Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf2 Structured version   Visualization version   GIF version

Theorem mhphf2 42586
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf 42585 with simpler notation in the conclusion in exchange for a complex definition of , which is based on frlmvscafval 21675 but without the finite support restriction (frlmpws 21659, frlmbas 21664) on the assignments 𝐴 from variables to values.

TODO?: Polynomials (df-mpl 21820) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024.)

Hypotheses
Ref Expression
mhphf2.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf2.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf2.u 𝑈 = (𝑆s 𝑅)
mhphf2.k 𝐾 = (Base‘𝑆)
mhphf2.b = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼))
mhphf2.m · = (.r𝑆)
mhphf2.e = (.g‘(mulGrp‘𝑆))
mhphf2.s (𝜑𝑆 ∈ CRing)
mhphf2.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf2.l (𝜑𝐿𝑅)
mhphf2.x (𝜑𝑋 ∈ (𝐻𝑁))
mhphf2.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
mhphf2 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf2
StepHypRef Expression
1 eqid 2729 . . . . 5 ((ringLMod‘𝑆) ↑s 𝐼) = ((ringLMod‘𝑆) ↑s 𝐼)
2 eqid 2729 . . . . 5 (Base‘((ringLMod‘𝑆) ↑s 𝐼)) = (Base‘((ringLMod‘𝑆) ↑s 𝐼))
3 rlmvsca 21107 . . . . 5 (.r𝑆) = ( ·𝑠 ‘(ringLMod‘𝑆))
4 mhphf2.b . . . . 5 = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼))
5 eqid 2729 . . . . 5 (Scalar‘(ringLMod‘𝑆)) = (Scalar‘(ringLMod‘𝑆))
6 eqid 2729 . . . . 5 (Base‘(Scalar‘(ringLMod‘𝑆))) = (Base‘(Scalar‘(ringLMod‘𝑆)))
7 fvexd 6873 . . . . 5 (𝜑 → (ringLMod‘𝑆) ∈ V)
8 reldmmhp 22024 . . . . . 6 Rel dom mHomP
9 mhphf2.h . . . . . 6 𝐻 = (𝐼 mHomP 𝑈)
10 mhphf2.x . . . . . 6 (𝜑𝑋 ∈ (𝐻𝑁))
118, 9, 10elfvov1 7429 . . . . 5 (𝜑𝐼 ∈ V)
12 mhphf2.r . . . . . . . 8 (𝜑𝑅 ∈ (SubRing‘𝑆))
13 mhphf2.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
1413subrgss 20481 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
1512, 14syl 17 . . . . . . 7 (𝜑𝑅𝐾)
16 mhphf2.l . . . . . . 7 (𝜑𝐿𝑅)
1715, 16sseldd 3947 . . . . . 6 (𝜑𝐿𝐾)
18 mhphf2.s . . . . . . . . 9 (𝜑𝑆 ∈ CRing)
19 rlmsca 21105 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑆 = (Scalar‘(ringLMod‘𝑆)))
2018, 19syl 17 . . . . . . . 8 (𝜑𝑆 = (Scalar‘(ringLMod‘𝑆)))
2120fveq2d 6862 . . . . . . 7 (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘(ringLMod‘𝑆))))
2213, 21eqtrid 2776 . . . . . 6 (𝜑𝐾 = (Base‘(Scalar‘(ringLMod‘𝑆))))
2317, 22eleqtrd 2830 . . . . 5 (𝜑𝐿 ∈ (Base‘(Scalar‘(ringLMod‘𝑆))))
24 mhphf2.a . . . . . . 7 (𝜑𝐴 ∈ (𝐾m 𝐼))
2513oveq1i 7397 . . . . . . 7 (𝐾m 𝐼) = ((Base‘𝑆) ↑m 𝐼)
2624, 25eleqtrdi 2838 . . . . . 6 (𝜑𝐴 ∈ ((Base‘𝑆) ↑m 𝐼))
27 rlmbas 21100 . . . . . . . 8 (Base‘𝑆) = (Base‘(ringLMod‘𝑆))
281, 27pwsbas 17450 . . . . . . 7 (((ringLMod‘𝑆) ∈ V ∧ 𝐼 ∈ V) → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼)))
297, 11, 28syl2anc 584 . . . . . 6 (𝜑 → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼)))
3026, 29eleqtrd 2830 . . . . 5 (𝜑𝐴 ∈ (Base‘((ringLMod‘𝑆) ↑s 𝐼)))
311, 2, 3, 4, 5, 6, 7, 11, 23, 30pwsvscafval 17457 . . . 4 (𝜑 → (𝐿 𝐴) = ((𝐼 × {𝐿}) ∘f (.r𝑆)𝐴))
32 mhphf2.m . . . . . . 7 · = (.r𝑆)
3332eqcomi 2738 . . . . . 6 (.r𝑆) = ·
34 ofeq 7656 . . . . . 6 ((.r𝑆) = · → ∘f (.r𝑆) = ∘f · )
3533, 34mp1i 13 . . . . 5 (𝜑 → ∘f (.r𝑆) = ∘f · )
3635oveqd 7404 . . . 4 (𝜑 → ((𝐼 × {𝐿}) ∘f (.r𝑆)𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴))
3731, 36eqtrd 2764 . . 3 (𝜑 → (𝐿 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴))
3837fveq2d 6862 . 2 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
39 mhphf2.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
40 mhphf2.u . . 3 𝑈 = (𝑆s 𝑅)
41 mhphf2.e . . 3 = (.g‘(mulGrp‘𝑆))
4239, 9, 40, 13, 32, 41, 18, 12, 16, 10, 24mhphf 42585 . 2 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
4338, 42eqtrd 2764 1 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  {csn 4589   × cxp 5636  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Basecbs 17179  s cress 17200  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  s cpws 17409  .gcmg 18999  mulGrpcmgp 20049  CRingccrg 20143  SubRingcsubrg 20478  ringLModcrglmod 21079   evalSub ces 21979   mHomP cmhp 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-evls 21981  df-mhp 22023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator