| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opposet | Structured version Visualization version GIF version | ||
| Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| opposet | ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 4 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | eqid 2729 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | eqid 2729 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 7 | eqid 2729 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 8 | eqid 2729 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 9 | eqid 2729 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 39179 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
| 11 | simpl1 1192 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → 𝐾 ∈ Poset) | |
| 12 | 10, 11 | sylbi 217 | 1 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5092 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 occoc 17169 Posetcpo 18213 lubclub 18215 glbcglb 18216 joincjn 18217 meetcmee 18218 0.cp0 18327 1.cp1 18328 OPcops 39171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-dm 5629 df-iota 6438 df-fv 6490 df-ov 7352 df-oposet 39175 |
| This theorem is referenced by: ople0 39186 op1le 39191 opltcon3b 39203 olposN 39214 ncvr1 39271 cvrcmp2 39283 leatb 39291 dalemcea 39659 |
| Copyright terms: Public domain | W3C validator |