Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opposet Structured version   Visualization version   GIF version

Theorem opposet 37122
Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.)
Assertion
Ref Expression
opposet (𝐾 ∈ OP → 𝐾 ∈ Poset)

Proof of Theorem opposet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2738 . . 3 (glb‘𝐾) = (glb‘𝐾)
4 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
5 eqid 2738 . . 3 (oc‘𝐾) = (oc‘𝐾)
6 eqid 2738 . . 3 (join‘𝐾) = (join‘𝐾)
7 eqid 2738 . . 3 (meet‘𝐾) = (meet‘𝐾)
8 eqid 2738 . . 3 (0.‘𝐾) = (0.‘𝐾)
9 eqid 2738 . . 3 (1.‘𝐾) = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 37121 . 2 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))))
11 simpl1 1189 . 2 (((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → 𝐾 ∈ Poset)
1210, 11sylbi 216 1 (𝐾 ∈ OP → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  occoc 16896  Posetcpo 17940  lubclub 17942  glbcglb 17943  joincjn 17944  meetcmee 17945  0.cp0 18056  1.cp1 18057  OPcops 37113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258  df-oposet 37117
This theorem is referenced by:  ople0  37128  op1le  37133  opltcon3b  37145  olposN  37156  ncvr1  37213  cvrcmp2  37225  leatb  37233  dalemcea  37601
  Copyright terms: Public domain W3C validator