MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrvsca Structured version   Visualization version   GIF version

Theorem resspsrvsca 19780
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrvsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem resspsrvsca
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 resspsr.u . . 3 𝑈 = (𝐼 mPwSer 𝐻)
2 eqid 2826 . . 3 ( ·𝑠𝑈) = ( ·𝑠𝑈)
3 eqid 2826 . . 3 (Base‘𝐻) = (Base‘𝐻)
4 resspsr.b . . 3 𝐵 = (Base‘𝑈)
5 eqid 2826 . . 3 (.r𝐻) = (.r𝐻)
6 eqid 2826 . . 3 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 simprl 789 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋𝑇)
8 resspsr.2 . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
98adantr 474 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ∈ (SubRing‘𝑅))
10 resspsr.h . . . . . 6 𝐻 = (𝑅s 𝑇)
1110subrgbas 19146 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
129, 11syl 17 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 = (Base‘𝐻))
137, 12eleqtrd 2909 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝐻))
14 simprr 791 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌𝐵)
151, 2, 3, 4, 5, 6, 13, 14psrvsca 19753 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝐻)𝑌))
16 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
17 eqid 2826 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
18 eqid 2826 . . . 4 (Base‘𝑅) = (Base‘𝑅)
19 eqid 2826 . . . 4 (Base‘𝑆) = (Base‘𝑆)
20 eqid 2826 . . . 4 (.r𝑅) = (.r𝑅)
2118subrgss 19138 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
229, 21syl 17 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ⊆ (Base‘𝑅))
2322, 7sseldd 3829 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝑅))
24 resspsr.p . . . . . . . 8 𝑃 = (𝑆s 𝐵)
2516, 10, 1, 4, 24, 8resspsrbas 19777 . . . . . . 7 (𝜑𝐵 = (Base‘𝑃))
2624, 19ressbasss 16296 . . . . . . 7 (Base‘𝑃) ⊆ (Base‘𝑆)
2725, 26syl6eqss 3881 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝑆))
2827adantr 474 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
2928, 14sseldd 3829 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
3016, 17, 18, 19, 20, 6, 23, 29psrvsca 19753 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝑌))
3110, 20ressmulr 16366 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝐻))
32 ofeq 7160 . . . . 5 ((.r𝑅) = (.r𝐻) → ∘𝑓 (.r𝑅) = ∘𝑓 (.r𝐻))
339, 31, 323syl 18 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ∘𝑓 (.r𝑅) = ∘𝑓 (.r𝐻))
3433oveqd 6923 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝐻)𝑌))
3530, 34eqtrd 2862 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝐻)𝑌))
364fvexi 6448 . . . 4 𝐵 ∈ V
3724, 17ressvsca 16392 . . . 4 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3836, 37mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3938oveqd 6923 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
4015, 35, 393eqtr2d 2868 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  {crab 3122  Vcvv 3415  wss 3799  {csn 4398   × cxp 5341  ccnv 5342  cima 5346  cfv 6124  (class class class)co 6906  𝑓 cof 7156  𝑚 cmap 8123  Fincfn 8223  cn 11351  0cn0 11619  Basecbs 16223  s cress 16224  .rcmulr 16307   ·𝑠 cvsca 16310  SubRingcsubrg 19133   mPwSer cmps 19713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-supp 7561  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-fsupp 8546  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-sca 16322  df-vsca 16323  df-tset 16325  df-subg 17943  df-ring 18904  df-subrg 19135  df-psr 19718
This theorem is referenced by:  ressmplvsca  19821
  Copyright terms: Public domain W3C validator