| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mhphf2 | Structured version Visualization version GIF version | ||
| Description: A homogeneous polynomial
defines a homogeneous function; this is mhphf 42592
with simpler notation in the conclusion in exchange for a complex
definition of ∙, which is
based on frlmvscafval 21682 but without the
finite support restriction (frlmpws 21666, frlmbas 21671) on the assignments
𝐴 from variables to values.
TODO?: Polynomials (df-mpl 21827) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mhphf2.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| mhphf2.h | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
| mhphf2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| mhphf2.k | ⊢ 𝐾 = (Base‘𝑆) |
| mhphf2.b | ⊢ ∙ = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼)) |
| mhphf2.m | ⊢ · = (.r‘𝑆) |
| mhphf2.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
| mhphf2.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| mhphf2.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| mhphf2.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
| mhphf2.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| mhphf2.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| mhphf2 | ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ ((ringLMod‘𝑆) ↑s 𝐼) = ((ringLMod‘𝑆) ↑s 𝐼) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (Base‘((ringLMod‘𝑆) ↑s 𝐼)) = (Base‘((ringLMod‘𝑆) ↑s 𝐼)) | |
| 3 | rlmvsca 21114 | . . . . 5 ⊢ (.r‘𝑆) = ( ·𝑠 ‘(ringLMod‘𝑆)) | |
| 4 | mhphf2.b | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼)) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (Scalar‘(ringLMod‘𝑆)) = (Scalar‘(ringLMod‘𝑆)) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (Base‘(Scalar‘(ringLMod‘𝑆))) = (Base‘(Scalar‘(ringLMod‘𝑆))) | |
| 7 | fvexd 6876 | . . . . 5 ⊢ (𝜑 → (ringLMod‘𝑆) ∈ V) | |
| 8 | reldmmhp 22031 | . . . . . 6 ⊢ Rel dom mHomP | |
| 9 | mhphf2.h | . . . . . 6 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
| 10 | mhphf2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 11 | 8, 9, 10 | elfvov1 7432 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 12 | mhphf2.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 13 | mhphf2.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝑆) | |
| 14 | 13 | subrgss 20488 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
| 15 | 12, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
| 16 | mhphf2.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
| 17 | 15, 16 | sseldd 3950 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ 𝐾) |
| 18 | mhphf2.s | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 19 | rlmsca 21112 | . . . . . . . . 9 ⊢ (𝑆 ∈ CRing → 𝑆 = (Scalar‘(ringLMod‘𝑆))) | |
| 20 | 18, 19 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Scalar‘(ringLMod‘𝑆))) |
| 21 | 20 | fveq2d 6865 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘(ringLMod‘𝑆)))) |
| 22 | 13, 21 | eqtrid 2777 | . . . . . 6 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘(ringLMod‘𝑆)))) |
| 23 | 17, 22 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ (Base‘(Scalar‘(ringLMod‘𝑆)))) |
| 24 | mhphf2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 25 | 13 | oveq1i 7400 | . . . . . . 7 ⊢ (𝐾 ↑m 𝐼) = ((Base‘𝑆) ↑m 𝐼) |
| 26 | 24, 25 | eleqtrdi 2839 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ((Base‘𝑆) ↑m 𝐼)) |
| 27 | rlmbas 21107 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘(ringLMod‘𝑆)) | |
| 28 | 1, 27 | pwsbas 17457 | . . . . . . 7 ⊢ (((ringLMod‘𝑆) ∈ V ∧ 𝐼 ∈ V) → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼))) |
| 29 | 7, 11, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼))) |
| 30 | 26, 29 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘((ringLMod‘𝑆) ↑s 𝐼))) |
| 31 | 1, 2, 3, 4, 5, 6, 7, 11, 23, 30 | pwsvscafval 17464 | . . . 4 ⊢ (𝜑 → (𝐿 ∙ 𝐴) = ((𝐼 × {𝐿}) ∘f (.r‘𝑆)𝐴)) |
| 32 | mhphf2.m | . . . . . . 7 ⊢ · = (.r‘𝑆) | |
| 33 | 32 | eqcomi 2739 | . . . . . 6 ⊢ (.r‘𝑆) = · |
| 34 | ofeq 7659 | . . . . . 6 ⊢ ((.r‘𝑆) = · → ∘f (.r‘𝑆) = ∘f · ) | |
| 35 | 33, 34 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ∘f (.r‘𝑆) = ∘f · ) |
| 36 | 35 | oveqd 7407 | . . . 4 ⊢ (𝜑 → ((𝐼 × {𝐿}) ∘f (.r‘𝑆)𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴)) |
| 37 | 31, 36 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (𝐿 ∙ 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴)) |
| 38 | 37 | fveq2d 6865 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
| 39 | mhphf2.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 40 | mhphf2.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 41 | mhphf2.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
| 42 | 39, 9, 40, 13, 32, 41, 18, 12, 16, 10, 24 | mhphf 42592 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
| 43 | 38, 42 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 {csn 4592 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 ↑m cmap 8802 Basecbs 17186 ↾s cress 17207 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 ↑s cpws 17416 .gcmg 19006 mulGrpcmgp 20056 CRingccrg 20150 SubRingcsubrg 20485 ringLModcrglmod 21086 evalSub ces 21986 mHomP cmhp 22023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-assa 21769 df-asp 21770 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-evls 21988 df-mhp 22030 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |