| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resspsrvsca | Structured version Visualization version GIF version | ||
| Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| resspsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| resspsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| resspsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
| resspsr.b | ⊢ 𝐵 = (Base‘𝑈) |
| resspsr.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| resspsr.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| Ref | Expression |
|---|---|
| resspsrvsca | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.u | . . 3 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
| 2 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 3 | eqid 2730 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 4 | resspsr.b | . . 3 ⊢ 𝐵 = (Base‘𝑈) | |
| 5 | eqid 2730 | . . 3 ⊢ (.r‘𝐻) = (.r‘𝐻) | |
| 6 | eqid 2730 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝑇) | |
| 8 | resspsr.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 ∈ (SubRing‘𝑅)) |
| 10 | resspsr.h | . . . . . 6 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 11 | 10 | subrgbas 20497 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 = (Base‘𝐻)) |
| 13 | 7, 12 | eleqtrd 2831 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝐻)) |
| 14 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 15 | 1, 2, 3, 4, 5, 6, 13, 14 | psrvsca 21865 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
| 16 | resspsr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 17 | eqid 2730 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 18 | eqid 2730 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | eqid 2730 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 20 | eqid 2730 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 21 | 18 | subrgss 20488 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
| 22 | 9, 21 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 ⊆ (Base‘𝑅)) |
| 23 | 22, 7 | sseldd 3950 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝑅)) |
| 24 | resspsr.p | . . . . . . . 8 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 25 | 16, 10, 1, 4, 24, 8 | resspsrbas 21890 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 26 | 24, 19 | ressbasss 17216 | . . . . . . 7 ⊢ (Base‘𝑃) ⊆ (Base‘𝑆) |
| 27 | 25, 26 | eqsstrdi 3994 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ (Base‘𝑆)) |
| 29 | 28, 14 | sseldd 3950 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘𝑆)) |
| 30 | 16, 17, 18, 19, 20, 6, 23, 29 | psrvsca 21865 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝑌)) |
| 31 | 10, 20 | ressmulr 17277 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝐻)) |
| 32 | ofeq 7659 | . . . . 5 ⊢ ((.r‘𝑅) = (.r‘𝐻) → ∘f (.r‘𝑅) = ∘f (.r‘𝐻)) | |
| 33 | 9, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → ∘f (.r‘𝑅) = ∘f (.r‘𝐻)) |
| 34 | 33 | oveqd 7407 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
| 35 | 30, 34 | eqtrd 2765 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
| 36 | 4 | fvexi 6875 | . . . 4 ⊢ 𝐵 ∈ V |
| 37 | 24, 17 | ressvsca 17314 | . . . 4 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
| 38 | 36, 37 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
| 39 | 38 | oveqd 7407 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| 40 | 15, 35, 39 | 3eqtr2d 2771 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 {csn 4592 × cxp 5639 ◡ccnv 5640 “ cima 5644 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 ↑m cmap 8802 Fincfn 8921 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 ↾s cress 17207 .rcmulr 17228 ·𝑠 cvsca 17231 SubRingcsubrg 20485 mPwSer cmps 21820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-tset 17246 df-subg 19062 df-ring 20151 df-subrg 20486 df-psr 21825 |
| This theorem is referenced by: ressmplvsca 21945 |
| Copyright terms: Public domain | W3C validator |