Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
Vcvv 3475 class class class wbr 5149
Rel wrel 5682 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: vtoclr
5740 brfvopabrbr
6996 brdomiOLD
8955 domdifsn
9054 undom
9059 undomOLD
9060 xpdom2
9067 xpdom1g
9069 domunsncan
9072 enfixsn
9081 sucdom2OLD
9082 fodomr
9128 pwdom
9129 domssex
9138 xpen
9140 mapdom1
9142 mapdom2
9148 pwen
9150 domtrfil
9195 sucdom2
9206 0sdom1dom
9238 1sdom2dom
9247 unxpdom
9253 unxpdom2
9254 sucxpdom
9255 isfinite2
9301 infn0ALT
9308 fin2inf
9309 suppeqfsuppbi
9377 fsuppsssupp
9379 fsuppunbi
9384 funsnfsupp
9387 mapfien2
9404 wemapso2
9548 card2on
9549 elharval
9556 harword
9558 brwdomi
9563 brwdomn0
9564 domwdom
9569 wdomtr
9570 wdompwdom
9573 canthwdom
9574 brwdom3i
9578 unwdomg
9579 xpwdomg
9580 unxpwdom
9584 infdifsn
9652 infdiffi
9653 isnum2
9940 wdomfil
10056 djuen
10164 djuenun
10165 djudom2
10178 djuxpdom
10180 djuinf
10183 infdju1
10184 pwdjuidm
10186 djulepw
10187 infdjuabs
10201 infdif
10204 pwdjudom
10211 infpss
10212 infmap2
10213 fictb
10240 infpssALT
10308 enfin2i
10316 fin34
10385 fodomb
10521 wdomac
10522 iundom2g
10535 iundom
10537 sdomsdomcard
10555 infxpidm
10557 engch
10623 fpwwe2lem3
10628 canthp1lem1
10647 canthp1lem2
10648 canthp1
10649 pwfseq
10659 pwxpndom2
10660 pwxpndom
10661 pwdjundom
10662 hargch
10668 gchaclem
10673 hasheni
14308 hashdomi
14340 clim
15438 rlim
15439 ntrivcvgn0
15844 ssc1
17768 ssc2
17769 ssctr
17772 frgpnabl
19743 dprddomprc
19870 dprdval
19873 dprdgrp
19875 dprdf
19876 dprdssv
19886 subgdmdprd
19904 dprd2da
19912 1stcrestlem
22956 hauspwdom
23005 isref
23013 ufilen
23434 dvle
25524 locfinref
32821 isfne4
35225 fnetr
35236 topfneec
35240 fnessref
35242 refssfne
35243 bj-epelb
35950 bj-idreseq
36043 phpreu
36472 sdomne0
42164 sdomne0d
42165 rn1st
43978 climf
44338 climf2
44382 |