Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oposlem Structured version   Visualization version   GIF version

Theorem oposlem 39164
Description: Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
oposlem.b 𝐵 = (Base‘𝐾)
oposlem.l = (le‘𝐾)
oposlem.o = (oc‘𝐾)
oposlem.j = (join‘𝐾)
oposlem.m = (meet‘𝐾)
oposlem.f 0 = (0.‘𝐾)
oposlem.u 1 = (1.‘𝐾)
Assertion
Ref Expression
oposlem ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))

Proof of Theorem oposlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oposlem.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2735 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2735 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
4 oposlem.l . . . . 5 = (le‘𝐾)
5 oposlem.o . . . . 5 = (oc‘𝐾)
6 oposlem.j . . . . 5 = (join‘𝐾)
7 oposlem.m . . . . 5 = (meet‘𝐾)
8 oposlem.f . . . . 5 0 = (0.‘𝐾)
9 oposlem.u . . . . 5 1 = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 39162 . . . 4 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
1110simprbi 496 . . 3 (𝐾 ∈ OP → ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ))
12 fveq2 6907 . . . . . . 7 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1312eleq1d 2824 . . . . . 6 (𝑥 = 𝑋 → (( 𝑥) ∈ 𝐵 ↔ ( 𝑋) ∈ 𝐵))
14 2fveq3 6912 . . . . . . 7 (𝑥 = 𝑋 → ( ‘( 𝑥)) = ( ‘( 𝑋)))
15 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1614, 15eqeq12d 2751 . . . . . 6 (𝑥 = 𝑋 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑋)) = 𝑋))
17 breq1 5151 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
1812breq2d 5160 . . . . . . 7 (𝑥 = 𝑋 → (( 𝑦) ( 𝑥) ↔ ( 𝑦) ( 𝑋)))
1917, 18imbi12d 344 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦 → ( 𝑦) ( 𝑥)) ↔ (𝑋 𝑦 → ( 𝑦) ( 𝑋))))
2013, 16, 193anbi123d 1435 . . . . 5 (𝑥 = 𝑋 → ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ↔ (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋)))))
2115, 12oveq12d 7449 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ( 𝑥)) = (𝑋 ( 𝑋)))
2221eqeq1d 2737 . . . . 5 (𝑥 = 𝑋 → ((𝑥 ( 𝑥)) = 1 ↔ (𝑋 ( 𝑋)) = 1 ))
2315, 12oveq12d 7449 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ( 𝑥)) = (𝑋 ( 𝑋)))
2423eqeq1d 2737 . . . . 5 (𝑥 = 𝑋 → ((𝑥 ( 𝑥)) = 0 ↔ (𝑋 ( 𝑋)) = 0 ))
2520, 22, 243anbi123d 1435 . . . 4 (𝑥 = 𝑋 → (((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ) ↔ ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
26 breq2 5152 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
27 fveq2 6907 . . . . . . . 8 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2827breq1d 5158 . . . . . . 7 (𝑦 = 𝑌 → (( 𝑦) ( 𝑋) ↔ ( 𝑌) ( 𝑋)))
2926, 28imbi12d 344 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦 → ( 𝑦) ( 𝑋)) ↔ (𝑋 𝑌 → ( 𝑌) ( 𝑋))))
30293anbi3d 1441 . . . . 5 (𝑦 = 𝑌 → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ↔ (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋)))))
31303anbi1d 1439 . . . 4 (𝑦 = 𝑌 → (((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ) ↔ ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
3225, 31rspc2v 3633 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
3311, 32mpan9 506 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵)) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))
34333impb 1114 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  occoc 17306  Posetcpo 18365  lubclub 18367  glbcglb 18368  joincjn 18369  meetcmee 18370  0.cp0 18481  1.cp1 18482  OPcops 39154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-dm 5699  df-iota 6516  df-fv 6571  df-ov 7434  df-oposet 39158
This theorem is referenced by:  opoccl  39176  opococ  39177  oplecon3  39181  opexmid  39189  opnoncon  39190
  Copyright terms: Public domain W3C validator