| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex2 5673 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: vtoclr 5682 brfvopabrbr 6927 domdifsn 8977 undom 8982 xpdom2 8989 xpdom1g 8991 domunsncan 8994 enfixsn 9003 fodomr 9045 pwdom 9046 domssex 9055 xpen 9057 mapdom1 9059 mapdom2 9065 pwen 9067 domtrfil 9106 sucdom2 9117 0sdom1dom 9135 1sdom2dom 9143 unxpdom 9148 unxpdom2 9149 sucxpdom 9150 isfinite2 9187 infn0ALT 9192 fin2inf 9193 fodomfir 9218 suppeqfsuppbi 9269 fsuppsssupp 9271 fsuppssov1 9274 fsuppunbi 9279 funsnfsupp 9282 mapfien2 9299 wemapso2 9445 card2on 9446 elharval 9453 harword 9455 brwdomi 9460 brwdomn0 9461 domwdom 9466 wdomtr 9467 wdompwdom 9470 canthwdom 9471 brwdom3i 9475 unwdomg 9476 xpwdomg 9477 unxpwdom 9481 infdifsn 9553 infdiffi 9554 isnum2 9841 wdomfil 9955 djuen 10064 djuenun 10065 djudom2 10078 djuxpdom 10080 djuinf 10083 infdju1 10084 pwdjuidm 10086 djulepw 10087 infdjuabs 10099 infdif 10102 pwdjudom 10109 infpss 10110 infmap2 10111 fictb 10138 infpssALT 10207 enfin2i 10215 fin34 10284 fodomb 10420 wdomac 10421 iundom2g 10434 iundom 10436 sdomsdomcard 10454 infxpidm 10456 engch 10522 fpwwe2lem3 10527 canthp1lem1 10546 canthp1lem2 10547 canthp1 10548 pwfseq 10558 pwxpndom2 10559 pwxpndom 10560 pwdjundom 10561 hargch 10567 gchaclem 10572 hasheni 14255 hashdomi 14287 clim 15401 rlim 15402 ntrivcvgn0 15805 ssc1 17728 ssc2 17729 ssctr 17732 frgpnabl 19754 dprddomprc 19881 dprdval 19884 dprdgrp 19886 dprdf 19887 dprdssv 19897 subgdmdprd 19915 dprd2da 19923 1stcrestlem 23337 hauspwdom 23386 isref 23394 ufilen 23815 dvle 25910 ellpi 33311 finextfldext 33637 locfinref 33814 isfne4 36324 fnetr 36335 topfneec 36339 fnessref 36341 refssfne 36342 bj-epelb 37053 bj-idreseq 37146 phpreu 37594 sdomne0 43396 sdomne0d 43397 rn1st 45261 climf 45613 climf2 45657 iinfssc 49052 fuco21 49331 fucoid 49343 |
| Copyright terms: Public domain | W3C validator |