![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opposet | Structured version Visualization version GIF version |
Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
opposet | ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2825 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | eqid 2825 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
4 | eqid 2825 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2825 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | eqid 2825 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
7 | eqid 2825 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | eqid 2825 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
9 | eqid 2825 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 35250 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
11 | simpl1 1246 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → 𝐾 ∈ Poset) | |
12 | 10, 11 | sylbi 209 | 1 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 class class class wbr 4875 dom cdm 5346 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 lecple 16319 occoc 16320 Posetcpo 17300 lubclub 17302 glbcglb 17303 joincjn 17304 meetcmee 17305 0.cp0 17397 1.cp1 17398 OPcops 35242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-nul 5015 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-dm 5356 df-iota 6090 df-fv 6135 df-ov 6913 df-oposet 35246 |
This theorem is referenced by: ople0 35257 op1le 35262 opltcon3b 35274 olposN 35285 ncvr1 35342 cvrcmp2 35354 leatb 35362 dalemcea 35730 |
Copyright terms: Public domain | W3C validator |