Step | Hyp | Ref
| Expression |
1 | | dsmmcl.p |
. . 3
⊢ 𝑃 = (𝑆Xs𝑅) |
2 | | eqid 2758 |
. . 3
⊢
(Base‘𝑃) =
(Base‘𝑃) |
3 | | dsmmacl.a |
. . 3
⊢ + =
(+g‘𝑃) |
4 | | dsmmcl.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
5 | | dsmmcl.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
6 | | dsmmcl.r |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
7 | | dsmmacl.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ 𝐻) |
8 | | eqid 2758 |
. . . . . 6
⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) |
9 | | dsmmcl.h |
. . . . . 6
⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
10 | 6 | ffnd 6504 |
. . . . . 6
⊢ (𝜑 → 𝑅 Fn 𝐼) |
11 | 1, 8, 2, 9, 5, 10 | dsmmelbas 20518 |
. . . . 5
⊢ (𝜑 → (𝐽 ∈ 𝐻 ↔ (𝐽 ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ (𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
12 | 7, 11 | mpbid 235 |
. . . 4
⊢ (𝜑 → (𝐽 ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ (𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
13 | 12 | simpld 498 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (Base‘𝑃)) |
14 | | dsmmacl.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ 𝐻) |
15 | 1, 8, 2, 9, 5, 10 | dsmmelbas 20518 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ 𝐻 ↔ (𝐾 ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
16 | 14, 15 | mpbid 235 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin)) |
17 | 16 | simpld 498 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (Base‘𝑃)) |
18 | 1, 2, 3, 4, 5, 6, 13, 17 | prdsplusgcl 18022 |
. 2
⊢ (𝜑 → (𝐽 + 𝐾) ∈ (Base‘𝑃)) |
19 | 4 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
20 | 5 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
21 | 10 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑅 Fn 𝐼) |
22 | 13 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝐽 ∈ (Base‘𝑃)) |
23 | 17 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝐾 ∈ (Base‘𝑃)) |
24 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) |
25 | 1, 2, 19, 20, 21, 22, 23, 3, 24 | prdsplusgfval 16819 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((𝐽 + 𝐾)‘𝑎) = ((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎))) |
26 | 25 | neeq1d 3010 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ ((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) ≠ (0g‘(𝑅‘𝑎)))) |
27 | 26 | rabbidva 3390 |
. . 3
⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = {𝑎 ∈ 𝐼 ∣ ((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) ≠ (0g‘(𝑅‘𝑎))}) |
28 | 12 | simprd 499 |
. . . . 5
⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ (𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) |
29 | 16 | simprd 499 |
. . . . 5
⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) |
30 | | unfi 8754 |
. . . . 5
⊢ (({𝑎 ∈ 𝐼 ∣ (𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin ∧ {𝑎 ∈ 𝐼 ∣ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) → ({𝑎 ∈ 𝐼 ∣ (𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∪ {𝑎 ∈ 𝐼 ∣ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) ∈ Fin) |
31 | 28, 29, 30 | syl2anc 587 |
. . . 4
⊢ (𝜑 → ({𝑎 ∈ 𝐼 ∣ (𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∪ {𝑎 ∈ 𝐼 ∣ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) ∈ Fin) |
32 | | neorian 3045 |
. . . . . . . . . 10
⊢ (((𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ∨ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))) ↔ ¬ ((𝐽‘𝑎) = (0g‘(𝑅‘𝑎)) ∧ (𝐾‘𝑎) = (0g‘(𝑅‘𝑎)))) |
33 | 32 | bicomi 227 |
. . . . . . . . 9
⊢ (¬
((𝐽‘𝑎) = (0g‘(𝑅‘𝑎)) ∧ (𝐾‘𝑎) = (0g‘(𝑅‘𝑎))) ↔ ((𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ∨ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎)))) |
34 | 33 | con1bii 360 |
. . . . . . . 8
⊢ (¬
((𝐽‘𝑎) ≠
(0g‘(𝑅‘𝑎)) ∨ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))) ↔ ((𝐽‘𝑎) = (0g‘(𝑅‘𝑎)) ∧ (𝐾‘𝑎) = (0g‘(𝑅‘𝑎)))) |
35 | 6 | ffvelrnda 6848 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑅‘𝑎) ∈ Mnd) |
36 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(Base‘(𝑅‘𝑎)) = (Base‘(𝑅‘𝑎)) |
37 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(0g‘(𝑅‘𝑎)) = (0g‘(𝑅‘𝑎)) |
38 | 36, 37 | mndidcl 18006 |
. . . . . . . . . 10
⊢ ((𝑅‘𝑎) ∈ Mnd →
(0g‘(𝑅‘𝑎)) ∈ (Base‘(𝑅‘𝑎))) |
39 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(+g‘(𝑅‘𝑎)) = (+g‘(𝑅‘𝑎)) |
40 | 36, 39, 37 | mndlid 18011 |
. . . . . . . . . 10
⊢ (((𝑅‘𝑎) ∈ Mnd ∧
(0g‘(𝑅‘𝑎)) ∈ (Base‘(𝑅‘𝑎))) → ((0g‘(𝑅‘𝑎))(+g‘(𝑅‘𝑎))(0g‘(𝑅‘𝑎))) = (0g‘(𝑅‘𝑎))) |
41 | 35, 38, 40 | syl2anc2 588 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g‘(𝑅‘𝑎))(+g‘(𝑅‘𝑎))(0g‘(𝑅‘𝑎))) = (0g‘(𝑅‘𝑎))) |
42 | | oveq12 7165 |
. . . . . . . . . 10
⊢ (((𝐽‘𝑎) = (0g‘(𝑅‘𝑎)) ∧ (𝐾‘𝑎) = (0g‘(𝑅‘𝑎))) → ((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) = ((0g‘(𝑅‘𝑎))(+g‘(𝑅‘𝑎))(0g‘(𝑅‘𝑎)))) |
43 | 42 | eqeq1d 2760 |
. . . . . . . . 9
⊢ (((𝐽‘𝑎) = (0g‘(𝑅‘𝑎)) ∧ (𝐾‘𝑎) = (0g‘(𝑅‘𝑎))) → (((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) = (0g‘(𝑅‘𝑎)) ↔ ((0g‘(𝑅‘𝑎))(+g‘(𝑅‘𝑎))(0g‘(𝑅‘𝑎))) = (0g‘(𝑅‘𝑎)))) |
44 | 41, 43 | syl5ibrcom 250 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (((𝐽‘𝑎) = (0g‘(𝑅‘𝑎)) ∧ (𝐾‘𝑎) = (0g‘(𝑅‘𝑎))) → ((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) = (0g‘(𝑅‘𝑎)))) |
45 | 34, 44 | syl5bi 245 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (¬ ((𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ∨ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))) → ((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) = (0g‘(𝑅‘𝑎)))) |
46 | 45 | necon1ad 2968 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) ≠ (0g‘(𝑅‘𝑎)) → ((𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ∨ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))))) |
47 | 46 | ss2rabdv 3982 |
. . . . 5
⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) ≠ (0g‘(𝑅‘𝑎))} ⊆ {𝑎 ∈ 𝐼 ∣ ((𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ∨ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎)))}) |
48 | | unrab 4210 |
. . . . 5
⊢ ({𝑎 ∈ 𝐼 ∣ (𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∪ {𝑎 ∈ 𝐼 ∣ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))}) = {𝑎 ∈ 𝐼 ∣ ((𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ∨ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎)))} |
49 | 47, 48 | sseqtrrdi 3945 |
. . . 4
⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) ≠ (0g‘(𝑅‘𝑎))} ⊆ ({𝑎 ∈ 𝐼 ∣ (𝐽‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∪ {𝑎 ∈ 𝐼 ∣ (𝐾‘𝑎) ≠ (0g‘(𝑅‘𝑎))})) |
50 | 31, 49 | ssfid 8791 |
. . 3
⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ((𝐽‘𝑎)(+g‘(𝑅‘𝑎))(𝐾‘𝑎)) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) |
51 | 27, 50 | eqeltrd 2852 |
. 2
⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) |
52 | 1, 8, 2, 9, 5, 10 | dsmmelbas 20518 |
. 2
⊢ (𝜑 → ((𝐽 + 𝐾) ∈ 𝐻 ↔ ((𝐽 + 𝐾) ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
53 | 18, 51, 52 | mpbir2and 712 |
1
⊢ (𝜑 → (𝐽 + 𝐾) ∈ 𝐻) |