![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prid1 | Structured version Visualization version GIF version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 24-Jun-1993.) |
Ref | Expression |
---|---|
prid1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
prid1 | ⊢ 𝐴 ∈ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prid1g 4609 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴, 𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2083 Vcvv 3440 {cpr 4480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-v 3442 df-un 3870 df-sn 4479 df-pr 4481 |
This theorem is referenced by: prid2 4612 prnz 4625 preq12b 4694 unisn2 5114 opi1 5259 opeluu 5261 dmrnssfld 5729 funopg 6266 fprb 6830 fveqf1o 6930 2dom 8437 opthreg 8934 djuss 9202 dfac2b 9409 brdom7disj 9806 brdom6disj 9807 reelprrecn 10482 pnfxr 10548 m1expcl2 13305 hash2prb 13680 sadcf 15639 prmreclem2 16086 fnpr2ob 16664 setcepi 17181 grpss 17883 efgi0 18577 vrgpf 18625 vrgpinv 18626 frgpuptinv 18628 frgpup2 18633 frgpnabllem1 18720 dmdprdpr 18892 dprdpr 18893 cnmsgnsubg 20407 m2detleiblem5 20922 m2detleiblem3 20926 m2detleiblem4 20927 m2detleib 20928 indistopon 21297 indiscld 21387 xpstopnlem1 22105 xpstopnlem2 22107 xpsdsval 22678 ehl2eudis 23712 i1f1lem 23977 i1f1 23978 dvnfre 24236 c1lip2 24282 aannenlem2 24605 cxplogb 25049 ppiublem2 25465 lgsdir2lem3 25589 eengbas 26454 ebtwntg 26455 structvtxval 26493 usgr2trlncl 27227 umgrwwlks2on 27422 wlk2v2e 27622 eulerpathpr 27705 s2rn 30296 trsp2cyc 30408 cyc3fv1 30412 cnmsgn0g 30421 psgnid 30423 prsiga 31003 coinflippvt 31355 subfacp1lem3 32039 kur14lem7 32069 ex-sategoelel12 32284 noxp1o 32781 noextendlt 32787 nosepdmlem 32798 nolt02o 32810 nosupbnd1lem5 32823 nosupbnd2lem1 32826 noetalem1 32828 onint1 33408 poimirlem22 34466 pw2f1ocnv 39140 fvrcllb0d 39544 fvrcllb0da 39545 corclrcl 39558 relexp0idm 39566 corcltrcl 39590 mnuprdlem1 40126 mnuprdlem3 40128 mnurndlem1 40135 refsum2cnlem1 40854 limsup10exlem 41616 fourierdlem103 42058 fourierdlem104 42059 prsal 42167 zlmodzxzscm 43905 zlmodzxzldeplem3 44059 rrx2pxel 44201 rrx2linesl 44233 2sphere0 44240 |
Copyright terms: Public domain | W3C validator |