MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1omvdco3 Structured version   Visualization version   GIF version

Theorem f1omvdco3 19386
Description: If a point is moved by exactly one of two permutations, then it will be moved by their composite. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
f1omvdco3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))

Proof of Theorem f1omvdco3
StepHypRef Expression
1 notbi 319 . . . . 5 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )))
2 disjsn 4678 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐹 ∖ I ))
3 disj2 4424 . . . . . . 7 ((dom (𝐹 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
42, 3bitr3i 277 . . . . . 6 𝑋 ∈ dom (𝐹 ∖ I ) ↔ dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}))
5 disjsn 4678 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I ))
6 disj2 4424 . . . . . . 7 ((dom (𝐺 ∖ I ) ∩ {𝑋}) = ∅ ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
75, 6bitr3i 277 . . . . . 6 𝑋 ∈ dom (𝐺 ∖ I ) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))
84, 7bibi12i 339 . . . . 5 ((¬ 𝑋 ∈ dom (𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
91, 8bitri 275 . . . 4 ((𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
109notbii 320 . . 3 (¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
11 df-xor 1512 . . 3 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ ¬ (𝑋 ∈ dom (𝐹 ∖ I ) ↔ 𝑋 ∈ dom (𝐺 ∖ I )))
12 df-xor 1512 . . 3 ((dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})) ↔ ¬ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ↔ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
1310, 11, 123bitr4i 303 . 2 ((𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I )) ↔ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋})))
14 f1omvdco2 19385 . . 3 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
15 disj2 4424 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
16 disjsn 4678 . . . . 5 ((dom ((𝐹𝐺) ∖ I ) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1715, 16bitr3i 277 . . . 4 (dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}) ↔ ¬ 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
1817con2bii 357 . . 3 (𝑋 ∈ dom ((𝐹𝐺) ∖ I ) ↔ ¬ dom ((𝐹𝐺) ∖ I ) ⊆ (V ∖ {𝑋}))
1914, 18sylibr 234 . 2 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (dom (𝐹 ∖ I ) ⊆ (V ∖ {𝑋}) ⊻ dom (𝐺 ∖ I ) ⊆ (V ∖ {𝑋}))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
2013, 19syl3an3b 1407 1 ((𝐹:𝐴1-1-onto𝐴𝐺:𝐴1-1-onto𝐴 ∧ (𝑋 ∈ dom (𝐹 ∖ I ) ⊻ 𝑋 ∈ dom (𝐺 ∖ I ))) → 𝑋 ∈ dom ((𝐹𝐺) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086  wxo 1511   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  cin 3916  wss 3917  c0 4299  {csn 4592   I cid 5535  dom cdm 5641  ccom 5645  1-1-ontowf1o 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  psgnunilem5  19431
  Copyright terms: Public domain W3C validator