Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrelex12i | Structured version Visualization version GIF version |
Description: Two classes that are related by a binary relation are sets. Inference form. (Contributed by BJ, 3-Oct-2022.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex12i | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex12 5639 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: nprrel12 5645 vtoclr 5650 relbrcnvg 6013 ovprc 7313 oprabv 7335 encv 8741 brdomi 8748 fsuppimp 9134 fsuppunbi 9149 brttrcl 9471 brfi1uzind 14212 brfi1indALT 14214 isstruct2 16850 brssc 17526 isfull 17626 isfth 17630 dvdsr 19888 ulmval 25539 subgrv 27637 vcex 28940 opelco3 33749 bj-ideqgALT 35329 bj-idreseqb 35334 bj-ideqg1ALT 35336 rngoablo2 36067 aovprc 44680 aovrcl 44681 nelbrim 44767 isisomgr 45276 linindsv 45786 |
Copyright terms: Public domain | W3C validator |