Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opposet | Structured version Visualization version GIF version |
Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
opposet | ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2740 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | eqid 2740 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
4 | eqid 2740 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2740 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | eqid 2740 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
7 | eqid 2740 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | eqid 2740 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
9 | eqid 2740 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 37203 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
11 | simpl1 1190 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → 𝐾 ∈ Poset) | |
12 | 10, 11 | sylbi 216 | 1 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∀wral 3066 class class class wbr 5079 dom cdm 5590 ‘cfv 6432 (class class class)co 7272 Basecbs 16923 lecple 16980 occoc 16981 Posetcpo 18036 lubclub 18038 glbcglb 18039 joincjn 18040 meetcmee 18041 0.cp0 18152 1.cp1 18153 OPcops 37195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-nul 5234 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-dm 5600 df-iota 6390 df-fv 6440 df-ov 7275 df-oposet 37199 |
This theorem is referenced by: ople0 37210 op1le 37215 opltcon3b 37227 olposN 37238 ncvr1 37295 cvrcmp2 37307 leatb 37315 dalemcea 37683 |
Copyright terms: Public domain | W3C validator |