Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version |
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex2 5632 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: vtoclr 5641 brfvopabrbr 6854 brdomi 8704 domdifsn 8795 undom 8800 xpdom2 8807 xpdom1g 8809 domunsncan 8812 enfixsn 8821 sucdom2 8822 fodomr 8864 pwdom 8865 domssex 8874 xpen 8876 mapdom1 8878 mapdom2 8884 pwen 8886 unxpdom 8959 unxpdom2 8960 sucxpdom 8961 isfinite2 9002 infn0 9006 fin2inf 9007 suppeqfsuppbi 9072 fsuppsssupp 9074 fsuppunbi 9079 funsnfsupp 9082 mapfien2 9098 wemapso2 9242 card2on 9243 elharval 9250 harword 9252 brwdomi 9257 brwdomn0 9258 domwdom 9263 wdomtr 9264 wdompwdom 9267 canthwdom 9268 brwdom3i 9272 unwdomg 9273 xpwdomg 9274 unxpwdom 9278 infdifsn 9345 infdiffi 9346 isnum2 9634 wdomfil 9748 djuen 9856 djuenun 9857 djudom2 9870 djuxpdom 9872 djuinf 9875 infdju1 9876 pwdjuidm 9878 djulepw 9879 infdjuabs 9893 infdif 9896 pwdjudom 9903 infpss 9904 infmap2 9905 fictb 9932 infpssALT 10000 enfin2i 10008 fin34 10077 fodomb 10213 wdomac 10214 iundom2g 10227 iundom 10229 sdomsdomcard 10247 infxpidm 10249 engch 10315 fpwwe2lem3 10320 canthp1lem1 10339 canthp1lem2 10340 canthp1 10341 pwfseq 10351 pwxpndom2 10352 pwxpndom 10353 pwdjundom 10354 hargch 10360 gchaclem 10365 hasheni 13990 hashdomi 14023 clim 15131 rlim 15132 ntrivcvgn0 15538 ssc1 17450 ssc2 17451 ssctr 17454 frgpnabl 19391 dprddomprc 19518 dprdval 19521 dprdgrp 19523 dprdf 19524 dprdssv 19534 subgdmdprd 19552 dprd2da 19560 1stcrestlem 22511 hauspwdom 22560 isref 22568 ufilen 22989 dvle 25076 locfinref 31693 isfne4 34456 fnetr 34467 topfneec 34471 fnessref 34473 refssfne 34474 bj-epelb 35167 bj-idreseq 35260 phpreu 35688 climf 43053 climf2 43097 |
Copyright terms: Public domain | W3C validator |