Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opcon1b | Structured version Visualization version GIF version |
Description: Orthocomplement contraposition law. (negcon1 11366 analog.) (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opcon1b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opoccl.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
3 | 1, 2 | opcon2b 37457 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
4 | eqcom 2743 | . . 3 ⊢ (( ⊥ ‘𝑌) = 𝑋 ↔ 𝑋 = ( ⊥ ‘𝑌)) | |
5 | eqcom 2743 | . . 3 ⊢ (( ⊥ ‘𝑋) = 𝑌 ↔ 𝑌 = ( ⊥ ‘𝑋)) | |
6 | 3, 4, 5 | 3bitr4g 313 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) = 𝑋 ↔ ( ⊥ ‘𝑋) = 𝑌)) |
7 | 6 | bicomd 222 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 Basecbs 17001 occoc 17059 OPcops 37432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-dm 5624 df-iota 6425 df-fv 6481 df-ov 7332 df-oposet 37436 |
This theorem is referenced by: opoc0 37463 |
Copyright terms: Public domain | W3C validator |