MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq1d Structured version   Visualization version   GIF version

Theorem oteq1d 4637
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
oteq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
oteq1d (𝜑 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)

Proof of Theorem oteq1d
StepHypRef Expression
1 oteq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 oteq1 4634 . 2 (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
31, 2syl 17 1 (𝜑 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  cotp 4407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-ot 4408
This theorem is referenced by:  oteq123d  4640  msrfval  31976  msrid  31984  elmsta  31987  mthmpps  32021  hdmapfval  37897
  Copyright terms: Public domain W3C validator