| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oplecon3b | Structured version Visualization version GIF version | ||
| Description: Contraposition law for orthoposets. (chsscon3 31475 analog.) (Contributed by NM, 4-Nov-2011.) |
| Ref | Expression |
|---|---|
| opcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
| opcon3.l | ⊢ ≤ = (le‘𝐾) |
| opcon3.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| oplecon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opcon3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | opcon3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | opcon3.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | 1, 2, 3 | oplecon3 39237 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
| 5 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) | |
| 6 | 1, 3 | opoccl 39232 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 7 | 6 | 3adant2 1131 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 8 | 1, 3 | opoccl 39232 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 9 | 8 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 10 | 1, 2, 3 | oplecon3 39237 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
| 11 | 5, 7, 9, 10 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
| 12 | 1, 3 | opococ 39233 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 13 | 12 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 14 | 1, 3 | opococ 39233 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 15 | 14 | 3adant2 1131 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 16 | 13, 15 | breq12d 5104 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
| 17 | 11, 16 | sylibd 239 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → 𝑋 ≤ 𝑌)) |
| 18 | 4, 17 | impbid 212 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 lecple 17165 occoc 17166 OPcops 39210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-dm 5626 df-iota 6437 df-fv 6489 df-ov 7349 df-oposet 39214 |
| This theorem is referenced by: oplecon1b 39239 opltcon3b 39242 oldmm1 39255 omllaw4 39284 cvrcmp2 39322 glbconN 39415 lhpmod2i2 40076 lhpmod6i1 40077 lhprelat3N 40078 dochss 41403 |
| Copyright terms: Public domain | W3C validator |