| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oteq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| oteq3 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 4834 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐶, 𝐷〉, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐵〉) | |
| 2 | df-ot 4594 | . 2 ⊢ 〈𝐶, 𝐷, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐴〉 | |
| 3 | df-ot 4594 | . 2 ⊢ 〈𝐶, 𝐷, 𝐵〉 = 〈〈𝐶, 𝐷〉, 𝐵〉 | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4591 〈cotp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-ot 4594 |
| This theorem is referenced by: oteq3d 4847 otsndisj 5474 otiunsndisj 5475 xpord3pred 8108 efgi0 19634 efgi1 19635 mapdhcl 41714 mapdh6dN 41726 mapdh8 41775 mapdh9a 41776 mapdh9aOLDN 41777 hdmap1l6d 41800 hdmapval 41815 hdmapval2 41819 hdmapval3N 41825 otiunsndisjX 47273 |
| Copyright terms: Public domain | W3C validator |