| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opposet | Structured version Visualization version GIF version | ||
| Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| opposet | ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 4 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2729 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | eqid 2729 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 7 | eqid 2729 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | eqid 2729 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 9 | eqid 2729 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 39173 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
| 11 | simpl1 1192 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → 𝐾 ∈ Poset) | |
| 12 | 10, 11 | sylbi 217 | 1 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 occoc 17228 Posetcpo 18268 lubclub 18270 glbcglb 18271 joincjn 18272 meetcmee 18273 0.cp0 18382 1.cp1 18383 OPcops 39165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-oposet 39169 |
| This theorem is referenced by: ople0 39180 op1le 39185 opltcon3b 39197 olposN 39208 ncvr1 39265 cvrcmp2 39277 leatb 39285 dalemcea 39654 |
| Copyright terms: Public domain | W3C validator |