MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nprrel Structured version   Visualization version   GIF version

Theorem nprrel 5733
Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
Hypotheses
Ref Expression
nprrel12.1 Rel 𝑅
nprrel.2 ¬ 𝐴 ∈ V
Assertion
Ref Expression
nprrel ¬ 𝐴𝑅𝐵

Proof of Theorem nprrel
StepHypRef Expression
1 nprrel.2 . 2 ¬ 𝐴 ∈ V
2 nprrel12.1 . . 3 Rel 𝑅
32brrelex1i 5730 . 2 (𝐴𝑅𝐵𝐴 ∈ V)
41, 3mto 196 1 ¬ 𝐴𝑅𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  Vcvv 3474   class class class wbr 5147  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator