Proof of Theorem oeoa
Step | Hyp | Ref
| Expression |
1 | | oa00 8352 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 +o 𝐶) = ∅ ↔ (𝐵 = ∅ ∧ 𝐶 = ∅))) |
2 | 1 | biimpar 477 |
. . . . . . . 8
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (𝐵 +o 𝐶) = ∅) |
3 | 2 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (∅
↑o (𝐵
+o 𝐶)) =
(∅ ↑o ∅)) |
4 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝐵 = ∅ → (∅
↑o 𝐵) =
(∅ ↑o ∅)) |
5 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝐶 = ∅ → (∅
↑o 𝐶) =
(∅ ↑o ∅)) |
6 | | oe0m0 8312 |
. . . . . . . . . . 11
⊢ (∅
↑o ∅) = 1o |
7 | 5, 6 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝐶 = ∅ → (∅
↑o 𝐶) =
1o) |
8 | 4, 7 | oveqan12d 7274 |
. . . . . . . . 9
⊢ ((𝐵 = ∅ ∧ 𝐶 = ∅) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ((∅ ↑o ∅)
·o 1o)) |
9 | | 0elon 6304 |
. . . . . . . . . . 11
⊢ ∅
∈ On |
10 | | oecl 8329 |
. . . . . . . . . . 11
⊢ ((∅
∈ On ∧ ∅ ∈ On) → (∅ ↑o ∅)
∈ On) |
11 | 9, 9, 10 | mp2an 688 |
. . . . . . . . . 10
⊢ (∅
↑o ∅) ∈ On |
12 | | om1 8335 |
. . . . . . . . . 10
⊢ ((∅
↑o ∅) ∈ On → ((∅ ↑o
∅) ·o 1o) = (∅ ↑o
∅)) |
13 | 11, 12 | ax-mp 5 |
. . . . . . . . 9
⊢ ((∅
↑o ∅) ·o 1o) = (∅
↑o ∅) |
14 | 8, 13 | eqtrdi 2795 |
. . . . . . . 8
⊢ ((𝐵 = ∅ ∧ 𝐶 = ∅) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = (∅ ↑o
∅)) |
15 | 14 | adantl 481 |
. . . . . . 7
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∧ 𝐶 = ∅)) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = (∅ ↑o
∅)) |
16 | 3, 15 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (∅
↑o (𝐵
+o 𝐶)) =
((∅ ↑o 𝐵) ·o (∅
↑o 𝐶))) |
17 | | oacl 8327 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +o 𝐶) ∈ On) |
18 | | on0eln0 6306 |
. . . . . . . . . 10
⊢ ((𝐵 +o 𝐶) ∈ On → (∅ ∈ (𝐵 +o 𝐶) ↔ (𝐵 +o 𝐶) ≠ ∅)) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅
∈ (𝐵 +o
𝐶) ↔ (𝐵 +o 𝐶) ≠ ∅)) |
20 | | oe0m1 8313 |
. . . . . . . . . 10
⊢ ((𝐵 +o 𝐶) ∈ On → (∅ ∈ (𝐵 +o 𝐶) ↔ (∅ ↑o (𝐵 +o 𝐶)) = ∅)) |
21 | 17, 20 | syl 17 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅
∈ (𝐵 +o
𝐶) ↔ (∅
↑o (𝐵
+o 𝐶)) =
∅)) |
22 | 1 | necon3abid 2979 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 +o 𝐶) ≠ ∅ ↔ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅))) |
23 | 19, 21, 22 | 3bitr3d 308 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅
↑o (𝐵
+o 𝐶)) = ∅
↔ ¬ (𝐵 = ∅
∧ 𝐶 =
∅))) |
24 | 23 | biimpar 477 |
. . . . . . 7
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (∅
↑o (𝐵
+o 𝐶)) =
∅) |
25 | | on0eln0 6306 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ 𝐵 ≠ ∅)) |
26 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅
∈ 𝐵 ↔ 𝐵 ≠ ∅)) |
27 | | on0eln0 6306 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ On → (∅
∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
28 | 27 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅
∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
29 | 26, 28 | orbi12d 915 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅
∈ 𝐵 ∨ ∅
∈ 𝐶) ↔ (𝐵 ≠ ∅ ∨ 𝐶 ≠
∅))) |
30 | | neorian 3038 |
. . . . . . . . . 10
⊢ ((𝐵 ≠ ∅ ∨ 𝐶 ≠ ∅) ↔ ¬
(𝐵 = ∅ ∧ 𝐶 = ∅)) |
31 | 29, 30 | bitrdi 286 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅
∈ 𝐵 ∨ ∅
∈ 𝐶) ↔ ¬
(𝐵 = ∅ ∧ 𝐶 = ∅))) |
32 | | oe0m1 8313 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ (∅
↑o 𝐵) =
∅)) |
33 | 32 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ On ∧ ∅ ∈
𝐵) → (∅
↑o 𝐵) =
∅) |
34 | 33 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ ∅ ∈
𝐵) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = (∅ ·o (∅
↑o 𝐶))) |
35 | | oecl 8329 |
. . . . . . . . . . . . . . 15
⊢ ((∅
∈ On ∧ 𝐶 ∈
On) → (∅ ↑o 𝐶) ∈ On) |
36 | 9, 35 | mpan 686 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ On → (∅
↑o 𝐶)
∈ On) |
37 | | om0r 8331 |
. . . . . . . . . . . . . 14
⊢ ((∅
↑o 𝐶)
∈ On → (∅ ·o (∅ ↑o
𝐶)) =
∅) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ On → (∅
·o (∅ ↑o 𝐶)) = ∅) |
39 | 34, 38 | sylan9eq 2799 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ On ∧ ∅ ∈
𝐵) ∧ 𝐶 ∈ On) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ∅) |
40 | 39 | an32s 648 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐵) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ∅) |
41 | | oe0m1 8313 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ On → (∅
∈ 𝐶 ↔ (∅
↑o 𝐶) =
∅)) |
42 | 41 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ ∅ ∈
𝐶) → (∅
↑o 𝐶) =
∅) |
43 | 42 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ On ∧ ∅ ∈
𝐶) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ((∅ ↑o 𝐵) ·o
∅)) |
44 | | oecl 8329 |
. . . . . . . . . . . . . . 15
⊢ ((∅
∈ On ∧ 𝐵 ∈
On) → (∅ ↑o 𝐵) ∈ On) |
45 | 9, 44 | mpan 686 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ On → (∅
↑o 𝐵)
∈ On) |
46 | | om0 8309 |
. . . . . . . . . . . . . 14
⊢ ((∅
↑o 𝐵)
∈ On → ((∅ ↑o 𝐵) ·o ∅) =
∅) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ On → ((∅
↑o 𝐵)
·o ∅) = ∅) |
48 | 43, 47 | sylan9eqr 2801 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ (𝐶 ∈ On ∧ ∅ ∈
𝐶)) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ∅) |
49 | 48 | anassrs 467 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐶) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ∅) |
50 | 40, 49 | jaodan 954 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅
∈ 𝐵 ∨ ∅
∈ 𝐶)) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ∅) |
51 | 50 | ex 412 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅
∈ 𝐵 ∨ ∅
∈ 𝐶) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ∅)) |
52 | 31, 51 | sylbird 259 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ (𝐵 = ∅ ∧ 𝐶 = ∅) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ∅)) |
53 | 52 | imp 406 |
. . . . . . 7
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅)) → ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶)) = ∅) |
54 | 24, 53 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (∅
↑o (𝐵
+o 𝐶)) =
((∅ ↑o 𝐵) ·o (∅
↑o 𝐶))) |
55 | 16, 54 | pm2.61dan 809 |
. . . . 5
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅
↑o (𝐵
+o 𝐶)) =
((∅ ↑o 𝐵) ·o (∅
↑o 𝐶))) |
56 | | oveq1 7262 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝐴 ↑o (𝐵 +o 𝐶)) = (∅ ↑o (𝐵 +o 𝐶))) |
57 | | oveq1 7262 |
. . . . . . 7
⊢ (𝐴 = ∅ → (𝐴 ↑o 𝐵) = (∅ ↑o
𝐵)) |
58 | | oveq1 7262 |
. . . . . . 7
⊢ (𝐴 = ∅ → (𝐴 ↑o 𝐶) = (∅ ↑o
𝐶)) |
59 | 57, 58 | oveq12d 7273 |
. . . . . 6
⊢ (𝐴 = ∅ → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶)) = ((∅
↑o 𝐵)
·o (∅ ↑o 𝐶))) |
60 | 56, 59 | eqeq12d 2754 |
. . . . 5
⊢ (𝐴 = ∅ → ((𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶)) ↔ (∅ ↑o (𝐵 +o 𝐶)) = ((∅ ↑o 𝐵) ·o (∅
↑o 𝐶)))) |
61 | 55, 60 | syl5ibr 245 |
. . . 4
⊢ (𝐴 = ∅ → ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶)))) |
62 | 61 | impcom 407 |
. . 3
⊢ (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 = ∅) → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) |
63 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴 ↑o (𝐵 +o 𝐶)) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶))) |
64 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴 ↑o 𝐵) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵)) |
65 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴 ↑o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶)) |
66 | 64, 65 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o 𝐶))) |
67 | 63, 66 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶)) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o 𝐶)))) |
68 | 67 | imbi2d 340 |
. . . . . 6
⊢ (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐶 ∈ On → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) ↔ (𝐶 ∈ On → (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o 𝐶))))) |
69 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → (𝐵 +o 𝐶) = (if(𝐵 ∈ On, 𝐵, 1o) +o 𝐶)) |
70 | 69 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → (if((𝐴 ∈ On ∧ ∅ ∈
𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o
(if(𝐵 ∈ On, 𝐵, 1o) +o
𝐶))) |
71 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → (if((𝐴 ∈ On ∧ ∅ ∈
𝐴), 𝐴, 1o) ↑o 𝐵) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o if(𝐵 ∈ On, 𝐵, 1o))) |
72 | 71 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → ((if((𝐴 ∈ On ∧ ∅ ∈
𝐴), 𝐴, 1o) ↑o 𝐵) ·o
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o 𝐶)) =
((if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o if(𝐵
∈ On, 𝐵,
1o)) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶))) |
73 | 70, 72 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → ((if((𝐴 ∈ On ∧ ∅ ∈
𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o 𝐶))
↔ (if((𝐴 ∈ On
∧ ∅ ∈ 𝐴),
𝐴, 1o)
↑o (if(𝐵
∈ On, 𝐵,
1o) +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o if(𝐵 ∈ On, 𝐵, 1o)) ·o
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o 𝐶)))) |
74 | 73 | imbi2d 340 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → ((𝐶 ∈ On → (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o 𝐶)))
↔ (𝐶 ∈ On →
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o (if(𝐵
∈ On, 𝐵,
1o) +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o if(𝐵 ∈ On, 𝐵, 1o)) ·o
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o 𝐶))))) |
75 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴 ∈ On ↔ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈
On)) |
76 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈
𝐴 ↔ ∅ ∈
if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴,
1o))) |
77 | 75, 76 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅
∈ if((𝐴 ∈ On
∧ ∅ ∈ 𝐴),
𝐴,
1o)))) |
78 | | eleq1 2826 |
. . . . . . . . . 10
⊢
(1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (1o
∈ On ↔ if((𝐴
∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈
On)) |
79 | | eleq2 2827 |
. . . . . . . . . 10
⊢
(1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈
1o ↔ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))) |
80 | 78, 79 | anbi12d 630 |
. . . . . . . . 9
⊢
(1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((1o
∈ On ∧ ∅ ∈ 1o) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅
∈ if((𝐴 ∈ On
∧ ∅ ∈ 𝐴),
𝐴,
1o)))) |
81 | | 1on 8274 |
. . . . . . . . . 10
⊢
1o ∈ On |
82 | | 0lt1o 8296 |
. . . . . . . . . 10
⊢ ∅
∈ 1o |
83 | 81, 82 | pm3.2i 470 |
. . . . . . . . 9
⊢
(1o ∈ On ∧ ∅ ∈
1o) |
84 | 77, 80, 83 | elimhyp 4521 |
. . . . . . . 8
⊢
(if((𝐴 ∈ On
∧ ∅ ∈ 𝐴),
𝐴, 1o) ∈ On
∧ ∅ ∈ if((𝐴
∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)) |
85 | 84 | simpli 483 |
. . . . . . 7
⊢ if((𝐴 ∈ On ∧ ∅ ∈
𝐴), 𝐴, 1o) ∈ On |
86 | 84 | simpri 485 |
. . . . . . 7
⊢ ∅
∈ if((𝐴 ∈ On
∧ ∅ ∈ 𝐴),
𝐴,
1o) |
87 | 81 | elimel 4525 |
. . . . . . 7
⊢ if(𝐵 ∈ On, 𝐵, 1o) ∈ On |
88 | 85, 86, 87 | oeoalem 8389 |
. . . . . 6
⊢ (𝐶 ∈ On → (if((𝐴 ∈ On ∧ ∅ ∈
𝐴), 𝐴, 1o) ↑o
(if(𝐵 ∈ On, 𝐵, 1o) +o
𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈
𝐴), 𝐴, 1o) ↑o if(𝐵 ∈ On, 𝐵, 1o)) ·o
(if((𝐴 ∈ On ∧
∅ ∈ 𝐴), 𝐴, 1o)
↑o 𝐶))) |
89 | 68, 74, 88 | dedth2h 4515 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ ∅ ∈
𝐴) ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶)))) |
90 | 89 | impr 454 |
. . . 4
⊢ (((𝐴 ∈ On ∧ ∅ ∈
𝐴) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) |
91 | 90 | an32s 648 |
. . 3
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) ∧ ∅
∈ 𝐴) → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) |
92 | 62, 91 | oe0lem 8305 |
. 2
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) |
93 | 92 | 3impb 1113 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o (𝐵 +o 𝐶)) = ((𝐴 ↑o 𝐵) ·o (𝐴 ↑o 𝐶))) |