Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf2 Structured version   Visualization version   GIF version

Theorem mhphf2 42553
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf 42552 with simpler notation in the conclusion in exchange for a complex definition of , which is based on frlmvscafval 21809 but without the finite support restriction (frlmpws 21793, frlmbas 21798) on the assignments 𝐴 from variables to values.

TODO?: Polynomials (df-mpl 21954) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024.)

Hypotheses
Ref Expression
mhphf2.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf2.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf2.u 𝑈 = (𝑆s 𝑅)
mhphf2.k 𝐾 = (Base‘𝑆)
mhphf2.b = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼))
mhphf2.m · = (.r𝑆)
mhphf2.e = (.g‘(mulGrp‘𝑆))
mhphf2.s (𝜑𝑆 ∈ CRing)
mhphf2.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf2.l (𝜑𝐿𝑅)
mhphf2.x (𝜑𝑋 ∈ (𝐻𝑁))
mhphf2.a (𝜑𝐴 ∈ (𝐾m 𝐼))
Assertion
Ref Expression
mhphf2 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf2
StepHypRef Expression
1 eqid 2740 . . . . 5 ((ringLMod‘𝑆) ↑s 𝐼) = ((ringLMod‘𝑆) ↑s 𝐼)
2 eqid 2740 . . . . 5 (Base‘((ringLMod‘𝑆) ↑s 𝐼)) = (Base‘((ringLMod‘𝑆) ↑s 𝐼))
3 rlmvsca 21230 . . . . 5 (.r𝑆) = ( ·𝑠 ‘(ringLMod‘𝑆))
4 mhphf2.b . . . . 5 = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼))
5 eqid 2740 . . . . 5 (Scalar‘(ringLMod‘𝑆)) = (Scalar‘(ringLMod‘𝑆))
6 eqid 2740 . . . . 5 (Base‘(Scalar‘(ringLMod‘𝑆))) = (Base‘(Scalar‘(ringLMod‘𝑆)))
7 fvexd 6935 . . . . 5 (𝜑 → (ringLMod‘𝑆) ∈ V)
8 reldmmhp 22164 . . . . . 6 Rel dom mHomP
9 mhphf2.h . . . . . 6 𝐻 = (𝐼 mHomP 𝑈)
10 mhphf2.x . . . . . 6 (𝜑𝑋 ∈ (𝐻𝑁))
118, 9, 10elfvov1 7490 . . . . 5 (𝜑𝐼 ∈ V)
12 mhphf2.r . . . . . . . 8 (𝜑𝑅 ∈ (SubRing‘𝑆))
13 mhphf2.k . . . . . . . . 9 𝐾 = (Base‘𝑆)
1413subrgss 20600 . . . . . . . 8 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
1512, 14syl 17 . . . . . . 7 (𝜑𝑅𝐾)
16 mhphf2.l . . . . . . 7 (𝜑𝐿𝑅)
1715, 16sseldd 4009 . . . . . 6 (𝜑𝐿𝐾)
18 mhphf2.s . . . . . . . . 9 (𝜑𝑆 ∈ CRing)
19 rlmsca 21228 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑆 = (Scalar‘(ringLMod‘𝑆)))
2018, 19syl 17 . . . . . . . 8 (𝜑𝑆 = (Scalar‘(ringLMod‘𝑆)))
2120fveq2d 6924 . . . . . . 7 (𝜑 → (Base‘𝑆) = (Base‘(Scalar‘(ringLMod‘𝑆))))
2213, 21eqtrid 2792 . . . . . 6 (𝜑𝐾 = (Base‘(Scalar‘(ringLMod‘𝑆))))
2317, 22eleqtrd 2846 . . . . 5 (𝜑𝐿 ∈ (Base‘(Scalar‘(ringLMod‘𝑆))))
24 mhphf2.a . . . . . . 7 (𝜑𝐴 ∈ (𝐾m 𝐼))
2513oveq1i 7458 . . . . . . 7 (𝐾m 𝐼) = ((Base‘𝑆) ↑m 𝐼)
2624, 25eleqtrdi 2854 . . . . . 6 (𝜑𝐴 ∈ ((Base‘𝑆) ↑m 𝐼))
27 rlmbas 21223 . . . . . . . 8 (Base‘𝑆) = (Base‘(ringLMod‘𝑆))
281, 27pwsbas 17547 . . . . . . 7 (((ringLMod‘𝑆) ∈ V ∧ 𝐼 ∈ V) → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼)))
297, 11, 28syl2anc 583 . . . . . 6 (𝜑 → ((Base‘𝑆) ↑m 𝐼) = (Base‘((ringLMod‘𝑆) ↑s 𝐼)))
3026, 29eleqtrd 2846 . . . . 5 (𝜑𝐴 ∈ (Base‘((ringLMod‘𝑆) ↑s 𝐼)))
311, 2, 3, 4, 5, 6, 7, 11, 23, 30pwsvscafval 17554 . . . 4 (𝜑 → (𝐿 𝐴) = ((𝐼 × {𝐿}) ∘f (.r𝑆)𝐴))
32 mhphf2.m . . . . . . 7 · = (.r𝑆)
3332eqcomi 2749 . . . . . 6 (.r𝑆) = ·
34 ofeq 7717 . . . . . 6 ((.r𝑆) = · → ∘f (.r𝑆) = ∘f · )
3533, 34mp1i 13 . . . . 5 (𝜑 → ∘f (.r𝑆) = ∘f · )
3635oveqd 7465 . . . 4 (𝜑 → ((𝐼 × {𝐿}) ∘f (.r𝑆)𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴))
3731, 36eqtrd 2780 . . 3 (𝜑 → (𝐿 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴))
3837fveq2d 6924 . 2 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
39 mhphf2.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
40 mhphf2.u . . 3 𝑈 = (𝑆s 𝑅)
41 mhphf2.e . . 3 = (.g‘(mulGrp‘𝑆))
4239, 9, 40, 13, 32, 41, 18, 12, 16, 10, 24mhphf 42552 . 2 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
4338, 42eqtrd 2780 1 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648   × cxp 5698  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Basecbs 17258  s cress 17287  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  s cpws 17506  .gcmg 19107  mulGrpcmgp 20161  CRingccrg 20261  SubRingcsubrg 20595  ringLModcrglmod 21194   evalSub ces 22119   mHomP cmhp 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-evls 22121  df-mhp 22163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator