MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco3 Structured version   Visualization version   GIF version

Theorem f1omvdco3 18506
Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))

Proof of Theorem f1omvdco3
StepHypRef Expression
1 notbi 320 . . . . 5 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )))
2 disjsn 4639 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐹 ∖ I ))
3 disj2 4403 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
42, 3bitr3i 278 . . . . . 6 𝑋 ∈ dom (𝐹 ∖ I ) ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
5 disjsn 4639 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I ))
6 disj2 4403 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
75, 6bitr3i 278 . . . . . 6 𝑋 ∈ dom (𝐺 ∖ I ) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
84, 7bibi12i 341 . . . . 5 ((¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
91, 8bitri 276 . . . 4 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
109notbii 321 . . 3 (¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
11 df-xor 1496 . . 3 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )))
12 df-xor 1496 . . 3 ((dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
1310, 11, 123bitr4i 304 . 2 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
14 f1omvdco2 18505 . . 3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
15 disj2 4403 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
16 disjsn 4639 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1715, 16bitr3i 278 . . . 4 (dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}) ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1817con2bii 359 . . 3 (𝑋 ∈ dom ((𝐹𝐺) ∖ I ) ↔ ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
1914, 18sylibr 235 . 2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
2013, 19syl3an3b 1397 1 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  w3a 1079  wxo 1495   = wceq 1528  wcel 2105  Vcvv 3492  cdif 3930  cin 3932  wss 3933  c0 4288  {csn 4557   I cid 5452  dom cdm 5548  ccom 5552  1-1-ontowf1o 6347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-xor 1496  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356
This theorem is referenced by:  psgnunilem5  18551
  Copyright terms: Public domain W3C validator