MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv3 Structured version   Visualization version   GIF version

Theorem isocnv3 7062
Description: Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
isocnv3.1 𝐶 = ((𝐴 × 𝐴) ∖ 𝑅)
isocnv3.2 𝐷 = ((𝐵 × 𝐵) ∖ 𝑆)
Assertion
Ref Expression
isocnv3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵))

Proof of Theorem isocnv3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 5577 . . . . . . . 8 (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥𝐴𝑦𝐴))
2 isocnv3.1 . . . . . . . . . . 11 𝐶 = ((𝐴 × 𝐴) ∖ 𝑅)
32breqi 5048 . . . . . . . . . 10 (𝑥𝐶𝑦𝑥((𝐴 × 𝐴) ∖ 𝑅)𝑦)
4 brdif 5095 . . . . . . . . . 10 (𝑥((𝐴 × 𝐴) ∖ 𝑅)𝑦 ↔ (𝑥(𝐴 × 𝐴)𝑦 ∧ ¬ 𝑥𝑅𝑦))
53, 4bitri 277 . . . . . . . . 9 (𝑥𝐶𝑦 ↔ (𝑥(𝐴 × 𝐴)𝑦 ∧ ¬ 𝑥𝑅𝑦))
65baib 538 . . . . . . . 8 (𝑥(𝐴 × 𝐴)𝑦 → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦))
71, 6sylbir 237 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦))
87adantl 484 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦))
9 f1of 6591 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
10 ffvelrn 6825 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
11 ffvelrn 6825 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑦𝐴) → (𝐻𝑦) ∈ 𝐵)
1210, 11anim12dan 620 . . . . . . . . 9 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵))
13 brxp 5577 . . . . . . . . 9 ((𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦) ↔ ((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵))
1412, 13sylibr 236 . . . . . . . 8 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦))
159, 14sylan 582 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦))
16 isocnv3.2 . . . . . . . . . 10 𝐷 = ((𝐵 × 𝐵) ∖ 𝑆)
1716breqi 5048 . . . . . . . . 9 ((𝐻𝑥)𝐷(𝐻𝑦) ↔ (𝐻𝑥)((𝐵 × 𝐵) ∖ 𝑆)(𝐻𝑦))
18 brdif 5095 . . . . . . . . 9 ((𝐻𝑥)((𝐵 × 𝐵) ∖ 𝑆)(𝐻𝑦) ↔ ((𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦) ∧ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
1917, 18bitri 277 . . . . . . . 8 ((𝐻𝑥)𝐷(𝐻𝑦) ↔ ((𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦) ∧ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
2019baib 538 . . . . . . 7 ((𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦) → ((𝐻𝑥)𝐷(𝐻𝑦) ↔ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
2115, 20syl 17 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝐷(𝐻𝑦) ↔ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
228, 21bibi12d 348 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦)) ↔ (¬ 𝑥𝑅𝑦 ↔ ¬ (𝐻𝑥)𝑆(𝐻𝑦))))
23 notbi 321 . . . . 5 ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (¬ 𝑥𝑅𝑦 ↔ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
2422, 23syl6rbbr 292 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦))))
25242ralbidva 3185 . . 3 (𝐻:𝐴1-1-onto𝐵 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦))))
2625pm5.32i 577 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦))))
27 df-isom 6340 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
28 df-isom 6340 . 2 (𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦))))
2926, 27, 283bitr4i 305 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3125  cdif 3910   class class class wbr 5042   × cxp 5529  wf 6327  1-1-ontowf1o 6330  cfv 6331   Isom wiso 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pr 5306
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-f1o 6338  df-fv 6339  df-isom 6340
This theorem is referenced by:  leiso  13802  gtiso  30423
  Copyright terms: Public domain W3C validator