Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfopab1 | Structured version Visualization version GIF version |
Description: The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfopab1 | ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5137 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | nfe1 2147 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
3 | 2 | nfab 2913 | . 2 ⊢ Ⅎ𝑥{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
4 | 1, 3 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 {cab 2715 Ⅎwnfc 2887 〈cop 4567 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-opab 5137 |
This theorem is referenced by: nfmpt1 5182 rexopabb 5441 ssopab2bw 5460 ssopab2b 5462 0nelopabOLD 5481 dmopab 5824 rnopab 5863 funopab 6469 fvopab5 6907 zfrep6 7797 opabdm 30951 opabrn 30952 fpwrelmap 31068 fineqvrep 33064 bj-opabco 35359 vvdifopab 36399 aomclem8 40886 sprsymrelf 44947 |
Copyright terms: Public domain | W3C validator |