Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resspsrvsca | Structured version Visualization version GIF version |
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
resspsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
resspsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
resspsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
resspsr.b | ⊢ 𝐵 = (Base‘𝑈) |
resspsr.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
resspsr.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
Ref | Expression |
---|---|
resspsrvsca | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resspsr.u | . . 3 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
2 | eqid 2736 | . . 3 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
3 | eqid 2736 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
4 | resspsr.b | . . 3 ⊢ 𝐵 = (Base‘𝑈) | |
5 | eqid 2736 | . . 3 ⊢ (.r‘𝐻) = (.r‘𝐻) | |
6 | eqid 2736 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
7 | simprl 768 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝑇) | |
8 | resspsr.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 ∈ (SubRing‘𝑅)) |
10 | resspsr.h | . . . . . 6 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
11 | 10 | subrgbas 20138 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 = (Base‘𝐻)) |
13 | 7, 12 | eleqtrd 2839 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝐻)) |
14 | simprr 770 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
15 | 1, 2, 3, 4, 5, 6, 13, 14 | psrvsca 21266 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
16 | resspsr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
17 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
18 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
19 | eqid 2736 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
20 | eqid 2736 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
21 | 18 | subrgss 20130 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
22 | 9, 21 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 ⊆ (Base‘𝑅)) |
23 | 22, 7 | sseldd 3933 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝑅)) |
24 | resspsr.p | . . . . . . . 8 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
25 | 16, 10, 1, 4, 24, 8 | resspsrbas 21290 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
26 | 24, 19 | ressbasss 17047 | . . . . . . 7 ⊢ (Base‘𝑃) ⊆ (Base‘𝑆) |
27 | 25, 26 | eqsstrdi 3986 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
28 | 27 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ (Base‘𝑆)) |
29 | 28, 14 | sseldd 3933 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘𝑆)) |
30 | 16, 17, 18, 19, 20, 6, 23, 29 | psrvsca 21266 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝑌)) |
31 | 10, 20 | ressmulr 17114 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝐻)) |
32 | ofeq 7598 | . . . . 5 ⊢ ((.r‘𝑅) = (.r‘𝐻) → ∘f (.r‘𝑅) = ∘f (.r‘𝐻)) | |
33 | 9, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → ∘f (.r‘𝑅) = ∘f (.r‘𝐻)) |
34 | 33 | oveqd 7354 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
35 | 30, 34 | eqtrd 2776 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
36 | 4 | fvexi 6839 | . . . 4 ⊢ 𝐵 ∈ V |
37 | 24, 17 | ressvsca 17151 | . . . 4 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
38 | 36, 37 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
39 | 38 | oveqd 7354 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
40 | 15, 35, 39 | 3eqtr2d 2782 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3403 Vcvv 3441 ⊆ wss 3898 {csn 4573 × cxp 5618 ◡ccnv 5619 “ cima 5623 ‘cfv 6479 (class class class)co 7337 ∘f cof 7593 ↑m cmap 8686 Fincfn 8804 ℕcn 12074 ℕ0cn0 12334 Basecbs 17009 ↾s cress 17038 .rcmulr 17060 ·𝑠 cvsca 17063 SubRingcsubrg 20125 mPwSer cmps 21213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-tset 17078 df-subg 18848 df-ring 19880 df-subrg 20127 df-psr 21218 |
This theorem is referenced by: ressmplvsca 21338 |
Copyright terms: Public domain | W3C validator |