| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resspsrvsca | Structured version Visualization version GIF version | ||
| Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| Ref | Expression |
|---|---|
| resspsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| resspsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| resspsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
| resspsr.b | ⊢ 𝐵 = (Base‘𝑈) |
| resspsr.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| resspsr.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| Ref | Expression |
|---|---|
| resspsrvsca | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.u | . . 3 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
| 2 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 4 | resspsr.b | . . 3 ⊢ 𝐵 = (Base‘𝑈) | |
| 5 | eqid 2729 | . . 3 ⊢ (.r‘𝐻) = (.r‘𝐻) | |
| 6 | eqid 2729 | . . 3 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝑇) | |
| 8 | resspsr.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 ∈ (SubRing‘𝑅)) |
| 10 | resspsr.h | . . . . . 6 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 11 | 10 | subrgbas 20490 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
| 12 | 9, 11 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 = (Base‘𝐻)) |
| 13 | 7, 12 | eleqtrd 2830 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝐻)) |
| 14 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 15 | 1, 2, 3, 4, 5, 6, 13, 14 | psrvsca 21858 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
| 16 | resspsr.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 17 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 18 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | eqid 2729 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 20 | eqid 2729 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 21 | 18 | subrgss 20481 | . . . . . 6 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
| 22 | 9, 21 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑇 ⊆ (Base‘𝑅)) |
| 23 | 22, 7 | sseldd 3947 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ (Base‘𝑅)) |
| 24 | resspsr.p | . . . . . . . 8 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 25 | 16, 10, 1, 4, 24, 8 | resspsrbas 21883 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 26 | 24, 19 | ressbasss 17209 | . . . . . . 7 ⊢ (Base‘𝑃) ⊆ (Base‘𝑆) |
| 27 | 25, 26 | eqsstrdi 3991 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ (Base‘𝑆)) |
| 29 | 28, 14 | sseldd 3947 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ (Base‘𝑆)) |
| 30 | 16, 17, 18, 19, 20, 6, 23, 29 | psrvsca 21858 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝑌)) |
| 31 | 10, 20 | ressmulr 17270 | . . . . 5 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝐻)) |
| 32 | ofeq 7656 | . . . . 5 ⊢ ((.r‘𝑅) = (.r‘𝐻) → ∘f (.r‘𝑅) = ∘f (.r‘𝐻)) | |
| 33 | 9, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → ∘f (.r‘𝑅) = ∘f (.r‘𝐻)) |
| 34 | 33 | oveqd 7404 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝑅)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
| 35 | 30, 34 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (({𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r‘𝐻)𝑌)) |
| 36 | 4 | fvexi 6872 | . . . 4 ⊢ 𝐵 ∈ V |
| 37 | 24, 17 | ressvsca 17307 | . . . 4 ⊢ (𝐵 ∈ V → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
| 38 | 36, 37 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑃)) |
| 39 | 38 | oveqd 7404 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑆)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| 40 | 15, 35, 39 | 3eqtr2d 2770 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 {csn 4589 × cxp 5636 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ↑m cmap 8799 Fincfn 8918 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 ·𝑠 cvsca 17224 SubRingcsubrg 20478 mPwSer cmps 21813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-tset 17239 df-subg 19055 df-ring 20144 df-subrg 20479 df-psr 21818 |
| This theorem is referenced by: ressmplvsca 21938 |
| Copyright terms: Public domain | W3C validator |