MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nprrel12 Structured version   Visualization version   GIF version

Theorem nprrel12 5607
Description: Proper classes are not related via any relation. (Contributed by AV, 29-Oct-2021.)
Hypothesis
Ref Expression
nprrel12.1 Rel 𝑅
Assertion
Ref Expression
nprrel12 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 𝐴𝑅𝐵)

Proof of Theorem nprrel12
StepHypRef Expression
1 nprrel12.1 . . 3 Rel 𝑅
21brrelex12i 5604 . 2 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32con3i 157 1 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wcel 2110  Vcvv 3408   class class class wbr 5053  Rel wrel 5556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator