Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opposet | Structured version Visualization version GIF version |
Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
opposet | ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | eqid 2738 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
4 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | eqid 2738 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | eqid 2738 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
7 | eqid 2738 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
8 | eqid 2738 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
9 | eqid 2738 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 37121 | . 2 ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾)))) |
11 | simpl1 1189 | . 2 ⊢ (((𝐾 ∈ Poset ∧ (Base‘𝐾) ∈ dom (lub‘𝐾) ∧ (Base‘𝐾) ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)((((oc‘𝐾)‘𝑥) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((oc‘𝐾)‘𝑥)) = 𝑥 ∧ (𝑥(le‘𝐾)𝑦 → ((oc‘𝐾)‘𝑦)(le‘𝐾)((oc‘𝐾)‘𝑥))) ∧ (𝑥(join‘𝐾)((oc‘𝐾)‘𝑥)) = (1.‘𝐾) ∧ (𝑥(meet‘𝐾)((oc‘𝐾)‘𝑥)) = (0.‘𝐾))) → 𝐾 ∈ Poset) | |
12 | 10, 11 | sylbi 216 | 1 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 occoc 16896 Posetcpo 17940 lubclub 17942 glbcglb 17943 joincjn 17944 meetcmee 17945 0.cp0 18056 1.cp1 18057 OPcops 37113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 df-oposet 37117 |
This theorem is referenced by: ople0 37128 op1le 37133 opltcon3b 37145 olposN 37156 ncvr1 37213 cvrcmp2 37225 leatb 37233 dalemcea 37601 |
Copyright terms: Public domain | W3C validator |