Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrelex12i | Structured version Visualization version GIF version |
Description: Two classes that are related by a binary relation are sets. Inference form. (Contributed by BJ, 3-Oct-2022.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex12i | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex12 5635 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3430 class class class wbr 5074 Rel wrel 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5075 df-opab 5137 df-xp 5591 df-rel 5592 |
This theorem is referenced by: nprrel12 5641 vtoclr 5646 relbrcnvg 6007 ovprc 7306 oprabv 7326 encv 8729 brdomi 8736 fsuppimp 9122 fsuppunbi 9137 brttrcl 9459 brfi1uzind 14200 brfi1indALT 14202 isstruct2 16838 brssc 17514 isfull 17614 isfth 17618 dvdsr 19876 ulmval 25527 subgrv 27625 vcex 28926 opelco3 33735 bj-ideqgALT 35315 bj-idreseqb 35320 bj-ideqg1ALT 35322 rngoablo2 36053 aovprc 44636 aovrcl 44637 nelbrim 44723 isisomgr 45232 linindsv 45742 |
Copyright terms: Public domain | W3C validator |