| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex2 5708 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: vtoclr 5717 brfvopabrbr 6982 brdomiOLD 8972 domdifsn 9066 undom 9071 undomOLD 9072 xpdom2 9079 xpdom1g 9081 domunsncan 9084 enfixsn 9093 sucdom2OLD 9094 fodomr 9140 pwdom 9141 domssex 9150 xpen 9152 mapdom1 9154 mapdom2 9160 pwen 9162 domtrfil 9204 sucdom2 9215 0sdom1dom 9244 1sdom2dom 9253 unxpdom 9259 unxpdom2 9260 sucxpdom 9261 isfinite2 9304 infn0ALT 9311 fin2inf 9312 fodomfir 9338 suppeqfsuppbi 9389 fsuppsssupp 9391 fsuppssov1 9394 fsuppunbi 9399 funsnfsupp 9402 mapfien2 9419 wemapso2 9565 card2on 9566 elharval 9573 harword 9575 brwdomi 9580 brwdomn0 9581 domwdom 9586 wdomtr 9587 wdompwdom 9590 canthwdom 9591 brwdom3i 9595 unwdomg 9596 xpwdomg 9597 unxpwdom 9601 infdifsn 9669 infdiffi 9670 isnum2 9957 wdomfil 10073 djuen 10182 djuenun 10183 djudom2 10196 djuxpdom 10198 djuinf 10201 infdju1 10202 pwdjuidm 10204 djulepw 10205 infdjuabs 10217 infdif 10220 pwdjudom 10227 infpss 10228 infmap2 10229 fictb 10256 infpssALT 10325 enfin2i 10333 fin34 10402 fodomb 10538 wdomac 10539 iundom2g 10552 iundom 10554 sdomsdomcard 10572 infxpidm 10574 engch 10640 fpwwe2lem3 10645 canthp1lem1 10664 canthp1lem2 10665 canthp1 10666 pwfseq 10676 pwxpndom2 10677 pwxpndom 10678 pwdjundom 10679 hargch 10685 gchaclem 10690 hasheni 14364 hashdomi 14396 clim 15508 rlim 15509 ntrivcvgn0 15912 ssc1 17832 ssc2 17833 ssctr 17836 frgpnabl 19854 dprddomprc 19981 dprdval 19984 dprdgrp 19986 dprdf 19987 dprdssv 19997 subgdmdprd 20015 dprd2da 20023 1stcrestlem 23388 hauspwdom 23437 isref 23445 ufilen 23866 dvle 25962 ellpi 33334 locfinref 33818 isfne4 36304 fnetr 36315 topfneec 36319 fnessref 36321 refssfne 36322 bj-epelb 37033 bj-idreseq 37126 phpreu 37574 sdomne0 43384 sdomne0d 43385 rn1st 45245 climf 45599 climf2 45643 iinfssc 48972 fuco21 49195 fucoid 49207 |
| Copyright terms: Public domain | W3C validator |