MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco3 Structured version   Visualization version   GIF version

Theorem f1omvdco3 18972
Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))

Proof of Theorem f1omvdco3
StepHypRef Expression
1 notbi 318 . . . . 5 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )))
2 disjsn 4644 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐹 ∖ I ))
3 disj2 4388 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
42, 3bitr3i 276 . . . . . 6 𝑋 ∈ dom (𝐹 ∖ I ) ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
5 disjsn 4644 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I ))
6 disj2 4388 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
75, 6bitr3i 276 . . . . . 6 𝑋 ∈ dom (𝐺 ∖ I ) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
84, 7bibi12i 339 . . . . 5 ((¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
91, 8bitri 274 . . . 4 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
109notbii 319 . . 3 (¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
11 df-xor 1504 . . 3 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )))
12 df-xor 1504 . . 3 ((dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
1310, 11, 123bitr4i 302 . 2 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
14 f1omvdco2 18971 . . 3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
15 disj2 4388 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
16 disjsn 4644 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1715, 16bitr3i 276 . . . 4 (dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}) ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1817con2bii 357 . . 3 (𝑋 ∈ dom ((𝐹𝐺) ∖ I ) ↔ ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
1914, 18sylibr 233 . 2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
2013, 19syl3an3b 1403 1 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1085  wxo 1503   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  {csn 4558   I cid 5479  dom cdm 5580  ccom 5584  1-1-ontowf1o 6417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  psgnunilem5  19017
  Copyright terms: Public domain W3C validator