Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opcon1b Structured version   Visualization version   GIF version

Theorem opcon1b 38896
Description: Orthocomplement contraposition law. (negcon1 11562 analog.) (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoccl.b 𝐵 = (Base‘𝐾)
opoccl.o = (oc‘𝐾)
Assertion
Ref Expression
opcon1b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = 𝑌 ↔ ( 𝑌) = 𝑋))

Proof of Theorem opcon1b
StepHypRef Expression
1 opoccl.b . . . 4 𝐵 = (Base‘𝐾)
2 opoccl.o . . . 4 = (oc‘𝐾)
31, 2opcon2b 38895 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ( 𝑌) ↔ 𝑌 = ( 𝑋)))
4 eqcom 2733 . . 3 (( 𝑌) = 𝑋𝑋 = ( 𝑌))
5 eqcom 2733 . . 3 (( 𝑋) = 𝑌𝑌 = ( 𝑋))
63, 4, 53bitr4g 313 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) = 𝑋 ↔ ( 𝑋) = 𝑌))
76bicomd 222 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = 𝑌 ↔ ( 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1534  wcel 2099  cfv 6554  Basecbs 17213  occoc 17274  OPcops 38870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-nul 5311
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-dm 5692  df-iota 6506  df-fv 6562  df-ov 7427  df-oposet 38874
This theorem is referenced by:  opoc0  38901
  Copyright terms: Public domain W3C validator