| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oplecon3b | Structured version Visualization version GIF version | ||
| Description: Contraposition law for orthoposets. (chsscon3 31436 analog.) (Contributed by NM, 4-Nov-2011.) |
| Ref | Expression |
|---|---|
| opcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
| opcon3.l | ⊢ ≤ = (le‘𝐾) |
| opcon3.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| oplecon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opcon3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | opcon3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | opcon3.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | 1, 2, 3 | oplecon3 39199 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
| 5 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) | |
| 6 | 1, 3 | opoccl 39194 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 7 | 6 | 3adant2 1131 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 8 | 1, 3 | opoccl 39194 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 9 | 8 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 10 | 1, 2, 3 | oplecon3 39199 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
| 11 | 5, 7, 9, 10 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
| 12 | 1, 3 | opococ 39195 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 13 | 12 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 14 | 1, 3 | opococ 39195 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 15 | 14 | 3adant2 1131 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 16 | 13, 15 | breq12d 5123 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
| 17 | 11, 16 | sylibd 239 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → 𝑋 ≤ 𝑌)) |
| 18 | 4, 17 | impbid 212 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 occoc 17235 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-oposet 39176 |
| This theorem is referenced by: oplecon1b 39201 opltcon3b 39204 oldmm1 39217 omllaw4 39246 cvrcmp2 39284 glbconN 39377 glbconNOLD 39378 lhpmod2i2 40039 lhpmod6i1 40040 lhprelat3N 40041 dochss 41366 |
| Copyright terms: Public domain | W3C validator |