| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resspsrvsca | Structured version Visualization version GIF version | ||
| Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| resspsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| resspsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| resspsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
| resspsr.b | ⊢ 𝐵 = (Base‘𝑈) |
| resspsr.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| resspsr.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| Ref | Expression |
|---|---|
| resspsrvsca | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.u | . . 3 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
| 2 | eqid 2731 | . . 3 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 3 | eqid 2731 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 4 | resspsr.b | . . 3 ⊢ 𝐵 = (Base‘𝑈) | |
| 5 | eqid 2731 | . . 3 ⊢ (.r‘𝐻) = (.r‘𝐻) | |
| 6 | eqid 2731 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝑇) | |
| 8 | resspsr.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 ∈ (SubRing‘𝑅)) |
| 10 | resspsr.h | . . . . . 6 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 11 | 10 | subrgbas 20496 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 = (Base‘𝐻)) |
| 13 | 7, 12 | eleqtrd 2833 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝐻)) |
| 14 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 15 | 1, 2, 3, 4, 5, 6, 13, 14 | psrvsca 21886 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
| 16 | resspsr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 17 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 18 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | eqid 2731 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 20 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 21 | 18 | subrgss 20487 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
| 22 | 9, 21 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 ⊆ (Base‘𝑅)) |
| 23 | 22, 7 | sseldd 3930 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝑅)) |
| 24 | resspsr.p | . . . . . . . 8 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 25 | 16, 10, 1, 4, 24, 8 | resspsrbas 21911 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 26 | 24, 19 | ressbasss 17150 | . . . . . . 7 ⊢ (Base‘𝑃) ⊆ (Base‘𝑆) |
| 27 | 25, 26 | eqsstrdi 3974 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ (Base‘𝑆)) |
| 29 | 28, 14 | sseldd 3930 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘𝑆)) |
| 30 | 16, 17, 18, 19, 20, 6, 23, 29 | psrvsca 21886 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝑌)) |
| 31 | 10, 20 | ressmulr 17211 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝐻)) |
| 32 | ofeq 7613 | . . . . 5 ⊢ ((.r‘𝑅) = (.r‘𝐻) → ∘f (.r‘𝑅) = ∘f (.r‘𝐻)) | |
| 33 | 9, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → ∘f (.r‘𝑅) = ∘f (.r‘𝐻)) |
| 34 | 33 | oveqd 7363 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
| 35 | 30, 34 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
| 36 | 4 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 37 | 24, 17 | ressvsca 17248 | . . . 4 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
| 38 | 36, 37 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
| 39 | 38 | oveqd 7363 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| 40 | 15, 35, 39 | 3eqtr2d 2772 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 {csn 4573 × cxp 5612 ◡ccnv 5613 “ cima 5617 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ↑m cmap 8750 Fincfn 8869 ℕcn 12125 ℕ0cn0 12381 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 ·𝑠 cvsca 17165 SubRingcsubrg 20484 mPwSer cmps 21841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-subg 19036 df-ring 20153 df-subrg 20485 df-psr 21846 |
| This theorem is referenced by: ressmplvsca 21966 |
| Copyright terms: Public domain | W3C validator |