| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opposet | Structured version Visualization version GIF version | ||
| Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| opposet | ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 4 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2729 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | eqid 2729 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 7 | eqid 2729 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | eqid 2729 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 9 | eqid 2729 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 39166 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
| 11 | simpl1 1192 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → 𝐾 ∈ Poset) | |
| 12 | 10, 11 | sylbi 217 | 1 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 occoc 17204 Posetcpo 18248 lubclub 18250 glbcglb 18251 joincjn 18252 meetcmee 18253 0.cp0 18362 1.cp1 18363 OPcops 39158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-dm 5641 df-iota 6452 df-fv 6507 df-ov 7372 df-oposet 39162 |
| This theorem is referenced by: ople0 39173 op1le 39178 opltcon3b 39190 olposN 39201 ncvr1 39258 cvrcmp2 39270 leatb 39278 dalemcea 39647 |
| Copyright terms: Public domain | W3C validator |