Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelvvg | Structured version Visualization version GIF version |
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
opelvvg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3418 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | elex 3418 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
3 | opelxpi 5572 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
4 | 1, 2, 3 | syl2an 599 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 Vcvv 3400 〈cop 4532 × cxp 5533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rex 3060 df-v 3402 df-dif 3856 df-un 3858 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-opab 5103 df-xp 5541 |
This theorem is referenced by: relsnopg 5657 isof1oopb 7104 opvtxfv 26962 opiedgfv 26965 gonafv 32896 sat1el2xp 32925 opelvvdif 36054 brxrn 36160 |
Copyright terms: Public domain | W3C validator |