Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon3 Structured version   Visualization version   GIF version

Theorem oplecon3 39222
Description: Contraposition law for orthoposets. (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
opcon3.b 𝐵 = (Base‘𝐾)
opcon3.l = (le‘𝐾)
opcon3.o = (oc‘𝐾)
Assertion
Ref Expression
oplecon3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ( 𝑌) ( 𝑋)))

Proof of Theorem oplecon3
StepHypRef Expression
1 opcon3.b . . . 4 𝐵 = (Base‘𝐾)
2 opcon3.l . . . 4 = (le‘𝐾)
3 opcon3.o . . . 4 = (oc‘𝐾)
4 eqid 2736 . . . 4 (join‘𝐾) = (join‘𝐾)
5 eqid 2736 . . . 4 (meet‘𝐾) = (meet‘𝐾)
6 eqid 2736 . . . 4 (0.‘𝐾) = (0.‘𝐾)
7 eqid 2736 . . . 4 (1.‘𝐾) = (1.‘𝐾)
81, 2, 3, 4, 5, 6, 7oposlem 39205 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋(join‘𝐾)( 𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( 𝑋)) = (0.‘𝐾)))
98simp1d 1142 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))))
109simp3d 1144 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ( 𝑌) ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  occoc 17284  joincjn 18328  meetcmee 18329  0.cp0 18438  1.cp1 18439  OPcops 39195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-dm 5669  df-iota 6489  df-fv 6544  df-ov 7413  df-oposet 39199
This theorem is referenced by:  oplecon3b  39223
  Copyright terms: Public domain W3C validator