MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onun2 Structured version   Visualization version   GIF version

Theorem onun2 6467
Description: The union of two ordinals is an ordinal. (Contributed by Scott Fenton, 9-Aug-2024.)
Assertion
Ref Expression
onun2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)

Proof of Theorem onun2
StepHypRef Expression
1 ssequn1 4166 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
2 eleq1a 2830 . . . 4 (𝐵 ∈ On → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ On))
32adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ On))
41, 3biimtrid 242 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴𝐵) ∈ On))
5 ssequn2 4169 . . 3 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
6 eleq1a 2830 . . . 4 (𝐴 ∈ On → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ On))
76adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ On))
85, 7biimtrid 242 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 → (𝐴𝐵) ∈ On))
9 eloni 6367 . . 3 (𝐴 ∈ On → Ord 𝐴)
10 eloni 6367 . . 3 (𝐵 ∈ On → Ord 𝐵)
11 ordtri2or2 6458 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
129, 10, 11syl2an 596 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴))
134, 8, 12mpjaod 860 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3929  wss 3931  Ord word 6356  Oncon0 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361
This theorem is referenced by:  onun2i  6481  nosupinfsep  27701  onexlimgt  43234  omabs2  43323  onsucunitp  43364
  Copyright terms: Public domain W3C validator