Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oplecon3 | Structured version Visualization version GIF version |
Description: Contraposition law for orthoposets. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
opcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
opcon3.l | ⊢ ≤ = (le‘𝐾) |
opcon3.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oplecon3 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opcon3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opcon3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | opcon3.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
4 | eqid 2738 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | eqid 2738 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
6 | eqid 2738 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
7 | eqid 2738 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 37196 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
9 | 8 | simp1d 1141 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋)))) |
10 | 9 | simp3d 1143 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 occoc 16970 joincjn 18029 meetcmee 18030 0.cp0 18141 1.cp1 18142 OPcops 37186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 df-oposet 37190 |
This theorem is referenced by: oplecon3b 37214 |
Copyright terms: Public domain | W3C validator |