![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabssxpd | Structured version Visualization version GIF version |
Description: An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 8059. (Contributed by AV, 26-Nov-2021.) |
Ref | Expression |
---|---|
opabssxpd.x | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
opabssxpd.y | ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
Ref | Expression |
---|---|
opabssxpd | ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5206 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} | |
2 | simprl 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 = ⟨𝑥, 𝑦⟩) | |
3 | opabssxpd.x | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
4 | opabssxpd.y | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) | |
5 | 3, 4 | opelxpd 5711 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) |
6 | 5 | adantrl 714 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) |
7 | 2, 6 | eqeltrd 2825 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 ∈ (𝐴 × 𝐵)) |
8 | 7 | ex 411 | . . . 4 ⊢ (𝜑 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
9 | 8 | exlimdvv 1929 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
10 | 9 | abssdv 4057 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} ⊆ (𝐴 × 𝐵)) |
11 | 1, 10 | eqsstrid 4021 | 1 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2702 ⊆ wss 3939 ⟨cop 4630 {copab 5205 × cxp 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5206 df-xp 5678 |
This theorem is referenced by: opabex2 8059 erlval 33021 uspgropssxp 47318 |
Copyright terms: Public domain | W3C validator |