MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco3 Structured version   Visualization version   GIF version

Theorem f1omvdco3 19239
Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))

Proof of Theorem f1omvdco3
StepHypRef Expression
1 notbi 319 . . . . 5 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )))
2 disjsn 4676 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐹 ∖ I ))
3 disj2 4421 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
42, 3bitr3i 277 . . . . . 6 𝑋 ∈ dom (𝐹 ∖ I ) ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
5 disjsn 4676 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I ))
6 disj2 4421 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
75, 6bitr3i 277 . . . . . 6 𝑋 ∈ dom (𝐺 ∖ I ) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
84, 7bibi12i 340 . . . . 5 ((¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
91, 8bitri 275 . . . 4 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
109notbii 320 . . 3 (¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
11 df-xor 1511 . . 3 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )))
12 df-xor 1511 . . 3 ((dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
1310, 11, 123bitr4i 303 . 2 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
14 f1omvdco2 19238 . . 3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
15 disj2 4421 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
16 disjsn 4676 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1715, 16bitr3i 277 . . . 4 (dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}) ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1817con2bii 358 . . 3 (𝑋 ∈ dom ((𝐹𝐺) ∖ I ) ↔ ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
1914, 18sylibr 233 . 2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
2013, 19syl3an3b 1406 1 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1088  wxo 1510   = wceq 1542  wcel 2107  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4286  {csn 4590   I cid 5534  dom cdm 5637  ccom 5641  1-1-ontowf1o 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-xor 1511  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508
This theorem is referenced by:  psgnunilem5  19284
  Copyright terms: Public domain W3C validator