| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex12i | Structured version Visualization version GIF version | ||
| Description: Two classes that are related by a binary relation are sets. Inference form. (Contributed by BJ, 3-Oct-2022.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex12i | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex12 5690 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: nprrel12 5696 vtoclr 5701 relbrcnvg 6076 ovprc 7425 oprabv 7449 encv 8926 brdomi 8931 domssl 8969 fsuppimp 9319 fsuppunbi 9340 brttrcl 9666 brfi1uzind 14473 brfi1indALT 14475 isstruct2 17119 brssc 17776 isfull 17874 isfth 17878 dvdsr 20271 ulmval 26289 subgrv 29197 vcex 30507 opelco3 35762 bj-ideqgALT 37146 bj-idreseqb 37151 bj-ideqg1ALT 37153 rngoablo2 37903 aovprc 47186 aovrcl 47187 nelbrim 47273 linindsv 48431 func1st 49063 func2nd 49064 oppfval 49122 upfval3 49164 prcofval 49364 |
| Copyright terms: Public domain | W3C validator |