Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon3b Structured version   Visualization version   GIF version

Theorem oplecon3b 39200
Description: Contraposition law for orthoposets. (chsscon3 31436 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
opcon3.b 𝐵 = (Base‘𝐾)
opcon3.l = (le‘𝐾)
opcon3.o = (oc‘𝐾)
Assertion
Ref Expression
oplecon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ( 𝑌) ( 𝑋)))

Proof of Theorem oplecon3b
StepHypRef Expression
1 opcon3.b . . 3 𝐵 = (Base‘𝐾)
2 opcon3.l . . 3 = (le‘𝐾)
3 opcon3.o . . 3 = (oc‘𝐾)
41, 2, 3oplecon3 39199 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ( 𝑌) ( 𝑋)))
5 simp1 1136 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
61, 3opoccl 39194 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
763adant2 1131 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
81, 3opoccl 39194 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
983adant3 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
101, 2, 3oplecon3 39199 . . . 4 ((𝐾 ∈ OP ∧ ( 𝑌) ∈ 𝐵 ∧ ( 𝑋) ∈ 𝐵) → (( 𝑌) ( 𝑋) → ( ‘( 𝑋)) ( ‘( 𝑌))))
115, 7, 9, 10syl3anc 1373 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) ( 𝑋) → ( ‘( 𝑋)) ( ‘( 𝑌))))
121, 3opococ 39195 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
13123adant3 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
141, 3opococ 39195 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
15143adant2 1131 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
1613, 15breq12d 5123 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑋)) ( ‘( 𝑌)) ↔ 𝑋 𝑌))
1711, 16sylibd 239 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) ( 𝑋) → 𝑋 𝑌))
184, 17impbid 212 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ( 𝑌) ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  occoc 17235  OPcops 39172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-dm 5651  df-iota 6467  df-fv 6522  df-ov 7393  df-oposet 39176
This theorem is referenced by:  oplecon1b  39201  opltcon3b  39204  oldmm1  39217  omllaw4  39246  cvrcmp2  39284  glbconN  39377  glbconNOLD  39378  lhpmod2i2  40039  lhpmod6i1  40040  lhprelat3N  40041  dochss  41366
  Copyright terms: Public domain W3C validator