Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteq3 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq3 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4802 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐶, 𝐷〉, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐵〉) | |
2 | df-ot 4567 | . 2 ⊢ 〈𝐶, 𝐷, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐴〉 | |
3 | df-ot 4567 | . 2 ⊢ 〈𝐶, 𝐷, 𝐵〉 = 〈〈𝐶, 𝐷〉, 𝐵〉 | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cop 4564 〈cotp 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 |
This theorem is referenced by: oteq3d 4815 otsndisj 5427 otiunsndisj 5428 efgi0 19241 efgi1 19242 mapdhcl 39668 mapdh6dN 39680 mapdh8 39729 mapdh9a 39730 mapdh9aOLDN 39731 hdmap1l6d 39754 hdmapval 39769 hdmapval2 39773 hdmapval3N 39779 otiunsndisjX 44658 |
Copyright terms: Public domain | W3C validator |