| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex12i | Structured version Visualization version GIF version | ||
| Description: Two classes that are related by a binary relation are sets. Inference form. (Contributed by BJ, 3-Oct-2022.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex12i | ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex12 5683 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 |
| This theorem is referenced by: nprrel12 5689 vtoclr 5694 relbrcnvg 6065 ovprc 7407 oprabv 7429 encv 8903 brdomi 8908 domssl 8946 fsuppimp 9295 fsuppunbi 9316 brttrcl 9642 brfi1uzind 14449 brfi1indALT 14451 isstruct2 17095 brssc 17756 isfull 17854 isfth 17858 dvdsr 20282 ulmval 26322 subgrv 29250 vcex 30557 opelco3 35755 bj-ideqgALT 37139 bj-idreseqb 37144 bj-ideqg1ALT 37146 rngoablo2 37896 aovprc 47182 aovrcl 47183 nelbrim 47269 linindsv 48427 func1st 49059 func2nd 49060 oppfval 49118 upfval3 49160 prcofval 49360 |
| Copyright terms: Public domain | W3C validator |