| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex2 5668 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: vtoclr 5677 brfvopabrbr 6926 domdifsn 8973 undom 8978 xpdom2 8985 xpdom1g 8987 domunsncan 8990 enfixsn 8999 fodomr 9041 pwdom 9042 domssex 9051 xpen 9053 mapdom1 9055 mapdom2 9061 pwen 9063 domtrfil 9101 sucdom2 9112 0sdom1dom 9130 1sdom2dom 9138 unxpdom 9143 unxpdom2 9144 sucxpdom 9145 isfinite2 9182 infn0ALT 9187 fin2inf 9188 fodomfir 9212 suppeqfsuppbi 9263 fsuppsssupp 9265 fsuppssov1 9268 fsuppunbi 9273 funsnfsupp 9276 mapfien2 9293 wemapso2 9439 card2on 9440 elharval 9447 harword 9449 brwdomi 9454 brwdomn0 9455 domwdom 9460 wdomtr 9461 wdompwdom 9464 canthwdom 9465 brwdom3i 9469 unwdomg 9470 xpwdomg 9471 unxpwdom 9475 infdifsn 9547 infdiffi 9548 isnum2 9838 wdomfil 9952 djuen 10061 djuenun 10062 djudom2 10075 djuxpdom 10077 djuinf 10080 infdju1 10081 pwdjuidm 10083 djulepw 10084 infdjuabs 10096 infdif 10099 pwdjudom 10106 infpss 10107 infmap2 10108 fictb 10135 infpssALT 10204 enfin2i 10212 fin34 10281 fodomb 10417 wdomac 10418 iundom2g 10431 iundom 10433 sdomsdomcard 10451 infxpidm 10453 engch 10519 fpwwe2lem3 10524 canthp1lem1 10543 canthp1lem2 10544 canthp1 10545 pwfseq 10555 pwxpndom2 10556 pwxpndom 10557 pwdjundom 10558 hargch 10564 gchaclem 10569 hasheni 14255 hashdomi 14287 clim 15401 rlim 15402 ntrivcvgn0 15805 ssc1 17728 ssc2 17729 ssctr 17732 frgpnabl 19787 dprddomprc 19914 dprdval 19917 dprdgrp 19919 dprdf 19920 dprdssv 19930 subgdmdprd 19948 dprd2da 19956 1stcrestlem 23367 hauspwdom 23416 isref 23424 ufilen 23845 dvle 25939 ellpi 33338 finextfldext 33677 locfinref 33854 isfne4 36384 fnetr 36395 topfneec 36399 fnessref 36401 refssfne 36402 bj-epelb 37113 bj-idreseq 37206 phpreu 37654 sdomne0 43516 sdomne0d 43517 rn1st 45380 climf 45732 climf2 45774 iinfssc 49168 fuco21 49447 fucoid 49459 |
| Copyright terms: Public domain | W3C validator |