Step | Hyp | Ref
| Expression |
1 | | oposlem.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
2 | | eqid 2738 |
. . . . 5
⊢
(lub‘𝐾) =
(lub‘𝐾) |
3 | | eqid 2738 |
. . . . 5
⊢
(glb‘𝐾) =
(glb‘𝐾) |
4 | | oposlem.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
5 | | oposlem.o |
. . . . 5
⊢ ⊥ =
(oc‘𝐾) |
6 | | oposlem.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
7 | | oposlem.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
8 | | oposlem.f |
. . . . 5
⊢ 0 =
(0.‘𝐾) |
9 | | oposlem.u |
. . . . 5
⊢ 1 =
(1.‘𝐾) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | isopos 37194 |
. . . 4
⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((( ⊥ ‘𝑥) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥 ∧ (𝑥 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥))) ∧ (𝑥 ∨ ( ⊥ ‘𝑥)) = 1 ∧ (𝑥 ∧ ( ⊥ ‘𝑥)) = 0 ))) |
11 | 10 | simprbi 497 |
. . 3
⊢ (𝐾 ∈ OP → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((( ⊥ ‘𝑥) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥 ∧ (𝑥 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥))) ∧ (𝑥 ∨ ( ⊥ ‘𝑥)) = 1 ∧ (𝑥 ∧ ( ⊥ ‘𝑥)) = 0 )) |
12 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑋)) |
13 | 12 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (( ⊥ ‘𝑥) ∈ 𝐵 ↔ ( ⊥ ‘𝑋) ∈ 𝐵)) |
14 | | 2fveq3 6779 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ( ⊥ ‘( ⊥
‘𝑥)) = ( ⊥
‘( ⊥ ‘𝑋))) |
15 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
16 | 14, 15 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (( ⊥ ‘( ⊥
‘𝑥)) = 𝑥 ↔ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋)) |
17 | | breq1 5077 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) |
18 | 12 | breq2d 5086 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥) ↔ ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑋))) |
19 | 17, 18 | imbi12d 345 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥)) ↔ (𝑋 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑋)))) |
20 | 13, 16, 19 | 3anbi123d 1435 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((( ⊥ ‘𝑥) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥 ∧ (𝑥 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥))) ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑋))))) |
21 | 15, 12 | oveq12d 7293 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 ∨ ( ⊥ ‘𝑥)) = (𝑋 ∨ ( ⊥ ‘𝑋))) |
22 | 21 | eqeq1d 2740 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 ∨ ( ⊥ ‘𝑥)) = 1 ↔ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 )) |
23 | 15, 12 | oveq12d 7293 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 ∧ ( ⊥ ‘𝑥)) = (𝑋 ∧ ( ⊥ ‘𝑋))) |
24 | 23 | eqeq1d 2740 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 ∧ ( ⊥ ‘𝑥)) = 0 ↔ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) |
25 | 20, 22, 24 | 3anbi123d 1435 |
. . . 4
⊢ (𝑥 = 𝑋 → (((( ⊥ ‘𝑥) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥 ∧ (𝑥 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥))) ∧ (𝑥 ∨ ( ⊥ ‘𝑥)) = 1 ∧ (𝑥 ∧ ( ⊥ ‘𝑥)) = 0 ) ↔ ((( ⊥
‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ))) |
26 | | breq2 5078 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) |
27 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → ( ⊥ ‘𝑦) = ( ⊥ ‘𝑌)) |
28 | 27 | breq1d 5084 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑋) ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
29 | 26, 28 | imbi12d 345 |
. . . . . 6
⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑋)) ↔ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋)))) |
30 | 29 | 3anbi3d 1441 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑋))) ↔ (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))))) |
31 | 30 | 3anbi1d 1439 |
. . . 4
⊢ (𝑦 = 𝑌 → (((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) ↔ ((( ⊥
‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ))) |
32 | 25, 31 | rspc2v 3570 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((( ⊥ ‘𝑥) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑥)) = 𝑥 ∧ (𝑥 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥))) ∧ (𝑥 ∨ ( ⊥ ‘𝑥)) = 1 ∧ (𝑥 ∧ ( ⊥ ‘𝑥)) = 0 ) → ((( ⊥
‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ))) |
33 | 11, 32 | mpan9 507 |
. 2
⊢ ((𝐾 ∈ OP ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) |
34 | 33 | 3impb 1114 |
1
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) |