MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmacl Structured version   Visualization version   GIF version

Theorem dsmmacl 21269
Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p 𝑃 = (𝑆Xs𝑅)
dsmmcl.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmcl.i (𝜑𝐼𝑊)
dsmmcl.s (𝜑𝑆𝑉)
dsmmcl.r (𝜑𝑅:𝐼⟶Mnd)
dsmmacl.j (𝜑𝐽𝐻)
dsmmacl.k (𝜑𝐾𝐻)
dsmmacl.a + = (+g𝑃)
Assertion
Ref Expression
dsmmacl (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)

Proof of Theorem dsmmacl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2733 . . 3 (Base‘𝑃) = (Base‘𝑃)
3 dsmmacl.a . . 3 + = (+g𝑃)
4 dsmmcl.s . . 3 (𝜑𝑆𝑉)
5 dsmmcl.i . . 3 (𝜑𝐼𝑊)
6 dsmmcl.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
7 dsmmacl.j . . . . 5 (𝜑𝐽𝐻)
8 eqid 2733 . . . . . 6 (𝑆m 𝑅) = (𝑆m 𝑅)
9 dsmmcl.h . . . . . 6 𝐻 = (Base‘(𝑆m 𝑅))
106ffnd 6708 . . . . . 6 (𝜑𝑅 Fn 𝐼)
111, 8, 2, 9, 5, 10dsmmelbas 21267 . . . . 5 (𝜑 → (𝐽𝐻 ↔ (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
127, 11mpbid 231 . . . 4 (𝜑 → (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1312simpld 496 . . 3 (𝜑𝐽 ∈ (Base‘𝑃))
14 dsmmacl.k . . . . 5 (𝜑𝐾𝐻)
151, 8, 2, 9, 5, 10dsmmelbas 21267 . . . . 5 (𝜑 → (𝐾𝐻 ↔ (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
1614, 15mpbid 231 . . . 4 (𝜑 → (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1716simpld 496 . . 3 (𝜑𝐾 ∈ (Base‘𝑃))
181, 2, 3, 4, 5, 6, 13, 17prdsplusgcl 18643 . 2 (𝜑 → (𝐽 + 𝐾) ∈ (Base‘𝑃))
194adantr 482 . . . . . 6 ((𝜑𝑎𝐼) → 𝑆𝑉)
205adantr 482 . . . . . 6 ((𝜑𝑎𝐼) → 𝐼𝑊)
2110adantr 482 . . . . . 6 ((𝜑𝑎𝐼) → 𝑅 Fn 𝐼)
2213adantr 482 . . . . . 6 ((𝜑𝑎𝐼) → 𝐽 ∈ (Base‘𝑃))
2317adantr 482 . . . . . 6 ((𝜑𝑎𝐼) → 𝐾 ∈ (Base‘𝑃))
24 simpr 486 . . . . . 6 ((𝜑𝑎𝐼) → 𝑎𝐼)
251, 2, 19, 20, 21, 22, 23, 3, 24prdsplusgfval 17407 . . . . 5 ((𝜑𝑎𝐼) → ((𝐽 + 𝐾)‘𝑎) = ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)))
2625neeq1d 3001 . . . 4 ((𝜑𝑎𝐼) → (((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎)) ↔ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))))
2726rabbidva 3440 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))})
2812simprd 497 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
2916simprd 497 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
30 unfi 9160 . . . . 5 (({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
3128, 29, 30syl2anc 585 . . . 4 (𝜑 → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
32 neorian 3038 . . . . . . . . . 10 (((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
3332bicomi 223 . . . . . . . . 9 (¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))))
3433con1bii 357 . . . . . . . 8 (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
356ffvelcdmda 7074 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (𝑅𝑎) ∈ Mnd)
36 eqid 2733 . . . . . . . . . . 11 (Base‘(𝑅𝑎)) = (Base‘(𝑅𝑎))
37 eqid 2733 . . . . . . . . . . 11 (0g‘(𝑅𝑎)) = (0g‘(𝑅𝑎))
3836, 37mndidcl 18627 . . . . . . . . . 10 ((𝑅𝑎) ∈ Mnd → (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎)))
39 eqid 2733 . . . . . . . . . . 11 (+g‘(𝑅𝑎)) = (+g‘(𝑅𝑎))
4036, 39, 37mndlid 18632 . . . . . . . . . 10 (((𝑅𝑎) ∈ Mnd ∧ (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎))) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
4135, 38, 40syl2anc2 586 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
42 oveq12 7405 . . . . . . . . . 10 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))))
4342eqeq1d 2735 . . . . . . . . 9 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎)) ↔ ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎))))
4441, 43syl5ibrcom 246 . . . . . . . 8 ((𝜑𝑎𝐼) → (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4534, 44biimtrid 241 . . . . . . 7 ((𝜑𝑎𝐼) → (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4645necon1ad 2958 . . . . . 6 ((𝜑𝑎𝐼) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎)) → ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))))
4746ss2rabdv 4071 . . . . 5 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))})
48 unrab 4303 . . . . 5 ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) = {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))}
4947, 48sseqtrrdi 4031 . . . 4 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}))
5031, 49ssfid 9255 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
5127, 50eqeltrd 2834 . 2 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
521, 8, 2, 9, 5, 10dsmmelbas 21267 . 2 (𝜑 → ((𝐽 + 𝐾) ∈ 𝐻 ↔ ((𝐽 + 𝐾) ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
5318, 51, 52mpbir2and 712 1 (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  {crab 3433  cun 3944   Fn wfn 6530  wf 6531  cfv 6535  (class class class)co 7396  Fincfn 8927  Basecbs 17131  +gcplusg 17184  0gc0g 17372  Xscprds 17378  Mndcmnd 18612  m cdsmm 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-sup 9424  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-fz 13472  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-sca 17200  df-vsca 17201  df-ip 17202  df-tset 17203  df-ple 17204  df-ds 17206  df-hom 17208  df-cco 17209  df-0g 17374  df-prds 17380  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-dsmm 21260
This theorem is referenced by:  dsmmsubg  21271
  Copyright terms: Public domain W3C validator