Step | Hyp | Ref
| Expression |
1 | | brxp 5389 |
. . . . . . . 8
⊢ (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
2 | | isocnv3.1 |
. . . . . . . . . . 11
⊢ 𝐶 = ((𝐴 × 𝐴) ∖ 𝑅) |
3 | 2 | breqi 4880 |
. . . . . . . . . 10
⊢ (𝑥𝐶𝑦 ↔ 𝑥((𝐴 × 𝐴) ∖ 𝑅)𝑦) |
4 | | brdif 4927 |
. . . . . . . . . 10
⊢ (𝑥((𝐴 × 𝐴) ∖ 𝑅)𝑦 ↔ (𝑥(𝐴 × 𝐴)𝑦 ∧ ¬ 𝑥𝑅𝑦)) |
5 | 3, 4 | bitri 267 |
. . . . . . . . 9
⊢ (𝑥𝐶𝑦 ↔ (𝑥(𝐴 × 𝐴)𝑦 ∧ ¬ 𝑥𝑅𝑦)) |
6 | 5 | baib 533 |
. . . . . . . 8
⊢ (𝑥(𝐴 × 𝐴)𝑦 → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦)) |
7 | 1, 6 | sylbir 227 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦)) |
8 | 7 | adantl 475 |
. . . . . 6
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦)) |
9 | | f1of 6379 |
. . . . . . . 8
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
10 | | ffvelrn 6607 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) |
11 | | ffvelrn 6607 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → (𝐻‘𝑦) ∈ 𝐵) |
12 | 10, 11 | anim12dan 614 |
. . . . . . . . 9
⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐻‘𝑦) ∈ 𝐵)) |
13 | | brxp 5389 |
. . . . . . . . 9
⊢ ((𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦) ↔ ((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐻‘𝑦) ∈ 𝐵)) |
14 | 12, 13 | sylibr 226 |
. . . . . . . 8
⊢ ((𝐻:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦)) |
15 | 9, 14 | sylan 577 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦)) |
16 | | isocnv3.2 |
. . . . . . . . . 10
⊢ 𝐷 = ((𝐵 × 𝐵) ∖ 𝑆) |
17 | 16 | breqi 4880 |
. . . . . . . . 9
⊢ ((𝐻‘𝑥)𝐷(𝐻‘𝑦) ↔ (𝐻‘𝑥)((𝐵 × 𝐵) ∖ 𝑆)(𝐻‘𝑦)) |
18 | | brdif 4927 |
. . . . . . . . 9
⊢ ((𝐻‘𝑥)((𝐵 × 𝐵) ∖ 𝑆)(𝐻‘𝑦) ↔ ((𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦) ∧ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
19 | 17, 18 | bitri 267 |
. . . . . . . 8
⊢ ((𝐻‘𝑥)𝐷(𝐻‘𝑦) ↔ ((𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦) ∧ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
20 | 19 | baib 533 |
. . . . . . 7
⊢ ((𝐻‘𝑥)(𝐵 × 𝐵)(𝐻‘𝑦) → ((𝐻‘𝑥)𝐷(𝐻‘𝑦) ↔ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
21 | 15, 20 | syl 17 |
. . . . . 6
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑥)𝐷(𝐻‘𝑦) ↔ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
22 | 8, 21 | bibi12d 337 |
. . . . 5
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)) ↔ (¬ 𝑥𝑅𝑦 ↔ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
23 | | notbi 311 |
. . . . 5
⊢ ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (¬ 𝑥𝑅𝑦 ↔ ¬ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
24 | 22, 23 | syl6rbbr 282 |
. . . 4
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)))) |
25 | 24 | 2ralbidva 3198 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)))) |
26 | 25 | pm5.32i 572 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)))) |
27 | | df-isom 6133 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
28 | | df-isom 6133 |
. 2
⊢ (𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝐶𝑦 ↔ (𝐻‘𝑥)𝐷(𝐻‘𝑦)))) |
29 | 26, 27, 28 | 3bitr4i 295 |
1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵)) |