![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteq3 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq3 | ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4875 | . 2 ⊢ (𝐴 = 𝐵 → ⟨⟨𝐶, 𝐷⟩, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵⟩) | |
2 | df-ot 4638 | . 2 ⊢ ⟨𝐶, 𝐷, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐴⟩ | |
3 | df-ot 4638 | . 2 ⊢ ⟨𝐶, 𝐷, 𝐵⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵⟩ | |
4 | 1, 2, 3 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⟨cop 4635 ⟨cotp 4637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 |
This theorem is referenced by: oteq3d 4888 otsndisj 5520 otiunsndisj 5521 xpord3pred 8138 efgi0 19588 efgi1 19589 mapdhcl 40598 mapdh6dN 40610 mapdh8 40659 mapdh9a 40660 mapdh9aOLDN 40661 hdmap1l6d 40684 hdmapval 40699 hdmapval2 40703 hdmapval3N 40709 otiunsndisjX 45987 |
Copyright terms: Public domain | W3C validator |