MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmacl Structured version   Visualization version   GIF version

Theorem dsmmacl 21735
Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p 𝑃 = (𝑆Xs𝑅)
dsmmcl.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmcl.i (𝜑𝐼𝑊)
dsmmcl.s (𝜑𝑆𝑉)
dsmmcl.r (𝜑𝑅:𝐼⟶Mnd)
dsmmacl.j (𝜑𝐽𝐻)
dsmmacl.k (𝜑𝐾𝐻)
dsmmacl.a + = (+g𝑃)
Assertion
Ref Expression
dsmmacl (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)

Proof of Theorem dsmmacl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2726 . . 3 (Base‘𝑃) = (Base‘𝑃)
3 dsmmacl.a . . 3 + = (+g𝑃)
4 dsmmcl.s . . 3 (𝜑𝑆𝑉)
5 dsmmcl.i . . 3 (𝜑𝐼𝑊)
6 dsmmcl.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
7 dsmmacl.j . . . . 5 (𝜑𝐽𝐻)
8 eqid 2726 . . . . . 6 (𝑆m 𝑅) = (𝑆m 𝑅)
9 dsmmcl.h . . . . . 6 𝐻 = (Base‘(𝑆m 𝑅))
106ffnd 6721 . . . . . 6 (𝜑𝑅 Fn 𝐼)
111, 8, 2, 9, 5, 10dsmmelbas 21733 . . . . 5 (𝜑 → (𝐽𝐻 ↔ (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
127, 11mpbid 231 . . . 4 (𝜑 → (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1312simpld 493 . . 3 (𝜑𝐽 ∈ (Base‘𝑃))
14 dsmmacl.k . . . . 5 (𝜑𝐾𝐻)
151, 8, 2, 9, 5, 10dsmmelbas 21733 . . . . 5 (𝜑 → (𝐾𝐻 ↔ (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
1614, 15mpbid 231 . . . 4 (𝜑 → (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1716simpld 493 . . 3 (𝜑𝐾 ∈ (Base‘𝑃))
181, 2, 3, 4, 5, 6, 13, 17prdsplusgcl 18753 . 2 (𝜑 → (𝐽 + 𝐾) ∈ (Base‘𝑃))
194adantr 479 . . . . . 6 ((𝜑𝑎𝐼) → 𝑆𝑉)
205adantr 479 . . . . . 6 ((𝜑𝑎𝐼) → 𝐼𝑊)
2110adantr 479 . . . . . 6 ((𝜑𝑎𝐼) → 𝑅 Fn 𝐼)
2213adantr 479 . . . . . 6 ((𝜑𝑎𝐼) → 𝐽 ∈ (Base‘𝑃))
2317adantr 479 . . . . . 6 ((𝜑𝑎𝐼) → 𝐾 ∈ (Base‘𝑃))
24 simpr 483 . . . . . 6 ((𝜑𝑎𝐼) → 𝑎𝐼)
251, 2, 19, 20, 21, 22, 23, 3, 24prdsplusgfval 17484 . . . . 5 ((𝜑𝑎𝐼) → ((𝐽 + 𝐾)‘𝑎) = ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)))
2625neeq1d 2990 . . . 4 ((𝜑𝑎𝐼) → (((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎)) ↔ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))))
2726rabbidva 3426 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))})
2812simprd 494 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
2916simprd 494 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
30 unfi 9202 . . . . 5 (({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
3128, 29, 30syl2anc 582 . . . 4 (𝜑 → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
32 neorian 3027 . . . . . . . . . 10 (((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
3332bicomi 223 . . . . . . . . 9 (¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))))
3433con1bii 355 . . . . . . . 8 (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
356ffvelcdmda 7090 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (𝑅𝑎) ∈ Mnd)
36 eqid 2726 . . . . . . . . . . 11 (Base‘(𝑅𝑎)) = (Base‘(𝑅𝑎))
37 eqid 2726 . . . . . . . . . . 11 (0g‘(𝑅𝑎)) = (0g‘(𝑅𝑎))
3836, 37mndidcl 18737 . . . . . . . . . 10 ((𝑅𝑎) ∈ Mnd → (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎)))
39 eqid 2726 . . . . . . . . . . 11 (+g‘(𝑅𝑎)) = (+g‘(𝑅𝑎))
4036, 39, 37mndlid 18742 . . . . . . . . . 10 (((𝑅𝑎) ∈ Mnd ∧ (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎))) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
4135, 38, 40syl2anc2 583 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
42 oveq12 7425 . . . . . . . . . 10 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))))
4342eqeq1d 2728 . . . . . . . . 9 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎)) ↔ ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎))))
4441, 43syl5ibrcom 246 . . . . . . . 8 ((𝜑𝑎𝐼) → (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4534, 44biimtrid 241 . . . . . . 7 ((𝜑𝑎𝐼) → (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4645necon1ad 2947 . . . . . 6 ((𝜑𝑎𝐼) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎)) → ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))))
4746ss2rabdv 4069 . . . . 5 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))})
48 unrab 4304 . . . . 5 ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) = {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))}
4947, 48sseqtrrdi 4030 . . . 4 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}))
5031, 49ssfid 9294 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
5127, 50eqeltrd 2826 . 2 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
521, 8, 2, 9, 5, 10dsmmelbas 21733 . 2 (𝜑 → ((𝐽 + 𝐾) ∈ 𝐻 ↔ ((𝐽 + 𝐾) ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
5318, 51, 52mpbir2and 711 1 (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1534  wcel 2099  wne 2930  {crab 3419  cun 3944   Fn wfn 6541  wf 6542  cfv 6546  (class class class)co 7416  Fincfn 8966  Basecbs 17208  +gcplusg 17261  0gc0g 17449  Xscprds 17455  Mndcmnd 18722  m cdsmm 21725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-hom 17285  df-cco 17286  df-0g 17451  df-prds 17457  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-dsmm 21726
This theorem is referenced by:  dsmmsubg  21737
  Copyright terms: Public domain W3C validator