![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nprrel | Structured version Visualization version GIF version |
Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.) |
Ref | Expression |
---|---|
nprrel12.1 | ⊢ Rel 𝑅 |
nprrel.2 | ⊢ ¬ 𝐴 ∈ V |
Ref | Expression |
---|---|
nprrel | ⊢ ¬ 𝐴𝑅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nprrel.2 | . 2 ⊢ ¬ 𝐴 ∈ V | |
2 | nprrel12.1 | . . 3 ⊢ Rel 𝑅 | |
3 | 2 | brrelex1i 5454 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | mto 189 | 1 ⊢ ¬ 𝐴𝑅𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2051 Vcvv 3408 class class class wbr 4925 Rel wrel 5408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-xp 5409 df-rel 5410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |