Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon3b Structured version   Visualization version   GIF version

Theorem oplecon3b 39158
Description: Contraposition law for orthoposets. (chsscon3 31534 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
opcon3.b 𝐵 = (Base‘𝐾)
opcon3.l = (le‘𝐾)
opcon3.o = (oc‘𝐾)
Assertion
Ref Expression
oplecon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ( 𝑌) ( 𝑋)))

Proof of Theorem oplecon3b
StepHypRef Expression
1 opcon3.b . . 3 𝐵 = (Base‘𝐾)
2 opcon3.l . . 3 = (le‘𝐾)
3 opcon3.o . . 3 = (oc‘𝐾)
41, 2, 3oplecon3 39157 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ( 𝑌) ( 𝑋)))
5 simp1 1136 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
61, 3opoccl 39152 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
763adant2 1131 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
81, 3opoccl 39152 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
983adant3 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
101, 2, 3oplecon3 39157 . . . 4 ((𝐾 ∈ OP ∧ ( 𝑌) ∈ 𝐵 ∧ ( 𝑋) ∈ 𝐵) → (( 𝑌) ( 𝑋) → ( ‘( 𝑋)) ( ‘( 𝑌))))
115, 7, 9, 10syl3anc 1371 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) ( 𝑋) → ( ‘( 𝑋)) ( ‘( 𝑌))))
121, 3opococ 39153 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
13123adant3 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
141, 3opococ 39153 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
15143adant2 1131 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
1613, 15breq12d 5179 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑋)) ( ‘( 𝑌)) ↔ 𝑋 𝑌))
1711, 16sylibd 239 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) ( 𝑋) → 𝑋 𝑌))
184, 17impbid 212 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ( 𝑌) ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6575  Basecbs 17260  lecple 17320  occoc 17321  OPcops 39130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5710  df-iota 6527  df-fv 6583  df-ov 7453  df-oposet 39134
This theorem is referenced by:  oplecon1b  39159  opltcon3b  39162  oldmm1  39175  omllaw4  39204  cvrcmp2  39242  glbconN  39335  glbconNOLD  39336  lhpmod2i2  39997  lhpmod6i1  39998  lhprelat3N  39999  dochss  41324
  Copyright terms: Public domain W3C validator