MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmacl Structured version   Visualization version   GIF version

Theorem dsmmacl 21657
Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p 𝑃 = (𝑆Xs𝑅)
dsmmcl.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmcl.i (𝜑𝐼𝑊)
dsmmcl.s (𝜑𝑆𝑉)
dsmmcl.r (𝜑𝑅:𝐼⟶Mnd)
dsmmacl.j (𝜑𝐽𝐻)
dsmmacl.k (𝜑𝐾𝐻)
dsmmacl.a + = (+g𝑃)
Assertion
Ref Expression
dsmmacl (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)

Proof of Theorem dsmmacl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2730 . . 3 (Base‘𝑃) = (Base‘𝑃)
3 dsmmacl.a . . 3 + = (+g𝑃)
4 dsmmcl.s . . 3 (𝜑𝑆𝑉)
5 dsmmcl.i . . 3 (𝜑𝐼𝑊)
6 dsmmcl.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
7 dsmmacl.j . . . . 5 (𝜑𝐽𝐻)
8 eqid 2730 . . . . . 6 (𝑆m 𝑅) = (𝑆m 𝑅)
9 dsmmcl.h . . . . . 6 𝐻 = (Base‘(𝑆m 𝑅))
106ffnd 6692 . . . . . 6 (𝜑𝑅 Fn 𝐼)
111, 8, 2, 9, 5, 10dsmmelbas 21655 . . . . 5 (𝜑 → (𝐽𝐻 ↔ (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
127, 11mpbid 232 . . . 4 (𝜑 → (𝐽 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1312simpld 494 . . 3 (𝜑𝐽 ∈ (Base‘𝑃))
14 dsmmacl.k . . . . 5 (𝜑𝐾𝐻)
151, 8, 2, 9, 5, 10dsmmelbas 21655 . . . . 5 (𝜑 → (𝐾𝐻 ↔ (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
1614, 15mpbid 232 . . . 4 (𝜑 → (𝐾 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin))
1716simpld 494 . . 3 (𝜑𝐾 ∈ (Base‘𝑃))
181, 2, 3, 4, 5, 6, 13, 17prdsplusgcl 18702 . 2 (𝜑 → (𝐽 + 𝐾) ∈ (Base‘𝑃))
194adantr 480 . . . . . 6 ((𝜑𝑎𝐼) → 𝑆𝑉)
205adantr 480 . . . . . 6 ((𝜑𝑎𝐼) → 𝐼𝑊)
2110adantr 480 . . . . . 6 ((𝜑𝑎𝐼) → 𝑅 Fn 𝐼)
2213adantr 480 . . . . . 6 ((𝜑𝑎𝐼) → 𝐽 ∈ (Base‘𝑃))
2317adantr 480 . . . . . 6 ((𝜑𝑎𝐼) → 𝐾 ∈ (Base‘𝑃))
24 simpr 484 . . . . . 6 ((𝜑𝑎𝐼) → 𝑎𝐼)
251, 2, 19, 20, 21, 22, 23, 3, 24prdsplusgfval 17444 . . . . 5 ((𝜑𝑎𝐼) → ((𝐽 + 𝐾)‘𝑎) = ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)))
2625neeq1d 2985 . . . 4 ((𝜑𝑎𝐼) → (((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎)) ↔ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))))
2726rabbidva 3415 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} = {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))})
2812simprd 495 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
2916simprd 495 . . . . 5 (𝜑 → {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
30 unfi 9141 . . . . 5 (({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin ∧ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin) → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
3128, 29, 30syl2anc 584 . . . 4 (𝜑 → ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) ∈ Fin)
32 neorian 3021 . . . . . . . . . 10 (((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
3332bicomi 224 . . . . . . . . 9 (¬ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))))
3433con1bii 356 . . . . . . . 8 (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) ↔ ((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))))
356ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑎𝐼) → (𝑅𝑎) ∈ Mnd)
36 eqid 2730 . . . . . . . . . . 11 (Base‘(𝑅𝑎)) = (Base‘(𝑅𝑎))
37 eqid 2730 . . . . . . . . . . 11 (0g‘(𝑅𝑎)) = (0g‘(𝑅𝑎))
3836, 37mndidcl 18683 . . . . . . . . . 10 ((𝑅𝑎) ∈ Mnd → (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎)))
39 eqid 2730 . . . . . . . . . . 11 (+g‘(𝑅𝑎)) = (+g‘(𝑅𝑎))
4036, 39, 37mndlid 18688 . . . . . . . . . 10 (((𝑅𝑎) ∈ Mnd ∧ (0g‘(𝑅𝑎)) ∈ (Base‘(𝑅𝑎))) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
4135, 38, 40syl2anc2 585 . . . . . . . . 9 ((𝜑𝑎𝐼) → ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎)))
42 oveq12 7399 . . . . . . . . . 10 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))))
4342eqeq1d 2732 . . . . . . . . 9 (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎)) ↔ ((0g‘(𝑅𝑎))(+g‘(𝑅𝑎))(0g‘(𝑅𝑎))) = (0g‘(𝑅𝑎))))
4441, 43syl5ibrcom 247 . . . . . . . 8 ((𝜑𝑎𝐼) → (((𝐽𝑎) = (0g‘(𝑅𝑎)) ∧ (𝐾𝑎) = (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4534, 44biimtrid 242 . . . . . . 7 ((𝜑𝑎𝐼) → (¬ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))) → ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) = (0g‘(𝑅𝑎))))
4645necon1ad 2943 . . . . . 6 ((𝜑𝑎𝐼) → (((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎)) → ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))))
4746ss2rabdv 4042 . . . . 5 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))})
48 unrab 4281 . . . . 5 ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}) = {𝑎𝐼 ∣ ((𝐽𝑎) ≠ (0g‘(𝑅𝑎)) ∨ (𝐾𝑎) ≠ (0g‘(𝑅𝑎)))}
4947, 48sseqtrrdi 3991 . . . 4 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ⊆ ({𝑎𝐼 ∣ (𝐽𝑎) ≠ (0g‘(𝑅𝑎))} ∪ {𝑎𝐼 ∣ (𝐾𝑎) ≠ (0g‘(𝑅𝑎))}))
5031, 49ssfid 9219 . . 3 (𝜑 → {𝑎𝐼 ∣ ((𝐽𝑎)(+g‘(𝑅𝑎))(𝐾𝑎)) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
5127, 50eqeltrd 2829 . 2 (𝜑 → {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
521, 8, 2, 9, 5, 10dsmmelbas 21655 . 2 (𝜑 → ((𝐽 + 𝐾) ∈ 𝐻 ↔ ((𝐽 + 𝐾) ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ ((𝐽 + 𝐾)‘𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
5318, 51, 52mpbir2and 713 1 (𝜑 → (𝐽 + 𝐾) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  {crab 3408  cun 3915   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Xscprds 17415  Mndcmnd 18668  m cdsmm 21647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-dsmm 21648
This theorem is referenced by:  dsmmsubg  21659
  Copyright terms: Public domain W3C validator