| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oteq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| oteq3 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 4850 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐶, 𝐷〉, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐵〉) | |
| 2 | df-ot 4610 | . 2 ⊢ 〈𝐶, 𝐷, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐴〉 | |
| 3 | df-ot 4610 | . 2 ⊢ 〈𝐶, 𝐷, 𝐵〉 = 〈〈𝐶, 𝐷〉, 𝐵〉 | |
| 4 | 1, 2, 3 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4607 〈cotp 4609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 |
| This theorem is referenced by: oteq3d 4863 otsndisj 5494 otiunsndisj 5495 xpord3pred 8151 efgi0 19701 efgi1 19702 mapdhcl 41746 mapdh6dN 41758 mapdh8 41807 mapdh9a 41808 mapdh9aOLDN 41809 hdmap1l6d 41832 hdmapval 41847 hdmapval2 41851 hdmapval3N 41857 otiunsndisjX 47308 |
| Copyright terms: Public domain | W3C validator |