MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nprrel Structured version   Visualization version   GIF version

Theorem nprrel 5748
Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
Hypotheses
Ref Expression
nprrel12.1 Rel 𝑅
nprrel.2 ¬ 𝐴 ∈ V
Assertion
Ref Expression
nprrel ¬ 𝐴𝑅𝐵

Proof of Theorem nprrel
StepHypRef Expression
1 nprrel.2 . 2 ¬ 𝐴 ∈ V
2 nprrel12.1 . . 3 Rel 𝑅
32brrelex1i 5745 . 2 (𝐴𝑅𝐵𝐴 ∈ V)
41, 3mto 197 1 ¬ 𝐴𝑅𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  Vcvv 3478   class class class wbr 5148  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator