MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axicn Structured version   Visualization version   GIF version

Theorem axicn 11191
Description: i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 11215. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axicn i ∈ ℂ

Proof of Theorem axicn
StepHypRef Expression
1 0r 11121 . 2 0RR
2 1sr 11122 . 2 1RR
3 df-i 11165 . . . 4 i = ⟨0R, 1R
43eleq1i 2831 . . 3 (i ∈ ℂ ↔ ⟨0R, 1R⟩ ∈ ℂ)
5 opelcn 11170 . . 3 (⟨0R, 1R⟩ ∈ ℂ ↔ (0RR ∧ 1RR))
64, 5bitri 275 . 2 (i ∈ ℂ ↔ (0RR ∧ 1RR))
71, 2, 6mpbir2an 711 1 i ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2107  cop 4631  Rcnr 10906  0Rc0r 10907  1Rc1r 10908  cc 11154  ici 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-omul 8512  df-er 8746  df-ec 8748  df-qs 8752  df-ni 10913  df-pli 10914  df-mi 10915  df-lti 10916  df-plpq 10949  df-mpq 10950  df-ltpq 10951  df-enq 10952  df-nq 10953  df-erq 10954  df-plq 10955  df-mq 10956  df-1nq 10957  df-rq 10958  df-ltnq 10959  df-np 11022  df-1p 11023  df-plp 11024  df-enr 11096  df-nr 11097  df-0r 11101  df-1r 11102  df-c 11162  df-i 11165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator