MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelvvg Structured version   Visualization version   GIF version

Theorem opelvvg 5717
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
opelvvg ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))

Proof of Theorem opelvvg
StepHypRef Expression
1 elex 3492 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 3492 . 2 (𝐵𝑊𝐵 ∈ V)
3 opelxpi 5713 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
41, 2, 3syl2an 595 1 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  Vcvv 3473  cop 4634   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211  df-xp 5682
This theorem is referenced by:  relsnopg  5803  isof1oopb  7325  opvtxfv  28532  opiedgfv  28535  gonafv  34640  sat1el2xp  34669  opelvvdif  37431  brxrn  37548
  Copyright terms: Public domain W3C validator