![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabssxpd | Structured version Visualization version GIF version |
Description: An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 8043. (Contributed by AV, 26-Nov-2021.) |
Ref | Expression |
---|---|
opabssxpd.x | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
opabssxpd.y | ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
Ref | Expression |
---|---|
opabssxpd | ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5212 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} | |
2 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 = ⟨𝑥, 𝑦⟩) | |
3 | opabssxpd.x | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
4 | opabssxpd.y | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) | |
5 | 3, 4 | opelxpd 5716 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) |
6 | 5 | adantrl 715 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) |
7 | 2, 6 | eqeltrd 2834 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 ∈ (𝐴 × 𝐵)) |
8 | 7 | ex 414 | . . . 4 ⊢ (𝜑 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
9 | 8 | exlimdvv 1938 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
10 | 9 | abssdv 4066 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} ⊆ (𝐴 × 𝐵)) |
11 | 1, 10 | eqsstrid 4031 | 1 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ⊆ wss 3949 ⟨cop 4635 {copab 5211 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-xp 5683 |
This theorem is referenced by: opabex2 8043 uspgropssxp 46522 |
Copyright terms: Public domain | W3C validator |