MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1addlem2 Structured version   Visualization version   GIF version

Theorem itg1addlem2 24766
Description: Lemma for itg1add 24771. The function 𝐼 represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both 𝑖 and 𝑗 are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 24768 and itg1addlem5 24770. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
itg1add.3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
Assertion
Ref Expression
itg1addlem2 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Distinct variable groups:   𝑖,𝑗,𝐹   𝑖,𝐺,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑖,𝑗)

Proof of Theorem itg1addlem2
StepHypRef Expression
1 iffalse 4465 . . . . . . . 8 (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
21adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
3 i1fadd.1 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ∫1)
4 i1fima 24747 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑖}) ∈ dom vol)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑖}) ∈ dom vol)
6 i1fadd.2 . . . . . . . . . . 11 (𝜑𝐺 ∈ dom ∫1)
7 i1fima 24747 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑗}) ∈ dom vol)
86, 7syl 17 . . . . . . . . . 10 (𝜑 → (𝐺 “ {𝑗}) ∈ dom vol)
9 inmbl 24611 . . . . . . . . . 10 (((𝐹 “ {𝑖}) ∈ dom vol ∧ (𝐺 “ {𝑗}) ∈ dom vol) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
105, 8, 9syl2anc 583 . . . . . . . . 9 (𝜑 → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
1110ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol)
12 mblvol 24599 . . . . . . . 8 (((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ∈ dom vol → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
1311, 12syl 17 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
142, 13eqtrd 2778 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))))
15 neorian 3038 . . . . . . 7 ((𝑖 ≠ 0 ∨ 𝑗 ≠ 0) ↔ ¬ (𝑖 = 0 ∧ 𝑗 = 0))
16 inss1 4159 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖})
175ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ∈ dom vol)
18 mblss 24600 . . . . . . . . . 10 ((𝐹 “ {𝑖}) ∈ dom vol → (𝐹 “ {𝑖}) ⊆ ℝ)
1917, 18syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (𝐹 “ {𝑖}) ⊆ ℝ)
20 mblvol 24599 . . . . . . . . . . 11 ((𝐹 “ {𝑖}) ∈ dom vol → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
2117, 20syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) = (vol*‘(𝐹 “ {𝑖})))
223ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝐹 ∈ dom ∫1)
23 simplrl 773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ ℝ)
24 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ≠ 0)
25 eldifsn 4717 . . . . . . . . . . . 12 (𝑖 ∈ (ℝ ∖ {0}) ↔ (𝑖 ∈ ℝ ∧ 𝑖 ≠ 0))
2623, 24, 25sylanbrc 582 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → 𝑖 ∈ (ℝ ∖ {0}))
27 i1fima2sn 24749 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑖 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2822, 26, 27syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol‘(𝐹 “ {𝑖})) ∈ ℝ)
2921, 28eqeltrrd 2840 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘(𝐹 “ {𝑖})) ∈ ℝ)
30 ovolsscl 24555 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐹 “ {𝑖}) ∧ (𝐹 “ {𝑖}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑖})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
3116, 19, 29, 30mp3an2i 1464 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑖 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
32 inss2 4160 . . . . . . . . 9 ((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗})
336adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → 𝐺 ∈ dom ∫1)
3433, 7syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝐺 “ {𝑗}) ∈ dom vol)
3534adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ∈ dom vol)
36 mblss 24600 . . . . . . . . . 10 ((𝐺 “ {𝑗}) ∈ dom vol → (𝐺 “ {𝑗}) ⊆ ℝ)
3735, 36syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (𝐺 “ {𝑗}) ⊆ ℝ)
38 mblvol 24599 . . . . . . . . . . 11 ((𝐺 “ {𝑗}) ∈ dom vol → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
3935, 38syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) = (vol*‘(𝐺 “ {𝑗})))
406ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝐺 ∈ dom ∫1)
41 simplrr 774 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ ℝ)
42 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ≠ 0)
43 eldifsn 4717 . . . . . . . . . . . 12 (𝑗 ∈ (ℝ ∖ {0}) ↔ (𝑗 ∈ ℝ ∧ 𝑗 ≠ 0))
4441, 42, 43sylanbrc 582 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → 𝑗 ∈ (ℝ ∖ {0}))
45 i1fima2sn 24749 . . . . . . . . . . 11 ((𝐺 ∈ dom ∫1𝑗 ∈ (ℝ ∖ {0})) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4640, 44, 45syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol‘(𝐺 “ {𝑗})) ∈ ℝ)
4739, 46eqeltrrd 2840 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘(𝐺 “ {𝑗})) ∈ ℝ)
48 ovolsscl 24555 . . . . . . . . 9 ((((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})) ⊆ (𝐺 “ {𝑗}) ∧ (𝐺 “ {𝑗}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑗})) ∈ ℝ) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
4932, 37, 47, 48mp3an2i 1464 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ 𝑗 ≠ 0) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5031, 49jaodan 954 . . . . . . 7 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ (𝑖 ≠ 0 ∨ 𝑗 ≠ 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5115, 50sylan2br 594 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → (vol*‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗}))) ∈ ℝ)
5214, 51eqeltrd 2839 . . . . 5 (((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) ∧ ¬ (𝑖 = 0 ∧ 𝑗 = 0)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5352ex 412 . . . 4 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (¬ (𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ))
54 iftrue 4462 . . . . 5 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) = 0)
55 0re 10908 . . . . 5 0 ∈ ℝ
5654, 55eqeltrdi 2847 . . . 4 ((𝑖 = 0 ∧ 𝑗 = 0) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5753, 56pm2.61d2 181 . . 3 ((𝜑 ∧ (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
5857ralrimivva 3114 . 2 (𝜑 → ∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ)
59 itg1add.3 . . 3 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))))
6059fmpo 7881 . 2 (∀𝑖 ∈ ℝ ∀𝑗 ∈ ℝ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((𝐹 “ {𝑖}) ∩ (𝐺 “ {𝑗})))) ∈ ℝ ↔ 𝐼:(ℝ × ℝ)⟶ℝ)
6158, 60sylib 217 1 (𝜑𝐼:(ℝ × ℝ)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  cin 3882  wss 3883  ifcif 4456  {csn 4558   × cxp 5578  ccnv 5579  dom cdm 5580  cima 5583  wf 6414  cfv 6418  cmpo 7257  cr 10801  0cc0 10802  vol*covol 24531  volcvol 24532  1citg1 24684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689
This theorem is referenced by:  itg1addlem4  24768  itg1addlem4OLD  24769  itg1addlem5  24770
  Copyright terms: Public domain W3C validator