Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nprrel | Structured version Visualization version GIF version |
Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.) |
Ref | Expression |
---|---|
nprrel12.1 | ⊢ Rel 𝑅 |
nprrel.2 | ⊢ ¬ 𝐴 ∈ V |
Ref | Expression |
---|---|
nprrel | ⊢ ¬ 𝐴𝑅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nprrel.2 | . 2 ⊢ ¬ 𝐴 ∈ V | |
2 | nprrel12.1 | . . 3 ⊢ Rel 𝑅 | |
3 | 2 | brrelex1i 5643 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | mto 196 | 1 ⊢ ¬ 𝐴𝑅𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |