| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex2 5685 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 |
| This theorem is referenced by: vtoclr 5694 brfvopabrbr 6947 domdifsn 9001 undom 9006 xpdom2 9013 xpdom1g 9015 domunsncan 9018 enfixsn 9027 fodomr 9069 pwdom 9070 domssex 9079 xpen 9081 mapdom1 9083 mapdom2 9089 pwen 9091 domtrfil 9133 sucdom2 9144 0sdom1dom 9162 1sdom2dom 9170 unxpdom 9176 unxpdom2 9177 sucxpdom 9178 isfinite2 9221 infn0ALT 9228 fin2inf 9229 fodomfir 9255 suppeqfsuppbi 9306 fsuppsssupp 9308 fsuppssov1 9311 fsuppunbi 9316 funsnfsupp 9319 mapfien2 9336 wemapso2 9482 card2on 9483 elharval 9490 harword 9492 brwdomi 9497 brwdomn0 9498 domwdom 9503 wdomtr 9504 wdompwdom 9507 canthwdom 9508 brwdom3i 9512 unwdomg 9513 xpwdomg 9514 unxpwdom 9518 infdifsn 9586 infdiffi 9587 isnum2 9874 wdomfil 9990 djuen 10099 djuenun 10100 djudom2 10113 djuxpdom 10115 djuinf 10118 infdju1 10119 pwdjuidm 10121 djulepw 10122 infdjuabs 10134 infdif 10137 pwdjudom 10144 infpss 10145 infmap2 10146 fictb 10173 infpssALT 10242 enfin2i 10250 fin34 10319 fodomb 10455 wdomac 10456 iundom2g 10469 iundom 10471 sdomsdomcard 10489 infxpidm 10491 engch 10557 fpwwe2lem3 10562 canthp1lem1 10581 canthp1lem2 10582 canthp1 10583 pwfseq 10593 pwxpndom2 10594 pwxpndom 10595 pwdjundom 10596 hargch 10602 gchaclem 10607 hasheni 14289 hashdomi 14321 clim 15436 rlim 15437 ntrivcvgn0 15840 ssc1 17763 ssc2 17764 ssctr 17767 frgpnabl 19789 dprddomprc 19916 dprdval 19919 dprdgrp 19921 dprdf 19922 dprdssv 19932 subgdmdprd 19950 dprd2da 19958 1stcrestlem 23372 hauspwdom 23421 isref 23429 ufilen 23850 dvle 25945 ellpi 33337 locfinref 33824 isfne4 36321 fnetr 36332 topfneec 36336 fnessref 36338 refssfne 36339 bj-epelb 37050 bj-idreseq 37143 phpreu 37591 sdomne0 43395 sdomne0d 43396 rn1st 45260 climf 45613 climf2 45657 iinfssc 49039 fuco21 49318 fucoid 49330 |
| Copyright terms: Public domain | W3C validator |