| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oteq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| oteq3 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 4841 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐶, 𝐷〉, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐵〉) | |
| 2 | df-ot 4601 | . 2 ⊢ 〈𝐶, 𝐷, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐴〉 | |
| 3 | df-ot 4601 | . 2 ⊢ 〈𝐶, 𝐷, 𝐵〉 = 〈〈𝐶, 𝐷〉, 𝐵〉 | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4598 〈cotp 4600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 |
| This theorem is referenced by: oteq3d 4854 otsndisj 5482 otiunsndisj 5483 xpord3pred 8134 efgi0 19657 efgi1 19658 mapdhcl 41728 mapdh6dN 41740 mapdh8 41789 mapdh9a 41790 mapdh9aOLDN 41791 hdmap1l6d 41814 hdmapval 41829 hdmapval2 41833 hdmapval3N 41839 otiunsndisjX 47284 |
| Copyright terms: Public domain | W3C validator |