![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opcon1b | Structured version Visualization version GIF version |
Description: Orthocomplement contraposition law. (negcon1 11588 analog.) (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opcon1b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opoccl.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
3 | 1, 2 | opcon2b 39153 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
4 | eqcom 2747 | . . 3 ⊢ (( ⊥ ‘𝑌) = 𝑋 ↔ 𝑋 = ( ⊥ ‘𝑌)) | |
5 | eqcom 2747 | . . 3 ⊢ (( ⊥ ‘𝑋) = 𝑌 ↔ 𝑌 = ( ⊥ ‘𝑋)) | |
6 | 3, 4, 5 | 3bitr4g 314 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) = 𝑋 ↔ ( ⊥ ‘𝑋) = 𝑌)) |
7 | 6 | bicomd 223 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Basecbs 17258 occoc 17319 OPcops 39128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-oposet 39132 |
This theorem is referenced by: opoc0 39159 |
Copyright terms: Public domain | W3C validator |