Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon3 Structured version   Visualization version   GIF version

Theorem oplecon3 38372
Description: Contraposition law for orthoposets. (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
opcon3.b 𝐡 = (Baseβ€˜πΎ)
opcon3.l ≀ = (leβ€˜πΎ)
opcon3.o βŠ₯ = (ocβ€˜πΎ)
Assertion
Ref Expression
oplecon3 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ β†’ ( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹)))

Proof of Theorem oplecon3
StepHypRef Expression
1 opcon3.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 opcon3.l . . . 4 ≀ = (leβ€˜πΎ)
3 opcon3.o . . . 4 βŠ₯ = (ocβ€˜πΎ)
4 eqid 2732 . . . 4 (joinβ€˜πΎ) = (joinβ€˜πΎ)
5 eqid 2732 . . . 4 (meetβ€˜πΎ) = (meetβ€˜πΎ)
6 eqid 2732 . . . 4 (0.β€˜πΎ) = (0.β€˜πΎ)
7 eqid 2732 . . . 4 (1.β€˜πΎ) = (1.β€˜πΎ)
81, 2, 3, 4, 5, 6, 7oposlem 38355 . . 3 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((( βŠ₯ β€˜π‘‹) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ (𝑋 ≀ π‘Œ β†’ ( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹))) ∧ (𝑋(joinβ€˜πΎ)( βŠ₯ β€˜π‘‹)) = (1.β€˜πΎ) ∧ (𝑋(meetβ€˜πΎ)( βŠ₯ β€˜π‘‹)) = (0.β€˜πΎ)))
98simp1d 1142 . 2 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (( βŠ₯ β€˜π‘‹) ∈ 𝐡 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ (𝑋 ≀ π‘Œ β†’ ( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹))))
109simp3d 1144 1 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ β†’ ( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  lecple 17208  occoc 17209  joincjn 18268  meetcmee 18269  0.cp0 18380  1.cp1 18381  OPcops 38345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-dm 5686  df-iota 6495  df-fv 6551  df-ov 7414  df-oposet 38349
This theorem is referenced by:  oplecon3b  38373
  Copyright terms: Public domain W3C validator