| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onun2 | Structured version Visualization version GIF version | ||
| Description: The union of two ordinals is an ordinal. (Contributed by Scott Fenton, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| onun2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4166 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
| 2 | eleq1a 2828 | . . . 4 ⊢ (𝐵 ∈ On → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ On)) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ On)) |
| 4 | 1, 3 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐵) ∈ On)) |
| 5 | ssequn2 4169 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
| 6 | eleq1a 2828 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ On)) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ On)) |
| 8 | 5, 7 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → (𝐴 ∪ 𝐵) ∈ On)) |
| 9 | eloni 6373 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 10 | eloni 6373 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 11 | ordtri2or2 6463 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
| 12 | 9, 10, 11 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 13 | 4, 8, 12 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∪ cun 3929 ⊆ wss 3931 Ord word 6362 Oncon0 6363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 |
| This theorem is referenced by: onun2i 6486 nosupinfsep 27713 onexlimgt 43218 omabs2 43307 onsucunitp 43348 |
| Copyright terms: Public domain | W3C validator |