![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oplecon3b | Structured version Visualization version GIF version |
Description: Contraposition law for orthoposets. (chsscon3 31545 analog.) (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
opcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
opcon3.l | ⊢ ≤ = (le‘𝐾) |
opcon3.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oplecon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opcon3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opcon3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | opcon3.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
4 | 1, 2, 3 | oplecon3 39195 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
5 | simp1 1137 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) | |
6 | 1, 3 | opoccl 39190 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
7 | 6 | 3adant2 1132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
8 | 1, 3 | opoccl 39190 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
9 | 8 | 3adant3 1133 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
10 | 1, 2, 3 | oplecon3 39195 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
11 | 5, 7, 9, 10 | syl3anc 1372 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
12 | 1, 3 | opococ 39191 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
13 | 12 | 3adant3 1133 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
14 | 1, 3 | opococ 39191 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
15 | 14 | 3adant2 1132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
16 | 13, 15 | breq12d 5164 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
17 | 11, 16 | sylibd 239 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → 𝑋 ≤ 𝑌)) |
18 | 4, 17 | impbid 212 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 ‘cfv 6569 Basecbs 17254 lecple 17314 occoc 17315 OPcops 39168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5315 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-dm 5703 df-iota 6522 df-fv 6577 df-ov 7441 df-oposet 39172 |
This theorem is referenced by: oplecon1b 39197 opltcon3b 39200 oldmm1 39213 omllaw4 39242 cvrcmp2 39280 glbconN 39373 glbconNOLD 39374 lhpmod2i2 40035 lhpmod6i1 40036 lhprelat3N 40037 dochss 41362 |
Copyright terms: Public domain | W3C validator |