MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabssxpd Structured version   Visualization version   GIF version

Theorem opabssxpd 5747
Description: An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 8098. (Contributed by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
opabssxpd.x ((𝜑𝜓) → 𝑥𝐴)
opabssxpd.y ((𝜑𝜓) → 𝑦𝐵)
Assertion
Ref Expression
opabssxpd (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem opabssxpd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5229 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
2 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 = ⟨𝑥, 𝑦⟩)
3 opabssxpd.x . . . . . . . 8 ((𝜑𝜓) → 𝑥𝐴)
4 opabssxpd.y . . . . . . . 8 ((𝜑𝜓) → 𝑦𝐵)
53, 4opelxpd 5739 . . . . . . 7 ((𝜑𝜓) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
65adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
72, 6eqeltrd 2844 . . . . 5 ((𝜑 ∧ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) → 𝑧 ∈ (𝐴 × 𝐵))
87ex 412 . . . 4 (𝜑 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵)))
98exlimdvv 1933 . . 3 (𝜑 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵)))
109abssdv 4091 . 2 (𝜑 → {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} ⊆ (𝐴 × 𝐵))
111, 10eqsstrid 4057 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wss 3976  cop 4654  {copab 5228   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706
This theorem is referenced by:  opabex2  8098  erlval  33230  uspgropssxp  47867
  Copyright terms: Public domain W3C validator