![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onun2 | Structured version Visualization version GIF version |
Description: The union of two ordinals is an ordinal. (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
onun2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4180 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | eleq1a 2827 | . . . 4 ⊢ (𝐵 ∈ On → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ On)) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ On)) |
4 | 1, 3 | biimtrid 241 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐵) ∈ On)) |
5 | ssequn2 4183 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
6 | eleq1a 2827 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ On)) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ On)) |
8 | 5, 7 | biimtrid 241 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → (𝐴 ∪ 𝐵) ∈ On)) |
9 | eloni 6374 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
10 | eloni 6374 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
11 | ordtri2or2 6463 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
12 | 9, 10, 11 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
13 | 4, 8, 12 | mpjaod 857 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∪ cun 3946 ⊆ wss 3948 Ord word 6363 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: onun2i 6486 nosupinfsep 27578 onexlimgt 42455 omabs2 42545 onsucunitp 42586 |
Copyright terms: Public domain | W3C validator |