MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab1 Structured version   Visualization version   GIF version

Theorem nfopab1 4992
Description: The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab1 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem nfopab1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 4986 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfe1 2085 . . 3 𝑥𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
32nfab 2932 . 2 𝑥{𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
41, 3nfcxfr 2924 1 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 387   = wceq 1507  wex 1742  {cab 2753  wnfc 2910  cop 4441  {copab 4985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-opab 4986
This theorem is referenced by:  nfmpt1  5019  opelopabsb  5264  ssopab2b  5281  0nelopab  5297  dmopab  5626  rnopab  5662  funopab  6217  fvopab5  6619  zfrep6  7462  opabdm  30116  opabrn  30117  fpwrelmap  30210  vvdifopab  34913  aomclem8  39002  sprsymrelf  42965
  Copyright terms: Public domain W3C validator