Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opcon1b | Structured version Visualization version GIF version |
Description: Orthocomplement contraposition law. (negcon1 11203 analog.) (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opcon1b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opoccl.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
3 | 1, 2 | opcon2b 37138 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
4 | eqcom 2745 | . . 3 ⊢ (( ⊥ ‘𝑌) = 𝑋 ↔ 𝑋 = ( ⊥ ‘𝑌)) | |
5 | eqcom 2745 | . . 3 ⊢ (( ⊥ ‘𝑋) = 𝑌 ↔ 𝑌 = ( ⊥ ‘𝑋)) | |
6 | 3, 4, 5 | 3bitr4g 313 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) = 𝑋 ↔ ( ⊥ ‘𝑋) = 𝑌)) |
7 | 6 | bicomd 222 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 occoc 16896 OPcops 37113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 df-oposet 37117 |
This theorem is referenced by: opoc0 37144 |
Copyright terms: Public domain | W3C validator |