Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelvvg | Structured version Visualization version GIF version |
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
opelvvg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | elex 3440 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
3 | opelxpi 5617 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 〈cop 4564 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 |
This theorem is referenced by: relsnopg 5702 isof1oopb 7176 opvtxfv 27277 opiedgfv 27280 gonafv 33212 sat1el2xp 33241 opelvvdif 36325 brxrn 36431 |
Copyright terms: Public domain | W3C validator |