![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfopab1 | Structured version Visualization version GIF version |
Description: The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfopab1 | ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5229 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | nfe1 2151 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
3 | 2 | nfab 2914 | . 2 ⊢ Ⅎ𝑥{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
4 | 1, 3 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 {cab 2717 Ⅎwnfc 2893 〈cop 4654 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-opab 5229 |
This theorem is referenced by: nfmpt1 5274 rexopabb 5547 ssopab2bw 5566 ssopab2b 5568 0nelopabOLD 5587 dmopab 5940 rnopab 5979 funopab 6613 fvopab5 7062 zfrep6 7995 opabdm 32633 opabrn 32634 fpwrelmap 32747 fineqvrep 35071 bj-opabco 37154 vvdifopab 38216 aomclem8 43018 sprsymrelf 47369 |
Copyright terms: Public domain | W3C validator |