MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabssxpd Structured version   Visualization version   GIF version

Theorem opabssxpd 5645
Description: An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 7929. (Contributed by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
opabssxpd.x ((𝜑𝜓) → 𝑥𝐴)
opabssxpd.y ((𝜑𝜓) → 𝑦𝐵)
Assertion
Ref Expression
opabssxpd (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem opabssxpd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5144 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
2 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 = ⟨𝑥, 𝑦⟩)
3 opabssxpd.x . . . . . . . 8 ((𝜑𝜓) → 𝑥𝐴)
4 opabssxpd.y . . . . . . . 8 ((𝜑𝜓) → 𝑦𝐵)
53, 4opelxpd 5638 . . . . . . 7 ((𝜑𝜓) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
65adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
72, 6eqeltrd 2837 . . . . 5 ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 ∈ (𝐴 × 𝐵))
87ex 414 . . . 4 (𝜑 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵)))
98exlimdvv 1935 . . 3 (𝜑 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵)))
109abssdv 4007 . 2 (𝜑 → {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} ⊆ (𝐴 × 𝐵))
111, 10eqsstrid 3974 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wex 1779  wcel 2104  {cab 2713  wss 3892  cop 4571  {copab 5143   × cxp 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-opab 5144  df-xp 5606
This theorem is referenced by:  opabex2  7929  uspgropssxp  45364
  Copyright terms: Public domain W3C validator