MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabssxpd Structured version   Visualization version   GIF version

Theorem opabssxpd 5633
Description: An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 7883. (Contributed by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
opabssxpd.x ((𝜑𝜓) → 𝑥𝐴)
opabssxpd.y ((𝜑𝜓) → 𝑦𝐵)
Assertion
Ref Expression
opabssxpd (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem opabssxpd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5141 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
2 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 = ⟨𝑥, 𝑦⟩)
3 opabssxpd.x . . . . . . . 8 ((𝜑𝜓) → 𝑥𝐴)
4 opabssxpd.y . . . . . . . 8 ((𝜑𝜓) → 𝑦𝐵)
53, 4opelxpd 5626 . . . . . . 7 ((𝜑𝜓) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
65adantrl 712 . . . . . 6 ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
72, 6eqeltrd 2840 . . . . 5 ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 ∈ (𝐴 × 𝐵))
87ex 412 . . . 4 (𝜑 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵)))
98exlimdvv 1940 . . 3 (𝜑 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵)))
109abssdv 4006 . 2 (𝜑 → {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} ⊆ (𝐴 × 𝐵))
111, 10eqsstrid 3973 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1785  wcel 2109  {cab 2716  wss 3891  cop 4572  {copab 5140   × cxp 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-opab 5141  df-xp 5594
This theorem is referenced by:  opabex2  7883  uspgropssxp  45258
  Copyright terms: Public domain W3C validator