| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mhphf2 | Structured version Visualization version GIF version | ||
| Description: A homogeneous polynomial
defines a homogeneous function; this is mhphf 42630
with simpler notation in the conclusion in exchange for a complex
definition of ∙, which is
based on frlmvscafval 21698 but without the
finite support restriction (frlmpws 21682, frlmbas 21687) on the assignments
𝐴 from variables to values.
TODO?: Polynomials (df-mpl 21843) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mhphf2.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| mhphf2.h | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
| mhphf2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| mhphf2.k | ⊢ 𝐾 = (Base‘𝑆) |
| mhphf2.b | ⊢ ∙ = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼)) |
| mhphf2.m | ⊢ · = (.r‘𝑆) |
| mhphf2.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
| mhphf2.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| mhphf2.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| mhphf2.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
| mhphf2.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| mhphf2.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| mhphf2 | ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ ((ringLMod‘𝑆) ↑s 𝐼) = ((ringLMod‘𝑆) ↑s 𝐼) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Base‘((ringLMod‘𝑆) ↑s 𝐼)) = (Base‘((ringLMod‘𝑆) ↑s 𝐼)) | |
| 3 | rlmvsca 21129 | . . . . 5 ⊢ (.r‘𝑆) = ( ·𝑠 ‘(ringLMod‘𝑆)) | |
| 4 | mhphf2.b | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼)) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (Scalar‘(ringLMod‘𝑆)) = (Scalar‘(ringLMod‘𝑆)) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (Base‘(Scalar‘(ringLMod‘𝑆))) = (Base‘(Scalar‘(ringLMod‘𝑆))) | |
| 7 | fvexd 6832 | . . . . 5 ⊢ (𝜑 → (ringLMod‘𝑆) ∈ V) | |
| 8 | reldmmhp 22047 | . . . . . 6 ⊢ Rel dom mHomP | |
| 9 | mhphf2.h | . . . . . 6 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
| 10 | mhphf2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 11 | 8, 9, 10 | elfvov1 7383 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 12 | mhphf2.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 13 | mhphf2.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝑆) | |
| 14 | 13 | subrgss 20482 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
| 15 | 12, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
| 16 | mhphf2.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
| 17 | 15, 16 | sseldd 3930 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ 𝐾) |
| 18 | mhphf2.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 19 | rlmsca 21127 | . . . . . . . . 9 ⊢ (𝑆 ∈ CRing → 𝑆 = (Scalar‘(ringLMod‘𝑆))) | |
| 20 | 18, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Scalar‘(ringLMod‘𝑆))) |
| 21 | 20 | fveq2d 6821 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘(ringLMod‘𝑆)))) |
| 22 | 13, 21 | eqtrid 2778 | . . . . . 6 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘(ringLMod‘𝑆)))) |
| 23 | 17, 22 | eleqtrd 2833 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ (Base‘(Scalar‘(ringLMod‘𝑆)))) |
| 24 | mhphf2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 25 | 13 | oveq1i 7351 | . . . . . . 7 ⊢ (𝐾 ↑m 𝐼) = ((Base‘𝑆) ↑m 𝐼) |
| 26 | 24, 25 | eleqtrdi 2841 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ((Base‘𝑆) ↑m 𝐼)) |
| 27 | rlmbas 21122 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘(ringLMod‘𝑆)) | |
| 28 | 1, 27 | pwsbas 17386 | . . . . . . 7 ⊢ (((ringLMod‘𝑆) ∈ V ∧ 𝐼 ∈ V) → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼))) |
| 29 | 7, 11, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼))) |
| 30 | 26, 29 | eleqtrd 2833 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘((ringLMod‘𝑆) ↑s 𝐼))) |
| 31 | 1, 2, 3, 4, 5, 6, 7, 11, 23, 30 | pwsvscafval 17393 | . . . 4 ⊢ (𝜑 → (𝐿 ∙ 𝐴) = ((𝐼 × {𝐿}) ∘f (.r‘𝑆)𝐴)) |
| 32 | mhphf2.m | . . . . . . 7 ⊢ · = (.r‘𝑆) | |
| 33 | 32 | eqcomi 2740 | . . . . . 6 ⊢ (.r‘𝑆) = · |
| 34 | ofeq 7608 | . . . . . 6 ⊢ ((.r‘𝑆) = · → ∘f (.r‘𝑆) = ∘f · ) | |
| 35 | 33, 34 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ∘f (.r‘𝑆) = ∘f · ) |
| 36 | 35 | oveqd 7358 | . . . 4 ⊢ (𝜑 → ((𝐼 × {𝐿}) ∘f (.r‘𝑆)𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴)) |
| 37 | 31, 36 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (𝐿 ∙ 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴)) |
| 38 | 37 | fveq2d 6821 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
| 39 | mhphf2.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 40 | mhphf2.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 41 | mhphf2.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
| 42 | 39, 9, 40, 13, 32, 41, 18, 12, 16, 10, 24 | mhphf 42630 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
| 43 | 38, 42 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 {csn 4571 × cxp 5609 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ↑m cmap 8745 Basecbs 17115 ↾s cress 17136 .rcmulr 17157 Scalarcsca 17159 ·𝑠 cvsca 17160 ↑s cpws 17345 .gcmg 18975 mulGrpcmgp 20053 CRingccrg 20147 SubRingcsubrg 20479 ringLModcrglmod 21101 evalSub ces 22002 mHomP cmhp 22039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-srg 20100 df-ring 20148 df-cring 20149 df-rhm 20385 df-subrng 20456 df-subrg 20480 df-lmod 20790 df-lss 20860 df-lsp 20900 df-sra 21102 df-rgmod 21103 df-cnfld 21287 df-assa 21785 df-asp 21786 df-ascl 21787 df-psr 21841 df-mvr 21842 df-mpl 21843 df-evls 22004 df-mhp 22046 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |