MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv3 Structured version   Visualization version   GIF version

Theorem isocnv3 7183
Description: Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
isocnv3.1 𝐶 = ((𝐴 × 𝐴) ∖ 𝑅)
isocnv3.2 𝐷 = ((𝐵 × 𝐵) ∖ 𝑆)
Assertion
Ref Expression
isocnv3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵))

Proof of Theorem isocnv3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 notbi 318 . . . . 5 ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (¬ 𝑥𝑅𝑦 ↔ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
2 brxp 5627 . . . . . . . 8 (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥𝐴𝑦𝐴))
3 isocnv3.1 . . . . . . . . . . 11 𝐶 = ((𝐴 × 𝐴) ∖ 𝑅)
43breqi 5076 . . . . . . . . . 10 (𝑥𝐶𝑦𝑥((𝐴 × 𝐴) ∖ 𝑅)𝑦)
5 brdif 5123 . . . . . . . . . 10 (𝑥((𝐴 × 𝐴) ∖ 𝑅)𝑦 ↔ (𝑥(𝐴 × 𝐴)𝑦 ∧ ¬ 𝑥𝑅𝑦))
64, 5bitri 274 . . . . . . . . 9 (𝑥𝐶𝑦 ↔ (𝑥(𝐴 × 𝐴)𝑦 ∧ ¬ 𝑥𝑅𝑦))
76baib 535 . . . . . . . 8 (𝑥(𝐴 × 𝐴)𝑦 → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦))
82, 7sylbir 234 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦))
98adantl 481 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐶𝑦 ↔ ¬ 𝑥𝑅𝑦))
10 f1of 6700 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
11 ffvelrn 6941 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
12 ffvelrn 6941 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑦𝐴) → (𝐻𝑦) ∈ 𝐵)
1311, 12anim12dan 618 . . . . . . . . 9 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵))
14 brxp 5627 . . . . . . . . 9 ((𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦) ↔ ((𝐻𝑥) ∈ 𝐵 ∧ (𝐻𝑦) ∈ 𝐵))
1513, 14sylibr 233 . . . . . . . 8 ((𝐻:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦))
1610, 15sylan 579 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦))
17 isocnv3.2 . . . . . . . . . 10 𝐷 = ((𝐵 × 𝐵) ∖ 𝑆)
1817breqi 5076 . . . . . . . . 9 ((𝐻𝑥)𝐷(𝐻𝑦) ↔ (𝐻𝑥)((𝐵 × 𝐵) ∖ 𝑆)(𝐻𝑦))
19 brdif 5123 . . . . . . . . 9 ((𝐻𝑥)((𝐵 × 𝐵) ∖ 𝑆)(𝐻𝑦) ↔ ((𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦) ∧ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
2018, 19bitri 274 . . . . . . . 8 ((𝐻𝑥)𝐷(𝐻𝑦) ↔ ((𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦) ∧ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
2120baib 535 . . . . . . 7 ((𝐻𝑥)(𝐵 × 𝐵)(𝐻𝑦) → ((𝐻𝑥)𝐷(𝐻𝑦) ↔ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
2216, 21syl 17 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐻𝑥)𝐷(𝐻𝑦) ↔ ¬ (𝐻𝑥)𝑆(𝐻𝑦)))
239, 22bibi12d 345 . . . . 5 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦)) ↔ (¬ 𝑥𝑅𝑦 ↔ ¬ (𝐻𝑥)𝑆(𝐻𝑦))))
241, 23bitr4id 289 . . . 4 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦))))
25242ralbidva 3121 . . 3 (𝐻:𝐴1-1-onto𝐵 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦))))
2625pm5.32i 574 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦))))
27 df-isom 6427 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
28 df-isom 6427 . 2 (𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝐶𝑦 ↔ (𝐻𝑥)𝐷(𝐻𝑦))))
2926, 27, 283bitr4i 302 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cdif 3880   class class class wbr 5070   × cxp 5578  wf 6414  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-f1o 6425  df-fv 6426  df-isom 6427
This theorem is referenced by:  leiso  14101  gtiso  30935
  Copyright terms: Public domain W3C validator