Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opposet Structured version   Visualization version   GIF version

Theorem opposet 39137
Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.)
Assertion
Ref Expression
opposet (𝐾 ∈ OP → 𝐾 ∈ Poset)

Proof of Theorem opposet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2740 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2740 . . 3 (glb‘𝐾) = (glb‘𝐾)
4 eqid 2740 . . 3 (le‘𝐾) = (le‘𝐾)
5 eqid 2740 . . 3 (oc‘𝐾) = (oc‘𝐾)
6 eqid 2740 . . 3 (join‘𝐾) = (join‘𝐾)
7 eqid 2740 . . 3 (meet‘𝐾) = (meet‘𝐾)
8 eqid 2740 . . 3 (0.‘𝐾) = (0.‘𝐾)
9 eqid 2740 . . 3 (1.‘𝐾) = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 39136 . 2 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))))
11 simpl1 1191 . 2 (((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → 𝐾 ∈ Poset)
1210, 11sylbi 217 1 (𝐾 ∈ OP → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  occoc 17319  Posetcpo 18377  lubclub 18379  glbcglb 18380  joincjn 18381  meetcmee 18382  0.cp0 18493  1.cp1 18494  OPcops 39128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451  df-oposet 39132
This theorem is referenced by:  ople0  39143  op1le  39148  opltcon3b  39160  olposN  39171  ncvr1  39228  cvrcmp2  39240  leatb  39248  dalemcea  39617
  Copyright terms: Public domain W3C validator