![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onun2 | Structured version Visualization version GIF version |
Description: The union of two ordinals is an ordinal. (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
onun2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4196 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | eleq1a 2834 | . . . 4 ⊢ (𝐵 ∈ On → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ On)) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ On)) |
4 | 1, 3 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐵) ∈ On)) |
5 | ssequn2 4199 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
6 | eleq1a 2834 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ On)) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ On)) |
8 | 5, 7 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → (𝐴 ∪ 𝐵) ∈ On)) |
9 | eloni 6396 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
10 | eloni 6396 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
11 | ordtri2or2 6485 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
12 | 9, 10, 11 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
13 | 4, 8, 12 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 Ord word 6385 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 |
This theorem is referenced by: onun2i 6508 nosupinfsep 27792 onexlimgt 43232 omabs2 43322 onsucunitp 43363 |
Copyright terms: Public domain | W3C validator |