| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex2 5695 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: vtoclr 5704 brfvopabrbr 6968 domdifsn 9028 undom 9033 undomOLD 9034 xpdom2 9041 xpdom1g 9043 domunsncan 9046 enfixsn 9055 sucdom2OLD 9056 fodomr 9098 pwdom 9099 domssex 9108 xpen 9110 mapdom1 9112 mapdom2 9118 pwen 9120 domtrfil 9162 sucdom2 9173 0sdom1dom 9192 1sdom2dom 9201 unxpdom 9207 unxpdom2 9208 sucxpdom 9209 isfinite2 9252 infn0ALT 9259 fin2inf 9260 fodomfir 9286 suppeqfsuppbi 9337 fsuppsssupp 9339 fsuppssov1 9342 fsuppunbi 9347 funsnfsupp 9350 mapfien2 9367 wemapso2 9513 card2on 9514 elharval 9521 harword 9523 brwdomi 9528 brwdomn0 9529 domwdom 9534 wdomtr 9535 wdompwdom 9538 canthwdom 9539 brwdom3i 9543 unwdomg 9544 xpwdomg 9545 unxpwdom 9549 infdifsn 9617 infdiffi 9618 isnum2 9905 wdomfil 10021 djuen 10130 djuenun 10131 djudom2 10144 djuxpdom 10146 djuinf 10149 infdju1 10150 pwdjuidm 10152 djulepw 10153 infdjuabs 10165 infdif 10168 pwdjudom 10175 infpss 10176 infmap2 10177 fictb 10204 infpssALT 10273 enfin2i 10281 fin34 10350 fodomb 10486 wdomac 10487 iundom2g 10500 iundom 10502 sdomsdomcard 10520 infxpidm 10522 engch 10588 fpwwe2lem3 10593 canthp1lem1 10612 canthp1lem2 10613 canthp1 10614 pwfseq 10624 pwxpndom2 10625 pwxpndom 10626 pwdjundom 10627 hargch 10633 gchaclem 10638 hasheni 14320 hashdomi 14352 clim 15467 rlim 15468 ntrivcvgn0 15871 ssc1 17790 ssc2 17791 ssctr 17794 frgpnabl 19812 dprddomprc 19939 dprdval 19942 dprdgrp 19944 dprdf 19945 dprdssv 19955 subgdmdprd 19973 dprd2da 19981 1stcrestlem 23346 hauspwdom 23395 isref 23403 ufilen 23824 dvle 25919 ellpi 33351 locfinref 33838 isfne4 36335 fnetr 36346 topfneec 36350 fnessref 36352 refssfne 36353 bj-epelb 37064 bj-idreseq 37157 phpreu 37605 sdomne0 43409 sdomne0d 43410 rn1st 45274 climf 45627 climf2 45671 iinfssc 49050 fuco21 49329 fucoid 49341 |
| Copyright terms: Public domain | W3C validator |