| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex2 5692 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: vtoclr 5701 brfvopabrbr 6965 domdifsn 9024 undom 9029 xpdom2 9036 xpdom1g 9038 domunsncan 9041 enfixsn 9050 fodomr 9092 pwdom 9093 domssex 9102 xpen 9104 mapdom1 9106 mapdom2 9112 pwen 9114 domtrfil 9156 sucdom2 9167 0sdom1dom 9185 1sdom2dom 9194 unxpdom 9200 unxpdom2 9201 sucxpdom 9202 isfinite2 9245 infn0ALT 9252 fin2inf 9253 fodomfir 9279 suppeqfsuppbi 9330 fsuppsssupp 9332 fsuppssov1 9335 fsuppunbi 9340 funsnfsupp 9343 mapfien2 9360 wemapso2 9506 card2on 9507 elharval 9514 harword 9516 brwdomi 9521 brwdomn0 9522 domwdom 9527 wdomtr 9528 wdompwdom 9531 canthwdom 9532 brwdom3i 9536 unwdomg 9537 xpwdomg 9538 unxpwdom 9542 infdifsn 9610 infdiffi 9611 isnum2 9898 wdomfil 10014 djuen 10123 djuenun 10124 djudom2 10137 djuxpdom 10139 djuinf 10142 infdju1 10143 pwdjuidm 10145 djulepw 10146 infdjuabs 10158 infdif 10161 pwdjudom 10168 infpss 10169 infmap2 10170 fictb 10197 infpssALT 10266 enfin2i 10274 fin34 10343 fodomb 10479 wdomac 10480 iundom2g 10493 iundom 10495 sdomsdomcard 10513 infxpidm 10515 engch 10581 fpwwe2lem3 10586 canthp1lem1 10605 canthp1lem2 10606 canthp1 10607 pwfseq 10617 pwxpndom2 10618 pwxpndom 10619 pwdjundom 10620 hargch 10626 gchaclem 10631 hasheni 14313 hashdomi 14345 clim 15460 rlim 15461 ntrivcvgn0 15864 ssc1 17783 ssc2 17784 ssctr 17787 frgpnabl 19805 dprddomprc 19932 dprdval 19935 dprdgrp 19937 dprdf 19938 dprdssv 19948 subgdmdprd 19966 dprd2da 19974 1stcrestlem 23339 hauspwdom 23388 isref 23396 ufilen 23817 dvle 25912 ellpi 33344 locfinref 33831 isfne4 36328 fnetr 36339 topfneec 36343 fnessref 36345 refssfne 36346 bj-epelb 37057 bj-idreseq 37150 phpreu 37598 sdomne0 43402 sdomne0d 43403 rn1st 45267 climf 45620 climf2 45664 iinfssc 49046 fuco21 49325 fucoid 49337 |
| Copyright terms: Public domain | W3C validator |