Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opcon1b Structured version   Visualization version   GIF version

Theorem opcon1b 37458
Description: Orthocomplement contraposition law. (negcon1 11366 analog.) (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoccl.b 𝐵 = (Base‘𝐾)
opoccl.o = (oc‘𝐾)
Assertion
Ref Expression
opcon1b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = 𝑌 ↔ ( 𝑌) = 𝑋))

Proof of Theorem opcon1b
StepHypRef Expression
1 opoccl.b . . . 4 𝐵 = (Base‘𝐾)
2 opoccl.o . . . 4 = (oc‘𝐾)
31, 2opcon2b 37457 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ( 𝑌) ↔ 𝑌 = ( 𝑋)))
4 eqcom 2743 . . 3 (( 𝑌) = 𝑋𝑋 = ( 𝑌))
5 eqcom 2743 . . 3 (( 𝑋) = 𝑌𝑌 = ( 𝑋))
63, 4, 53bitr4g 313 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) = 𝑋 ↔ ( 𝑋) = 𝑌))
76bicomd 222 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = 𝑌 ↔ ( 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1540  wcel 2105  cfv 6473  Basecbs 17001  occoc 17059  OPcops 37432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-nul 5247
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-dm 5624  df-iota 6425  df-fv 6481  df-ov 7332  df-oposet 37436
This theorem is referenced by:  opoc0  37463
  Copyright terms: Public domain W3C validator