Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
Vcvv 3474 class class class wbr 5147
Rel wrel 5680 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 |
This theorem is referenced by: vtoclr
5737 brfvopabrbr
6992 brdomiOLD
8951 domdifsn
9050 undom
9055 undomOLD
9056 xpdom2
9063 xpdom1g
9065 domunsncan
9068 enfixsn
9077 sucdom2OLD
9078 fodomr
9124 pwdom
9125 domssex
9134 xpen
9136 mapdom1
9138 mapdom2
9144 pwen
9146 domtrfil
9191 sucdom2
9202 0sdom1dom
9234 1sdom2dom
9243 unxpdom
9249 unxpdom2
9250 sucxpdom
9251 isfinite2
9297 infn0ALT
9304 fin2inf
9305 suppeqfsuppbi
9373 fsuppsssupp
9375 fsuppunbi
9380 funsnfsupp
9383 mapfien2
9400 wemapso2
9544 card2on
9545 elharval
9552 harword
9554 brwdomi
9559 brwdomn0
9560 domwdom
9565 wdomtr
9566 wdompwdom
9569 canthwdom
9570 brwdom3i
9574 unwdomg
9575 xpwdomg
9576 unxpwdom
9580 infdifsn
9648 infdiffi
9649 isnum2
9936 wdomfil
10052 djuen
10160 djuenun
10161 djudom2
10174 djuxpdom
10176 djuinf
10179 infdju1
10180 pwdjuidm
10182 djulepw
10183 infdjuabs
10197 infdif
10200 pwdjudom
10207 infpss
10208 infmap2
10209 fictb
10236 infpssALT
10304 enfin2i
10312 fin34
10381 fodomb
10517 wdomac
10518 iundom2g
10531 iundom
10533 sdomsdomcard
10551 infxpidm
10553 engch
10619 fpwwe2lem3
10624 canthp1lem1
10643 canthp1lem2
10644 canthp1
10645 pwfseq
10655 pwxpndom2
10656 pwxpndom
10657 pwdjundom
10658 hargch
10664 gchaclem
10669 hasheni
14304 hashdomi
14336 clim
15434 rlim
15435 ntrivcvgn0
15840 ssc1
17764 ssc2
17765 ssctr
17768 frgpnabl
19737 dprddomprc
19864 dprdval
19867 dprdgrp
19869 dprdf
19870 dprdssv
19880 subgdmdprd
19898 dprd2da
19906 1stcrestlem
22947 hauspwdom
22996 isref
23004 ufilen
23425 dvle
25515 locfinref
32809 isfne4
35213 fnetr
35224 topfneec
35228 fnessref
35230 refssfne
35231 bj-epelb
35938 bj-idreseq
36031 phpreu
36460 sdomne0
42149 sdomne0d
42150 rn1st
43964 climf
44324 climf2
44368 |