| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabssxpd | Structured version Visualization version GIF version | ||
| Description: An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 8056. (Contributed by AV, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| opabssxpd.x | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
| opabssxpd.y | ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| opabssxpd | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 5182 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 2 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)) → 𝑧 = 〈𝑥, 𝑦〉) | |
| 3 | opabssxpd.x | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
| 4 | opabssxpd.y | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) | |
| 5 | 3, 4 | opelxpd 5693 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
| 6 | 5 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
| 7 | 2, 6 | eqeltrd 2834 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)) → 𝑧 ∈ (𝐴 × 𝐵)) |
| 8 | 7 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
| 9 | 8 | exlimdvv 1934 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
| 10 | 9 | abssdv 4043 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} ⊆ (𝐴 × 𝐵)) |
| 11 | 1, 10 | eqsstrid 3997 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ⊆ wss 3926 〈cop 4607 {copab 5181 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: opabex2 8056 erlval 33253 uspgropssxp 48119 |
| Copyright terms: Public domain | W3C validator |