MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab1 Structured version   Visualization version   GIF version

Theorem nfopab1 5236
Description: The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab1 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem nfopab1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5229 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfe1 2151 . . 3 𝑥𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
32nfab 2914 . 2 𝑥{𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
41, 3nfcxfr 2906 1 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  {cab 2717  wnfc 2893  cop 4654  {copab 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-opab 5229
This theorem is referenced by:  nfmpt1  5274  rexopabb  5547  ssopab2bw  5566  ssopab2b  5568  0nelopabOLD  5587  dmopab  5940  rnopab  5979  funopab  6613  fvopab5  7062  zfrep6  7995  opabdm  32633  opabrn  32634  fpwrelmap  32747  fineqvrep  35071  bj-opabco  37154  vvdifopab  38216  aomclem8  43018  sprsymrelf  47369
  Copyright terms: Public domain W3C validator