![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version |
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex2 5754 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: vtoclr 5763 brfvopabrbr 7026 brdomiOLD 9019 domdifsn 9120 undom 9125 undomOLD 9126 xpdom2 9133 xpdom1g 9135 domunsncan 9138 enfixsn 9147 sucdom2OLD 9148 fodomr 9194 pwdom 9195 domssex 9204 xpen 9206 mapdom1 9208 mapdom2 9214 pwen 9216 domtrfil 9258 sucdom2 9269 0sdom1dom 9301 1sdom2dom 9310 unxpdom 9316 unxpdom2 9317 sucxpdom 9318 isfinite2 9362 infn0ALT 9369 fin2inf 9370 fodomfir 9396 suppeqfsuppbi 9448 fsuppsssupp 9450 fsuppssov1 9453 fsuppunbi 9458 funsnfsupp 9461 mapfien2 9478 wemapso2 9622 card2on 9623 elharval 9630 harword 9632 brwdomi 9637 brwdomn0 9638 domwdom 9643 wdomtr 9644 wdompwdom 9647 canthwdom 9648 brwdom3i 9652 unwdomg 9653 xpwdomg 9654 unxpwdom 9658 infdifsn 9726 infdiffi 9727 isnum2 10014 wdomfil 10130 djuen 10239 djuenun 10240 djudom2 10253 djuxpdom 10255 djuinf 10258 infdju1 10259 pwdjuidm 10261 djulepw 10262 infdjuabs 10274 infdif 10277 pwdjudom 10284 infpss 10285 infmap2 10286 fictb 10313 infpssALT 10382 enfin2i 10390 fin34 10459 fodomb 10595 wdomac 10596 iundom2g 10609 iundom 10611 sdomsdomcard 10629 infxpidm 10631 engch 10697 fpwwe2lem3 10702 canthp1lem1 10721 canthp1lem2 10722 canthp1 10723 pwfseq 10733 pwxpndom2 10734 pwxpndom 10735 pwdjundom 10736 hargch 10742 gchaclem 10747 hasheni 14397 hashdomi 14429 clim 15540 rlim 15541 ntrivcvgn0 15946 ssc1 17882 ssc2 17883 ssctr 17886 frgpnabl 19917 dprddomprc 20044 dprdval 20047 dprdgrp 20049 dprdf 20050 dprdssv 20060 subgdmdprd 20078 dprd2da 20086 1stcrestlem 23481 hauspwdom 23530 isref 23538 ufilen 23959 dvle 26066 ellpi 33366 locfinref 33787 isfne4 36306 fnetr 36317 topfneec 36321 fnessref 36323 refssfne 36324 bj-epelb 37035 bj-idreseq 37128 phpreu 37564 sdomne0 43375 sdomne0d 43376 rn1st 45183 climf 45543 climf2 45587 |
Copyright terms: Public domain | W3C validator |