Step | Hyp | Ref
| Expression |
1 | | notbi 319 |
. . . . 5
⊢ ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (¬ 𝑥𝑅𝑦 ↔ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
2 | | brxp 5636 |
. . . . . . . 8
⊢ (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
3 | | isocnv3.1 |
. . . . . . . . . . 11
⊢ 𝐶 = ((𝐴 × 𝐴) ∖ 𝑅) |
4 | 3 | breqi 5080 |
. . . . . . . . . 10
⊢ (𝑥𝐶𝑦 ↔ 𝑥((𝐴 × 𝐴) ∖ 𝑅)𝑦) |
5 | | brdif 5127 |
. . . . . . . . . 10
⊢ (𝑥((𝐴 × 𝐴) ∖ 𝑅)𝑦 ↔ (𝑥(𝐴 × 𝐴)𝑦 ∧ ¬ 𝑥𝑅𝑦)) |
6 | 4, 5 | bitri 274 |
. . . . . . . . 9
⊢ (𝑥𝐶𝑦 ↔ (𝑥(𝐴 × 𝐴)𝑦 ∧ ¬ 𝑥𝑅𝑦)) |
7 | 6 | baib 536 |
. . . . . . . 8
⊢ (𝑥(𝐴 × 𝐴)𝑦 → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦)) |
8 | 2, 7 | sylbir 234 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦)) |
9 | 8 | adantl 482 |
. . . . . 6
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦)) |
10 | | f1of 6716 |
. . . . . . . 8
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
11 | | ffvelrn 6959 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) |
12 | | ffvelrn 6959 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → (𝐻‘𝑦) ∈ 𝐵) |
13 | 11, 12 | anim12dan 619 |
. . . . . . . . 9
⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐻‘𝑦) ∈ 𝐵)) |
14 | | brxp 5636 |
. . . . . . . . 9
⊢ ((𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦) ↔ ((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐻‘𝑦) ∈ 𝐵)) |
15 | 13, 14 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦)) |
16 | 10, 15 | sylan 580 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦)) |
17 | | isocnv3.2 |
. . . . . . . . . 10
⊢ 𝐷 = ((𝐵 × 𝐵) ∖ 𝑆) |
18 | 17 | breqi 5080 |
. . . . . . . . 9
⊢ ((𝐻‘𝑥)𝐷(𝐻‘𝑦) ↔ (𝐻‘𝑥)((𝐵 × 𝐵) ∖ 𝑆)(𝐻‘𝑦)) |
19 | | brdif 5127 |
. . . . . . . . 9
⊢ ((𝐻‘𝑥)((𝐵 × 𝐵) ∖ 𝑆)(𝐻‘𝑦) ↔ ((𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦) ∧ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
20 | 18, 19 | bitri 274 |
. . . . . . . 8
⊢ ((𝐻‘𝑥)𝐷(𝐻‘𝑦) ↔ ((𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦) ∧ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
21 | 20 | baib 536 |
. . . . . . 7
⊢ ((𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦) → ((𝐻‘𝑥)𝐷(𝐻‘𝑦) ↔ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
22 | 16, 21 | syl 17 |
. . . . . 6
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥)𝐷(𝐻‘𝑦) ↔ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
23 | 9, 22 | bibi12d 346 |
. . . . 5
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)) ↔ (¬ 𝑥𝑅𝑦 ↔ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
24 | 1, 23 | bitr4id 290 |
. . . 4
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)))) |
25 | 24 | 2ralbidva 3128 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)))) |
26 | 25 | pm5.32i 575 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)))) |
27 | | df-isom 6442 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
28 | | df-isom 6442 |
. 2
⊢ (𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)))) |
29 | 26, 27, 28 | 3bitr4i 303 |
1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵)) |