Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2104
Vcvv 3472 class class class wbr 5147
Rel wrel 5680 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 |
This theorem is referenced by: vtoclr
5738 brfvopabrbr
6994 brdomiOLD
8957 domdifsn
9056 undom
9061 undomOLD
9062 xpdom2
9069 xpdom1g
9071 domunsncan
9074 enfixsn
9083 sucdom2OLD
9084 fodomr
9130 pwdom
9131 domssex
9140 xpen
9142 mapdom1
9144 mapdom2
9150 pwen
9152 domtrfil
9197 sucdom2
9208 0sdom1dom
9240 1sdom2dom
9249 unxpdom
9255 unxpdom2
9256 sucxpdom
9257 isfinite2
9303 infn0ALT
9310 fin2inf
9311 suppeqfsuppbi
9379 fsuppsssupp
9381 fsuppunbi
9386 funsnfsupp
9389 mapfien2
9406 wemapso2
9550 card2on
9551 elharval
9558 harword
9560 brwdomi
9565 brwdomn0
9566 domwdom
9571 wdomtr
9572 wdompwdom
9575 canthwdom
9576 brwdom3i
9580 unwdomg
9581 xpwdomg
9582 unxpwdom
9586 infdifsn
9654 infdiffi
9655 isnum2
9942 wdomfil
10058 djuen
10166 djuenun
10167 djudom2
10180 djuxpdom
10182 djuinf
10185 infdju1
10186 pwdjuidm
10188 djulepw
10189 infdjuabs
10203 infdif
10206 pwdjudom
10213 infpss
10214 infmap2
10215 fictb
10242 infpssALT
10310 enfin2i
10318 fin34
10387 fodomb
10523 wdomac
10524 iundom2g
10537 iundom
10539 sdomsdomcard
10557 infxpidm
10559 engch
10625 fpwwe2lem3
10630 canthp1lem1
10649 canthp1lem2
10650 canthp1
10651 pwfseq
10661 pwxpndom2
10662 pwxpndom
10663 pwdjundom
10664 hargch
10670 gchaclem
10675 hasheni
14312 hashdomi
14344 clim
15442 rlim
15443 ntrivcvgn0
15848 ssc1
17772 ssc2
17773 ssctr
17776 frgpnabl
19784 dprddomprc
19911 dprdval
19914 dprdgrp
19916 dprdf
19917 dprdssv
19927 subgdmdprd
19945 dprd2da
19953 1stcrestlem
23176 hauspwdom
23225 isref
23233 ufilen
23654 dvle
25759 locfinref
33119 isfne4
35528 fnetr
35539 topfneec
35543 fnessref
35545 refssfne
35546 bj-epelb
36253 bj-idreseq
36346 phpreu
36775 sdomne0
42466 sdomne0d
42467 rn1st
44276 climf
44636 climf2
44680 |