| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oplecon3 | Structured version Visualization version GIF version | ||
| Description: Contraposition law for orthoposets. (Contributed by NM, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| opcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
| opcon3.l | ⊢ ≤ = (le‘𝐾) |
| opcon3.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| oplecon3 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opcon3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | opcon3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | opcon3.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | eqid 2736 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | eqid 2736 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | eqid 2736 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | eqid 2736 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39205 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 9 | 8 | simp1d 1142 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋)))) |
| 10 | 9 | simp3d 1144 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 occoc 17284 joincjn 18328 meetcmee 18329 0.cp0 18438 1.cp1 18439 OPcops 39195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-dm 5669 df-iota 6489 df-fv 6544 df-ov 7413 df-oposet 39199 |
| This theorem is referenced by: oplecon3b 39223 |
| Copyright terms: Public domain | W3C validator |