Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opposet Structured version   Visualization version   GIF version

Theorem opposet 35251
Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.)
Assertion
Ref Expression
opposet (𝐾 ∈ OP → 𝐾 ∈ Poset)

Proof of Theorem opposet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2825 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2825 . . 3 (glb‘𝐾) = (glb‘𝐾)
4 eqid 2825 . . 3 (le‘𝐾) = (le‘𝐾)
5 eqid 2825 . . 3 (oc‘𝐾) = (oc‘𝐾)
6 eqid 2825 . . 3 (join‘𝐾) = (join‘𝐾)
7 eqid 2825 . . 3 (meet‘𝐾) = (meet‘𝐾)
8 eqid 2825 . . 3 (0.‘𝐾) = (0.‘𝐾)
9 eqid 2825 . . 3 (1.‘𝐾) = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 35250 . 2 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))))
11 simpl1 1246 . 2 (((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → 𝐾 ∈ Poset)
1210, 11sylbi 209 1 (𝐾 ∈ OP → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117   class class class wbr 4875  dom cdm 5346  cfv 6127  (class class class)co 6910  Basecbs 16229  lecple 16319  occoc 16320  Posetcpo 17300  lubclub 17302  glbcglb 17303  joincjn 17304  meetcmee 17305  0.cp0 17397  1.cp1 17398  OPcops 35242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-nul 5015
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-dm 5356  df-iota 6090  df-fv 6135  df-ov 6913  df-oposet 35246
This theorem is referenced by:  ople0  35257  op1le  35262  opltcon3b  35274  olposN  35285  ncvr1  35342  cvrcmp2  35354  leatb  35362  dalemcea  35730
  Copyright terms: Public domain W3C validator