Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oposlem Structured version   Visualization version   GIF version

Theorem oposlem 39168
Description: Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
oposlem.b 𝐵 = (Base‘𝐾)
oposlem.l = (le‘𝐾)
oposlem.o = (oc‘𝐾)
oposlem.j = (join‘𝐾)
oposlem.m = (meet‘𝐾)
oposlem.f 0 = (0.‘𝐾)
oposlem.u 1 = (1.‘𝐾)
Assertion
Ref Expression
oposlem ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))

Proof of Theorem oposlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oposlem.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2729 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2729 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
4 oposlem.l . . . . 5 = (le‘𝐾)
5 oposlem.o . . . . 5 = (oc‘𝐾)
6 oposlem.j . . . . 5 = (join‘𝐾)
7 oposlem.m . . . . 5 = (meet‘𝐾)
8 oposlem.f . . . . 5 0 = (0.‘𝐾)
9 oposlem.u . . . . 5 1 = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 39166 . . . 4 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
1110simprbi 496 . . 3 (𝐾 ∈ OP → ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ))
12 fveq2 6840 . . . . . . 7 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1312eleq1d 2813 . . . . . 6 (𝑥 = 𝑋 → (( 𝑥) ∈ 𝐵 ↔ ( 𝑋) ∈ 𝐵))
14 2fveq3 6845 . . . . . . 7 (𝑥 = 𝑋 → ( ‘( 𝑥)) = ( ‘( 𝑋)))
15 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1614, 15eqeq12d 2745 . . . . . 6 (𝑥 = 𝑋 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑋)) = 𝑋))
17 breq1 5105 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
1812breq2d 5114 . . . . . . 7 (𝑥 = 𝑋 → (( 𝑦) ( 𝑥) ↔ ( 𝑦) ( 𝑋)))
1917, 18imbi12d 344 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦 → ( 𝑦) ( 𝑥)) ↔ (𝑋 𝑦 → ( 𝑦) ( 𝑋))))
2013, 16, 193anbi123d 1438 . . . . 5 (𝑥 = 𝑋 → ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ↔ (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋)))))
2115, 12oveq12d 7387 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ( 𝑥)) = (𝑋 ( 𝑋)))
2221eqeq1d 2731 . . . . 5 (𝑥 = 𝑋 → ((𝑥 ( 𝑥)) = 1 ↔ (𝑋 ( 𝑋)) = 1 ))
2315, 12oveq12d 7387 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ( 𝑥)) = (𝑋 ( 𝑋)))
2423eqeq1d 2731 . . . . 5 (𝑥 = 𝑋 → ((𝑥 ( 𝑥)) = 0 ↔ (𝑋 ( 𝑋)) = 0 ))
2520, 22, 243anbi123d 1438 . . . 4 (𝑥 = 𝑋 → (((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ) ↔ ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
26 breq2 5106 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
27 fveq2 6840 . . . . . . . 8 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2827breq1d 5112 . . . . . . 7 (𝑦 = 𝑌 → (( 𝑦) ( 𝑋) ↔ ( 𝑌) ( 𝑋)))
2926, 28imbi12d 344 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦 → ( 𝑦) ( 𝑋)) ↔ (𝑋 𝑌 → ( 𝑌) ( 𝑋))))
30293anbi3d 1444 . . . . 5 (𝑦 = 𝑌 → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ↔ (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋)))))
31303anbi1d 1442 . . . 4 (𝑦 = 𝑌 → (((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ) ↔ ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
3225, 31rspc2v 3596 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
3311, 32mpan9 506 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵)) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))
34333impb 1114 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  dom cdm 5631  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  occoc 17204  Posetcpo 18248  lubclub 18250  glbcglb 18251  joincjn 18252  meetcmee 18253  0.cp0 18362  1.cp1 18363  OPcops 39158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-dm 5641  df-iota 6452  df-fv 6507  df-ov 7372  df-oposet 39162
This theorem is referenced by:  opoccl  39180  opococ  39181  oplecon3  39185  opexmid  39193  opnoncon  39194
  Copyright terms: Public domain W3C validator