| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfopab1 | Structured version Visualization version GIF version | ||
| Description: The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfopab1 | ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 5152 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | nfe1 2153 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
| 3 | 2 | nfab 2900 | . 2 ⊢ Ⅎ𝑥{𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 4 | 1, 3 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2709 Ⅎwnfc 2879 〈cop 4579 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-opab 5152 |
| This theorem is referenced by: nfmpt1 5188 rexopabb 5466 ssopab2bw 5485 ssopab2b 5487 dmopab 5854 rnopab 5893 funopab 6516 fvopab5 6962 zfrep6 7887 opabdm 32594 opabrn 32595 fpwrelmap 32716 fineqvrep 35137 bj-opabco 37232 vvdifopab 38307 aomclem8 43164 sprsymrelf 47605 |
| Copyright terms: Public domain | W3C validator |