![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oplecon3b | Structured version Visualization version GIF version |
Description: Contraposition law for orthoposets. (chsscon3 28884 analog.) (Contributed by NM, 4-Nov-2011.) |
Ref | Expression |
---|---|
opcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
opcon3.l | ⊢ ≤ = (le‘𝐾) |
opcon3.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oplecon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opcon3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opcon3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | opcon3.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
4 | 1, 2, 3 | oplecon3 35220 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
5 | simp1 1167 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) | |
6 | 1, 3 | opoccl 35215 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
7 | 6 | 3adant2 1162 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
8 | 1, 3 | opoccl 35215 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
9 | 8 | 3adant3 1163 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
10 | 1, 2, 3 | oplecon3 35220 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
11 | 5, 7, 9, 10 | syl3anc 1491 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)))) |
12 | 1, 3 | opococ 35216 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
13 | 12 | 3adant3 1163 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
14 | 1, 3 | opococ 35216 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
15 | 14 | 3adant2 1162 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
16 | 13, 15 | breq12d 4856 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑋)) ≤ ( ⊥ ‘( ⊥ ‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
17 | 11, 16 | sylibd 231 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → 𝑋 ≤ 𝑌)) |
18 | 4, 17 | impbid 204 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 class class class wbr 4843 ‘cfv 6101 Basecbs 16184 lecple 16274 occoc 16275 OPcops 35193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-nul 4983 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-dm 5322 df-iota 6064 df-fv 6109 df-ov 6881 df-oposet 35197 |
This theorem is referenced by: oplecon1b 35222 opltcon3b 35225 oldmm1 35238 omllaw4 35267 cvrcmp2 35305 glbconN 35398 lhpmod2i2 36059 lhpmod6i1 36060 lhprelat3N 36061 dochss 37386 |
Copyright terms: Public domain | W3C validator |