| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabssxpd | Structured version Visualization version GIF version | ||
| Description: An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 7989. (Contributed by AV, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| opabssxpd.x | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
| opabssxpd.y | ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| opabssxpd | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 5154 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 2 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)) → 𝑧 = 〈𝑥, 𝑦〉) | |
| 3 | opabssxpd.x | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
| 4 | opabssxpd.y | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) | |
| 5 | 3, 4 | opelxpd 5655 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
| 6 | 5 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
| 7 | 2, 6 | eqeltrd 2831 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)) → 𝑧 ∈ (𝐴 × 𝐵)) |
| 8 | 7 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
| 9 | 8 | exlimdvv 1935 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
| 10 | 9 | abssdv 4019 | . 2 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} ⊆ (𝐴 × 𝐵)) |
| 11 | 1, 10 | eqsstrid 3973 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ⊆ wss 3902 〈cop 4582 {copab 5153 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: opabex2 7989 erlval 33223 uspgropssxp 48181 |
| Copyright terms: Public domain | W3C validator |