![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nprrel | Structured version Visualization version GIF version |
Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.) |
Ref | Expression |
---|---|
nprrel12.1 | ⊢ Rel 𝑅 |
nprrel.2 | ⊢ ¬ 𝐴 ∈ V |
Ref | Expression |
---|---|
nprrel | ⊢ ¬ 𝐴𝑅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nprrel.2 | . 2 ⊢ ¬ 𝐴 ∈ V | |
2 | nprrel12.1 | . . 3 ⊢ Rel 𝑅 | |
3 | 2 | brrelex1i 5724 | . 2 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | mto 196 | 1 ⊢ ¬ 𝐴𝑅𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Vcvv 3473 class class class wbr 5141 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |