Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opcon1b Structured version   Visualization version   GIF version

Theorem opcon1b 37139
Description: Orthocomplement contraposition law. (negcon1 11203 analog.) (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoccl.b 𝐵 = (Base‘𝐾)
opoccl.o = (oc‘𝐾)
Assertion
Ref Expression
opcon1b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = 𝑌 ↔ ( 𝑌) = 𝑋))

Proof of Theorem opcon1b
StepHypRef Expression
1 opoccl.b . . . 4 𝐵 = (Base‘𝐾)
2 opoccl.o . . . 4 = (oc‘𝐾)
31, 2opcon2b 37138 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ( 𝑌) ↔ 𝑌 = ( 𝑋)))
4 eqcom 2745 . . 3 (( 𝑌) = 𝑋𝑋 = ( 𝑌))
5 eqcom 2745 . . 3 (( 𝑋) = 𝑌𝑌 = ( 𝑋))
63, 4, 53bitr4g 313 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) = 𝑋 ↔ ( 𝑋) = 𝑌))
76bicomd 222 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = 𝑌 ↔ ( 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  Basecbs 16840  occoc 16896  OPcops 37113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258  df-oposet 37117
This theorem is referenced by:  opoc0  37144
  Copyright terms: Public domain W3C validator