![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opcon1b | Structured version Visualization version GIF version |
Description: Orthocomplement contraposition law. (negcon1 11562 analog.) (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opcon1b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opoccl.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
3 | 1, 2 | opcon2b 38895 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
4 | eqcom 2733 | . . 3 ⊢ (( ⊥ ‘𝑌) = 𝑋 ↔ 𝑋 = ( ⊥ ‘𝑌)) | |
5 | eqcom 2733 | . . 3 ⊢ (( ⊥ ‘𝑋) = 𝑌 ↔ 𝑌 = ( ⊥ ‘𝑋)) | |
6 | 3, 4, 5 | 3bitr4g 313 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) = 𝑋 ↔ ( ⊥ ‘𝑋) = 𝑌)) |
7 | 6 | bicomd 222 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 Basecbs 17213 occoc 17274 OPcops 38870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-nul 5311 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-dm 5692 df-iota 6506 df-fv 6562 df-ov 7427 df-oposet 38874 |
This theorem is referenced by: opoc0 38901 |
Copyright terms: Public domain | W3C validator |