Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oplecon3b | Structured version Visualization version GIF version |
Description: Contraposition law for orthoposets. (chsscon3 29862 analog.) (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
opcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
opcon3.l | ⊢ ≤ = (le‘𝐾) |
opcon3.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oplecon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opcon3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opcon3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | opcon3.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
4 | 1, 2, 3 | oplecon3 37213 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
5 | simp1 1135 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) | |
6 | 1, 3 | opoccl 37208 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
7 | 6 | 3adant2 1130 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
8 | 1, 3 | opoccl 37208 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
9 | 8 | 3adant3 1131 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
10 | 1, 2, 3 | oplecon3 37213 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
11 | 5, 7, 9, 10 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
12 | 1, 3 | opococ 37209 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
13 | 12 | 3adant3 1131 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
14 | 1, 3 | opococ 37209 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
15 | 14 | 3adant2 1130 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
16 | 13, 15 | breq12d 5087 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
17 | 11, 16 | sylibd 238 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → 𝑋 ≤ 𝑌)) |
18 | 4, 17 | impbid 211 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 occoc 16970 OPcops 37186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 df-oposet 37190 |
This theorem is referenced by: oplecon1b 37215 opltcon3b 37218 oldmm1 37231 omllaw4 37260 cvrcmp2 37298 glbconN 37391 lhpmod2i2 38052 lhpmod6i1 38053 lhprelat3N 38054 dochss 39379 |
Copyright terms: Public domain | W3C validator |