![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteq3 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq3 | ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4874 | . 2 ⊢ (𝐴 = 𝐵 → ⟨⟨𝐶, 𝐷⟩, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵⟩) | |
2 | df-ot 4637 | . 2 ⊢ ⟨𝐶, 𝐷, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐴⟩ | |
3 | df-ot 4637 | . 2 ⊢ ⟨𝐶, 𝐷, 𝐵⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵⟩ | |
4 | 1, 2, 3 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⟨cop 4634 ⟨cotp 4636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 |
This theorem is referenced by: oteq3d 4887 otsndisj 5519 otiunsndisj 5520 xpord3pred 8135 efgi0 19583 efgi1 19584 mapdhcl 40587 mapdh6dN 40599 mapdh8 40648 mapdh9a 40649 mapdh9aOLDN 40650 hdmap1l6d 40673 hdmapval 40688 hdmapval2 40692 hdmapval3N 40698 otiunsndisjX 45974 |
Copyright terms: Public domain | W3C validator |