Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon3b Structured version   Visualization version   GIF version

Theorem oplecon3b 38065
Description: Contraposition law for orthoposets. (chsscon3 30748 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
opcon3.b 𝐡 = (Baseβ€˜πΎ)
opcon3.l ≀ = (leβ€˜πΎ)
opcon3.o βŠ₯ = (ocβ€˜πΎ)
Assertion
Ref Expression
oplecon3b ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ↔ ( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹)))

Proof of Theorem oplecon3b
StepHypRef Expression
1 opcon3.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 opcon3.l . . 3 ≀ = (leβ€˜πΎ)
3 opcon3.o . . 3 βŠ₯ = (ocβ€˜πΎ)
41, 2, 3oplecon3 38064 . 2 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ β†’ ( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹)))
5 simp1 1136 . . . 4 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝐾 ∈ OP)
61, 3opoccl 38059 . . . . 5 ((𝐾 ∈ OP ∧ π‘Œ ∈ 𝐡) β†’ ( βŠ₯ β€˜π‘Œ) ∈ 𝐡)
763adant2 1131 . . . 4 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ( βŠ₯ β€˜π‘Œ) ∈ 𝐡)
81, 3opoccl 38059 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ ( βŠ₯ β€˜π‘‹) ∈ 𝐡)
983adant3 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ( βŠ₯ β€˜π‘‹) ∈ 𝐡)
101, 2, 3oplecon3 38064 . . . 4 ((𝐾 ∈ OP ∧ ( βŠ₯ β€˜π‘Œ) ∈ 𝐡 ∧ ( βŠ₯ β€˜π‘‹) ∈ 𝐡) β†’ (( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) ≀ ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ))))
115, 7, 9, 10syl3anc 1371 . . 3 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) ≀ ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ))))
121, 3opococ 38060 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)
13123adant3 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)
141, 3opococ 38060 . . . . 5 ((𝐾 ∈ OP ∧ π‘Œ ∈ 𝐡) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ)) = π‘Œ)
15143adant2 1131 . . . 4 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ)) = π‘Œ)
1613, 15breq12d 5161 . . 3 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) ≀ ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ)) ↔ 𝑋 ≀ π‘Œ))
1711, 16sylibd 238 . 2 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹) β†’ 𝑋 ≀ π‘Œ))
184, 17impbid 211 1 ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ π‘Œ ↔ ( βŠ₯ β€˜π‘Œ) ≀ ( βŠ₯ β€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  β€˜cfv 6543  Basecbs 17143  lecple 17203  occoc 17204  OPcops 38037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-dm 5686  df-iota 6495  df-fv 6551  df-ov 7411  df-oposet 38041
This theorem is referenced by:  oplecon1b  38066  opltcon3b  38069  oldmm1  38082  omllaw4  38111  cvrcmp2  38149  glbconN  38242  glbconNOLD  38243  lhpmod2i2  38904  lhpmod6i1  38905  lhprelat3N  38906  dochss  40231
  Copyright terms: Public domain W3C validator