| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex12i | Structured version Visualization version GIF version | ||
| Description: Two classes that are related by a binary relation are sets. Inference form. (Contributed by BJ, 3-Oct-2022.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex12i | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex12 5671 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: nprrel12 5677 vtoclr 5682 relbrcnvg 6056 ovprc 7387 oprabv 7409 encv 8880 brdomi 8885 domssl 8923 fsuppimp 9258 fsuppunbi 9279 brttrcl 9609 brfi1uzind 14415 brfi1indALT 14417 isstruct2 17060 brssc 17721 isfull 17819 isfth 17823 dvdsr 20247 ulmval 26287 subgrv 29219 vcex 30526 opelco3 35768 bj-ideqgALT 37152 bj-idreseqb 37157 bj-ideqg1ALT 37159 rngoablo2 37909 aovprc 47192 aovrcl 47193 nelbrim 47279 linindsv 48450 func1st 49082 func2nd 49083 oppfval 49141 upfval3 49183 prcofval 49383 |
| Copyright terms: Public domain | W3C validator |