MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoa Structured version   Visualization version   GIF version

Theorem oeoa 8544
Description: Sum of exponents law for ordinal exponentiation. Theorem 8R of [Enderton] p. 238. Also Proposition 8.41 of [TakeutiZaring] p. 69. Theorem 4.7 of [Schloeder] p. 14. (Contributed by Eric Schmidt, 26-May-2009.)
Assertion
Ref Expression
oeoa ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))

Proof of Theorem oeoa
StepHypRef Expression
1 oa00 8506 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 +o 𝐶) = ∅ ↔ (𝐵 = ∅ ∧ 𝐶 = ∅)))
21biimpar 478 . . . . . . . 8 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (𝐵 +o 𝐶) = ∅)
32oveq2d 7373 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (∅ ↑o (𝐵 +o 𝐶)) = (∅ ↑o ∅))
4 oveq2 7365 . . . . . . . . . 10 (𝐵 = ∅ → (∅ ↑o 𝐵) = (∅ ↑o ∅))
5 oveq2 7365 . . . . . . . . . . 11 (𝐶 = ∅ → (∅ ↑o 𝐶) = (∅ ↑o ∅))
6 oe0m0 8466 . . . . . . . . . . 11 (∅ ↑o ∅) = 1o
75, 6eqtrdi 2792 . . . . . . . . . 10 (𝐶 = ∅ → (∅ ↑o 𝐶) = 1o)
84, 7oveqan12d 7376 . . . . . . . . 9 ((𝐵 = ∅ ∧ 𝐶 = ∅) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ((∅ ↑o ∅) ·o 1o))
9 0elon 6371 . . . . . . . . . . 11 ∅ ∈ On
10 oecl 8483 . . . . . . . . . . 11 ((∅ ∈ On ∧ ∅ ∈ On) → (∅ ↑o ∅) ∈ On)
119, 9, 10mp2an 690 . . . . . . . . . 10 (∅ ↑o ∅) ∈ On
12 om1 8489 . . . . . . . . . 10 ((∅ ↑o ∅) ∈ On → ((∅ ↑o ∅) ·o 1o) = (∅ ↑o ∅))
1311, 12ax-mp 5 . . . . . . . . 9 ((∅ ↑o ∅) ·o 1o) = (∅ ↑o ∅)
148, 13eqtrdi 2792 . . . . . . . 8 ((𝐵 = ∅ ∧ 𝐶 = ∅) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = (∅ ↑o ∅))
1514adantl 482 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∧ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = (∅ ↑o ∅))
163, 15eqtr4d 2779 . . . . . 6 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (∅ ↑o (𝐵 +o 𝐶)) = ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)))
17 oacl 8481 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +o 𝐶) ∈ On)
18 on0eln0 6373 . . . . . . . . . 10 ((𝐵 +o 𝐶) ∈ On → (∅ ∈ (𝐵 +o 𝐶) ↔ (𝐵 +o 𝐶) ≠ ∅))
1917, 18syl 17 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵 +o 𝐶) ↔ (𝐵 +o 𝐶) ≠ ∅))
20 oe0m1 8467 . . . . . . . . . 10 ((𝐵 +o 𝐶) ∈ On → (∅ ∈ (𝐵 +o 𝐶) ↔ (∅ ↑o (𝐵 +o 𝐶)) = ∅))
2117, 20syl 17 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ (𝐵 +o 𝐶) ↔ (∅ ↑o (𝐵 +o 𝐶)) = ∅))
221necon3abid 2980 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 +o 𝐶) ≠ ∅ ↔ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅)))
2319, 21, 223bitr3d 308 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ↑o (𝐵 +o 𝐶)) = ∅ ↔ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅)))
2423biimpar 478 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (∅ ↑o (𝐵 +o 𝐶)) = ∅)
25 on0eln0 6373 . . . . . . . . . . . 12 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
2625adantr 481 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐵𝐵 ≠ ∅))
27 on0eln0 6373 . . . . . . . . . . . 12 (𝐶 ∈ On → (∅ ∈ 𝐶𝐶 ≠ ∅))
2827adantl 482 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶𝐶 ≠ ∅))
2926, 28orbi12d 917 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶) ↔ (𝐵 ≠ ∅ ∨ 𝐶 ≠ ∅)))
30 neorian 3039 . . . . . . . . . 10 ((𝐵 ≠ ∅ ∨ 𝐶 ≠ ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅))
3129, 30bitrdi 286 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶) ↔ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅)))
32 oe0m1 8467 . . . . . . . . . . . . . . 15 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
3332biimpa 477 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
3433oveq1d 7372 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = (∅ ·o (∅ ↑o 𝐶)))
35 oecl 8483 . . . . . . . . . . . . . . 15 ((∅ ∈ On ∧ 𝐶 ∈ On) → (∅ ↑o 𝐶) ∈ On)
369, 35mpan 688 . . . . . . . . . . . . . 14 (𝐶 ∈ On → (∅ ↑o 𝐶) ∈ On)
37 om0r 8485 . . . . . . . . . . . . . 14 ((∅ ↑o 𝐶) ∈ On → (∅ ·o (∅ ↑o 𝐶)) = ∅)
3836, 37syl 17 . . . . . . . . . . . . 13 (𝐶 ∈ On → (∅ ·o (∅ ↑o 𝐶)) = ∅)
3934, 38sylan9eq 2796 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ 𝐶 ∈ On) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ∅)
4039an32s 650 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐵) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ∅)
41 oe0m1 8467 . . . . . . . . . . . . . . 15 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ (∅ ↑o 𝐶) = ∅))
4241biimpa 477 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ ∅ ∈ 𝐶) → (∅ ↑o 𝐶) = ∅)
4342oveq2d 7373 . . . . . . . . . . . . 13 ((𝐶 ∈ On ∧ ∅ ∈ 𝐶) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ((∅ ↑o 𝐵) ·o ∅))
44 oecl 8483 . . . . . . . . . . . . . . 15 ((∅ ∈ On ∧ 𝐵 ∈ On) → (∅ ↑o 𝐵) ∈ On)
459, 44mpan 688 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ↑o 𝐵) ∈ On)
46 om0 8463 . . . . . . . . . . . . . 14 ((∅ ↑o 𝐵) ∈ On → ((∅ ↑o 𝐵) ·o ∅) = ∅)
4745, 46syl 17 . . . . . . . . . . . . 13 (𝐵 ∈ On → ((∅ ↑o 𝐵) ·o ∅) = ∅)
4843, 47sylan9eqr 2798 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝐶 ∈ On ∧ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ∅)
4948anassrs 468 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ∅)
5040, 49jaodan 956 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ (∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶)) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ∅)
5150ex 413 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((∅ ∈ 𝐵 ∨ ∅ ∈ 𝐶) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ∅))
5231, 51sylbird 259 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ (𝐵 = ∅ ∧ 𝐶 = ∅) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ∅))
5352imp 407 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅)) → ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)) = ∅)
5424, 53eqtr4d 2779 . . . . . 6 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ¬ (𝐵 = ∅ ∧ 𝐶 = ∅)) → (∅ ↑o (𝐵 +o 𝐶)) = ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)))
5516, 54pm2.61dan 811 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ↑o (𝐵 +o 𝐶)) = ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)))
56 oveq1 7364 . . . . . 6 (𝐴 = ∅ → (𝐴o (𝐵 +o 𝐶)) = (∅ ↑o (𝐵 +o 𝐶)))
57 oveq1 7364 . . . . . . 7 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
58 oveq1 7364 . . . . . . 7 (𝐴 = ∅ → (𝐴o 𝐶) = (∅ ↑o 𝐶))
5957, 58oveq12d 7375 . . . . . 6 (𝐴 = ∅ → ((𝐴o 𝐵) ·o (𝐴o 𝐶)) = ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶)))
6056, 59eqeq12d 2752 . . . . 5 (𝐴 = ∅ → ((𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)) ↔ (∅ ↑o (𝐵 +o 𝐶)) = ((∅ ↑o 𝐵) ·o (∅ ↑o 𝐶))))
6155, 60syl5ibr 245 . . . 4 (𝐴 = ∅ → ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶))))
6261impcom 408 . . 3 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 = ∅) → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
63 oveq1 7364 . . . . . . . 8 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴o (𝐵 +o 𝐶)) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)))
64 oveq1 7364 . . . . . . . . 9 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴o 𝐵) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵))
65 oveq1 7364 . . . . . . . . 9 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴o 𝐶) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶))
6664, 65oveq12d 7375 . . . . . . . 8 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴o 𝐵) ·o (𝐴o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶)))
6763, 66eqeq12d 2752 . . . . . . 7 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶))))
6867imbi2d 340 . . . . . 6 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶))) ↔ (𝐶 ∈ On → (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶)))))
69 oveq1 7364 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → (𝐵 +o 𝐶) = (if(𝐵 ∈ On, 𝐵, 1o) +o 𝐶))
7069oveq2d 7373 . . . . . . . 8 (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (if(𝐵 ∈ On, 𝐵, 1o) +o 𝐶)))
71 oveq2 7365 . . . . . . . . 9 (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) = (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o if(𝐵 ∈ On, 𝐵, 1o)))
7271oveq1d 7372 . . . . . . . 8 (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o if(𝐵 ∈ On, 𝐵, 1o)) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶)))
7370, 72eqeq12d 2752 . . . . . . 7 (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶)) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (if(𝐵 ∈ On, 𝐵, 1o) +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o if(𝐵 ∈ On, 𝐵, 1o)) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶))))
7473imbi2d 340 . . . . . 6 (𝐵 = if(𝐵 ∈ On, 𝐵, 1o) → ((𝐶 ∈ On → (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (𝐵 +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐵) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶))) ↔ (𝐶 ∈ On → (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (if(𝐵 ∈ On, 𝐵, 1o) +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o if(𝐵 ∈ On, 𝐵, 1o)) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶)))))
75 eleq1 2825 . . . . . . . . . 10 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (𝐴 ∈ On ↔ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On))
76 eleq2 2826 . . . . . . . . . 10 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈ 𝐴 ↔ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)))
7775, 76anbi12d 631 . . . . . . . . 9 (𝐴 = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))))
78 eleq1 2825 . . . . . . . . . 10 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (1o ∈ On ↔ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On))
79 eleq2 2826 . . . . . . . . . 10 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → (∅ ∈ 1o ↔ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)))
8078, 79anbi12d 631 . . . . . . . . 9 (1o = if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) → ((1o ∈ On ∧ ∅ ∈ 1o) ↔ (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))))
81 1on 8424 . . . . . . . . . 10 1o ∈ On
82 0lt1o 8450 . . . . . . . . . 10 ∅ ∈ 1o
8381, 82pm3.2i 471 . . . . . . . . 9 (1o ∈ On ∧ ∅ ∈ 1o)
8477, 80, 83elimhyp 4551 . . . . . . . 8 (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On ∧ ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o))
8584simpli 484 . . . . . . 7 if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ∈ On
8684simpri 486 . . . . . . 7 ∅ ∈ if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o)
8781elimel 4555 . . . . . . 7 if(𝐵 ∈ On, 𝐵, 1o) ∈ On
8885, 86, 87oeoalem 8543 . . . . . 6 (𝐶 ∈ On → (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o (if(𝐵 ∈ On, 𝐵, 1o) +o 𝐶)) = ((if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o if(𝐵 ∈ On, 𝐵, 1o)) ·o (if((𝐴 ∈ On ∧ ∅ ∈ 𝐴), 𝐴, 1o) ↑o 𝐶)))
8968, 74, 88dedth2h 4545 . . . . 5 (((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶))))
9089impr 455 . . . 4 (((𝐴 ∈ On ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
9190an32s 650 . . 3 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
9262, 91oe0lem 8459 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐶 ∈ On)) → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
93923impb 1115 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o (𝐵 +o 𝐶)) = ((𝐴o 𝐵) ·o (𝐴o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  c0 4282  ifcif 4486  Oncon0 6317  (class class class)co 7357  1oc1o 8405   +o coa 8409   ·o comu 8410  o coe 8411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-oexp 8418
This theorem is referenced by:  oeoelem  8545  infxpenc  9954  omabs2  41651
  Copyright terms: Public domain W3C validator