MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab1 Structured version   Visualization version   GIF version

Theorem nfopab1 4913
Description: The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab1 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem nfopab1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 4907 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfe1 2194 . . 3 𝑥𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
32nfab 2953 . 2 𝑥{𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
41, 3nfcxfr 2946 1 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1637  wex 1859  {cab 2792  wnfc 2935  cop 4376  {copab 4906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-opab 4907
This theorem is referenced by:  nfmpt1  4941  opelopabsb  5180  ssopab2b  5197  dmopab  5536  rnopab  5571  funopab  6132  fvopab5  6527  0neqopab  6924  zfrep6  7360  opabdm  29744  opabrn  29745  fpwrelmap  29831  vvdifopab  34337  aomclem8  38126  sprsymrelf  42307
  Copyright terms: Public domain W3C validator