MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nprrel Structured version   Visualization version   GIF version

Theorem nprrel 5637
Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
Hypotheses
Ref Expression
nprrel12.1 Rel 𝑅
nprrel.2 ¬ 𝐴 ∈ V
Assertion
Ref Expression
nprrel ¬ 𝐴𝑅𝐵

Proof of Theorem nprrel
StepHypRef Expression
1 nprrel.2 . 2 ¬ 𝐴 ∈ V
2 nprrel12.1 . . 3 Rel 𝑅
32brrelex1i 5634 . 2 (𝐴𝑅𝐵𝐴 ∈ V)
41, 3mto 196 1 ¬ 𝐴𝑅𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  Vcvv 3422   class class class wbr 5070  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator