺 “ {𝑗}) ∈ dom vol → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
3935, 38syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
406ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝐺 ∈ dom ∫1)
41 simplrr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ ℝ)
42 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ≠ 0)
43 eldifsn 4786 . . . . . . . . . . . 12 (𝑗 ∈ (ℝ ∖ {0}) ↔ (𝑗 ∈ ℝ ∧ 𝑗 ≠ 0))
4441, 42, 43sylanbrc 582 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ (ℝ ∖ {0}))
45 i1fima2sn 25602 . . . . . . . . . . 11 ((𝐺 ∈ dom ∫1𝑗 ∈ (ℝ ∖ {0})) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4640, 44, 45syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4739, 46eqeltrrd 2830 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘(𝐺 “ {𝑗})) ∈ ℝ)
48 ovolsscl 25408 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗}) ∧ (𝐺 “ {𝑗}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑗})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
4932, 37, 47, 48mp3an2i 1463 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5031, 49jaodan 956 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ (𝑖 ≠ 0 ∨ 𝑗 ≠ 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5115, 50sylan2br 594 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5214, 51eqeltrd 2829 . . . . 5 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5352ex 412 . . . 4 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ))
54 iftrue 4530 . . . . 5 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = 0)
55 0re 11240 . . . . 5 0 ∈ ℝ
5654, 55eqeltrdi 2837 . . . 4 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5753, 56pm2.61d2 181 . . 3 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5857ralrimivva 3196 . 2 (𝜑 → ∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
59 itg1add.3 . . 3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
6059fmpo 8066 . 2 (∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ ↔ 𝐼:(ℝ × ℝ)⟶ℝ)
6158, 60sylib 217 1 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2936  wral 3057  cdif 3942  cin 3944  wss 3945  ifcif 4524  {csn 4624   × cxp 5670  ccnv 5671  dom cdm 5672  cima 5675  wf 6538  cfv 6542  cmpo 7416  cr 11131  0cc0 11132  vol*covol 25384  volcvol 25385  1citg1 25537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-xadd 13119  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659  df-xmet 21265  df-met 21266  df-ovol 25386  df-vol 25387  df-mbf 25541  df-itg1 25542
This theorem is referenced by:  itg1addlem4  25621  itg1addlem4OLD  25622  itg1addlem5  25623
  Copyright terms: Public domain W3C validator