![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex2i | Structured version Visualization version GIF version |
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex2i | ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex2 5742 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 |
This theorem is referenced by: vtoclr 5751 brfvopabrbr 7012 brdomiOLD 8998 domdifsn 9092 undom 9097 undomOLD 9098 xpdom2 9105 xpdom1g 9107 domunsncan 9110 enfixsn 9119 sucdom2OLD 9120 fodomr 9166 pwdom 9167 domssex 9176 xpen 9178 mapdom1 9180 mapdom2 9186 pwen 9188 domtrfil 9229 sucdom2 9240 0sdom1dom 9271 1sdom2dom 9280 unxpdom 9286 unxpdom2 9287 sucxpdom 9288 isfinite2 9331 infn0ALT 9338 fin2inf 9339 fodomfir 9365 suppeqfsuppbi 9416 fsuppsssupp 9418 fsuppssov1 9421 fsuppunbi 9426 funsnfsupp 9429 mapfien2 9446 wemapso2 9590 card2on 9591 elharval 9598 harword 9600 brwdomi 9605 brwdomn0 9606 domwdom 9611 wdomtr 9612 wdompwdom 9615 canthwdom 9616 brwdom3i 9620 unwdomg 9621 xpwdomg 9622 unxpwdom 9626 infdifsn 9694 infdiffi 9695 isnum2 9982 wdomfil 10098 djuen 10207 djuenun 10208 djudom2 10221 djuxpdom 10223 djuinf 10226 infdju1 10227 pwdjuidm 10229 djulepw 10230 infdjuabs 10242 infdif 10245 pwdjudom 10252 infpss 10253 infmap2 10254 fictb 10281 infpssALT 10350 enfin2i 10358 fin34 10427 fodomb 10563 wdomac 10564 iundom2g 10577 iundom 10579 sdomsdomcard 10597 infxpidm 10599 engch 10665 fpwwe2lem3 10670 canthp1lem1 10689 canthp1lem2 10690 canthp1 10691 pwfseq 10701 pwxpndom2 10702 pwxpndom 10703 pwdjundom 10704 hargch 10710 gchaclem 10715 hasheni 14383 hashdomi 14415 clim 15526 rlim 15527 ntrivcvgn0 15930 ssc1 17868 ssc2 17869 ssctr 17872 frgpnabl 19907 dprddomprc 20034 dprdval 20037 dprdgrp 20039 dprdf 20040 dprdssv 20050 subgdmdprd 20068 dprd2da 20076 1stcrestlem 23475 hauspwdom 23524 isref 23532 ufilen 23953 dvle 26060 ellpi 33380 locfinref 33801 isfne4 36322 fnetr 36333 topfneec 36337 fnessref 36339 refssfne 36340 bj-epelb 37051 bj-idreseq 37144 phpreu 37590 sdomne0 43402 sdomne0d 43403 rn1st 45218 climf 45577 climf2 45621 |
Copyright terms: Public domain | W3C validator |