![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex12i | Structured version Visualization version GIF version |
Description: Two classes that are related by a binary relation are sets. Inference form. (Contributed by BJ, 3-Oct-2022.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex12i | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex12 5730 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 1, 2 | mpan 688 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 Vcvv 3461 class class class wbr 5149 Rel wrel 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 |
This theorem is referenced by: nprrel12 5736 vtoclr 5741 relbrcnvg 6110 ovprc 7457 oprabv 7480 encv 8972 brdomi 8979 domssl 9019 fsuppimp 9394 fsuppunbi 9414 brttrcl 9738 brfi1uzind 14495 brfi1indALT 14497 isstruct2 17121 brssc 17800 isfull 17902 isfth 17906 dvdsr 20313 ulmval 26361 subgrv 29155 vcex 30460 opelco3 35501 bj-ideqgALT 36768 bj-idreseqb 36773 bj-ideqg1ALT 36775 rngoablo2 37513 aovprc 46706 aovrcl 46707 nelbrim 46793 linindsv 47699 |
Copyright terms: Public domain | W3C validator |