Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf2 Structured version   Visualization version   GIF version

Theorem mhphf2 42593
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf 42592 with simpler notation in the conclusion in exchange for a complex definition of , which is based on frlmvscafval 21682 but without the finite support restriction (frlmpws 21666, frlmbas 21671) on the assignments 𝐴 from variables to values.

TODO?: Polynomials (df-mpl 21827) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024.)

Hypotheses
Ref Expression
mhphf2.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf2.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf2.u 𝑈 = (𝑆s 𝑅)
mhphf2.k 𝐾 = (Base‘𝑆)
mhphf2.b = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼))
mhphf2.m · = (.r𝑆)
mhphf2.e = (.g‘(mulGrp‘𝑆))
mhphf2.s (𝜑𝑆 ∈ CRing)
mhphf2.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf2.l (𝜑𝐿𝑅)
mhphf2.x (𝜑𝑋 ∈ (𝐻𝑁))
mhphf2.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
mhphf2 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf2
StepHypRef Expression
1 eqid 2730 . . . . 5 ((ringLMod‘𝑆) ↑s 𝐼) = ((ringLMod‘𝑆) ↑s 𝐼)
2 eqid 2730 . . . . 5 (Base‘((ringLMod‘𝑆) ↑s 𝐼)) = (Base‘((ringLMod‘𝑆) ↑s 𝐼))
3 rlmvsca 21114 . . . . 5 (.r𝑆) = ( ·𝑠 ‘(ringLMod‘𝑆))
4 mhphf2.b . . . . 5 = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼))
5 eqid 2730 . . . . 5 (Scalar‘(ringLMod‘𝑆)) = (Scalar‘(ringLMod‘𝑆))
6 eqid 2730 . . . . 5 (Base‘(Scalar‘(ringLMod‘𝑆))) = (Base‘(Scalar‘(ringLMod‘𝑆)))
7 fvexd 6876 . . . . 5 (𝜑 → (ringLMod‘𝑆) ∈ V)
8 reldmmhp 22031 . . . . . 6 Rel dom mHomP
9 mhphf2.h . . . . . 6 𝐻 = (𝐼 mHomP 𝑈)
10 mhphf2.x . . . . . 6 (𝜑𝑋 ∈ (𝐻𝑁))
118, 9, 10elfvov1 7432 . . . . 5 (𝜑𝐼 ∈ V)
12 mhphf2.r . . . . . . . 8 (𝜑𝑅 ∈ (SubRing‘𝑆))
13 mhphf2.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
1413subrgss 20488 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
1512, 14syl 17 . . . . . . 7 (𝜑𝑅𝐾)
16 mhphf2.l . . . . . . 7 (𝜑𝐿𝑅)
1715, 16sseldd 3950 . . . . . 6 (𝜑𝐿𝐾)
18 mhphf2.s . . . . . . . . 9 (𝜑𝑆 ∈ CRing)
19 rlmsca 21112 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑆 = (Scalar‘(ringLMod‘𝑆)))
2018, 19syl 17 . . . . . . . 8 (𝜑𝑆 = (Scalar‘(ringLMod‘𝑆)))
2120fveq2d 6865 . . . . . . 7 (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘(ringLMod‘𝑆))))
2213, 21eqtrid 2777 . . . . . 6 (𝜑𝐾 = (Base‘(Scalar‘(ringLMod‘𝑆))))
2317, 22eleqtrd 2831 . . . . 5 (𝜑𝐿 ∈ (Base‘(Scalar‘(ringLMod‘𝑆))))
24 mhphf2.a . . . . . . 7 (𝜑𝐴 ∈ (𝐾m 𝐼))
2513oveq1i 7400 . . . . . . 7 (𝐾m 𝐼) = ((Base‘𝑆) ↑m 𝐼)
2624, 25eleqtrdi 2839 . . . . . 6 (𝜑𝐴 ∈ ((Base‘𝑆) ↑m 𝐼))
27 rlmbas 21107 . . . . . . . 8 (Base‘𝑆) = (Base‘(ringLMod‘𝑆))
281, 27pwsbas 17457 . . . . . . 7 (((ringLMod‘𝑆) ∈ V ∧ 𝐼 ∈ V) → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼)))
297, 11, 28syl2anc 584 . . . . . 6 (𝜑 → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼)))
3026, 29eleqtrd 2831 . . . . 5 (𝜑𝐴 ∈ (Base‘((ringLMod‘𝑆) ↑s 𝐼)))
311, 2, 3, 4, 5, 6, 7, 11, 23, 30pwsvscafval 17464 . . . 4 (𝜑 → (𝐿 𝐴) = ((𝐼 × {𝐿}) ∘f (.r𝑆)𝐴))
32 mhphf2.m . . . . . . 7 · = (.r𝑆)
3332eqcomi 2739 . . . . . 6 (.r𝑆) = ·
34 ofeq 7659 . . . . . 6 ((.r𝑆) = · → ∘f (.r𝑆) = ∘f · )
3533, 34mp1i 13 . . . . 5 (𝜑 → ∘f (.r𝑆) = ∘f · )
3635oveqd 7407 . . . 4 (𝜑 → ((𝐼 × {𝐿}) ∘f (.r𝑆)𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴))
3731, 36eqtrd 2765 . . 3 (𝜑 → (𝐿 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴))
3837fveq2d 6865 . 2 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
39 mhphf2.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
40 mhphf2.u . . 3 𝑈 = (𝑆s 𝑅)
41 mhphf2.e . . 3 = (.g‘(mulGrp‘𝑆))
4239, 9, 40, 13, 32, 41, 18, 12, 16, 10, 24mhphf 42592 . 2 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
4338, 42eqtrd 2765 1 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  {csn 4592   × cxp 5639  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  Basecbs 17186  s cress 17207  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  s cpws 17416  .gcmg 19006  mulGrpcmgp 20056  CRingccrg 20150  SubRingcsubrg 20485  ringLModcrglmod 21086   evalSub ces 21986   mHomP cmhp 22023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-evls 21988  df-mhp 22030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator