MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrvsca Structured version   Visualization version   GIF version

Theorem resspsrvsca 21997
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrvsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem resspsrvsca
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 resspsr.u . . 3 𝑈 = (𝐼 mPwSer 𝐻)
2 eqid 2737 . . 3 ( ·𝑠𝑈) = ( ·𝑠𝑈)
3 eqid 2737 . . 3 (Base‘𝐻) = (Base‘𝐻)
4 resspsr.b . . 3 𝐵 = (Base‘𝑈)
5 eqid 2737 . . 3 (.r𝐻) = (.r𝐻)
6 eqid 2737 . . 3 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 simprl 771 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋𝑇)
8 resspsr.2 . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
98adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ∈ (SubRing‘𝑅))
10 resspsr.h . . . . . 6 𝐻 = (𝑅s 𝑇)
1110subrgbas 20581 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
129, 11syl 17 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 = (Base‘𝐻))
137, 12eleqtrd 2843 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝐻))
14 simprr 773 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌𝐵)
151, 2, 3, 4, 5, 6, 13, 14psrvsca 21969 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝐻)𝑌))
16 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
17 eqid 2737 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
18 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
19 eqid 2737 . . . 4 (Base‘𝑆) = (Base‘𝑆)
20 eqid 2737 . . . 4 (.r𝑅) = (.r𝑅)
2118subrgss 20572 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
229, 21syl 17 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ⊆ (Base‘𝑅))
2322, 7sseldd 3984 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝑅))
24 resspsr.p . . . . . . . 8 𝑃 = (𝑆s 𝐵)
2516, 10, 1, 4, 24, 8resspsrbas 21994 . . . . . . 7 (𝜑𝐵 = (Base‘𝑃))
2624, 19ressbasss 17284 . . . . . . 7 (Base‘𝑃) ⊆ (Base‘𝑆)
2725, 26eqsstrdi 4028 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝑆))
2827adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
2928, 14sseldd 3984 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
3016, 17, 18, 19, 20, 6, 23, 29psrvsca 21969 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝑌))
3110, 20ressmulr 17351 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝐻))
32 ofeq 7700 . . . . 5 ((.r𝑅) = (.r𝐻) → ∘f (.r𝑅) = ∘f (.r𝐻))
339, 31, 323syl 18 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ∘f (.r𝑅) = ∘f (.r𝐻))
3433oveqd 7448 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝑌) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝐻)𝑌))
3530, 34eqtrd 2777 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝐻)𝑌))
364fvexi 6920 . . . 4 𝐵 ∈ V
3724, 17ressvsca 17388 . . . 4 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3836, 37mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3938oveqd 7448 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
4015, 35, 393eqtr2d 2783 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  wss 3951  {csn 4626   × cxp 5683  ccnv 5684  cima 5688  cfv 6561  (class class class)co 7431  f cof 7695  m cmap 8866  Fincfn 8985  cn 12266  0cn0 12526  Basecbs 17247  s cress 17274  .rcmulr 17298   ·𝑠 cvsca 17301  SubRingcsubrg 20569   mPwSer cmps 21924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-subg 19141  df-ring 20232  df-subrg 20570  df-psr 21929
This theorem is referenced by:  ressmplvsca  22049
  Copyright terms: Public domain W3C validator