![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteq3 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq3 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4594 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐶, 𝐷〉, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐵〉) | |
2 | df-ot 4377 | . 2 ⊢ 〈𝐶, 𝐷, 𝐴〉 = 〈〈𝐶, 𝐷〉, 𝐴〉 | |
3 | df-ot 4377 | . 2 ⊢ 〈𝐶, 𝐷, 𝐵〉 = 〈〈𝐶, 𝐷〉, 𝐵〉 | |
4 | 1, 2, 3 | 3eqtr4g 2858 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 〈cop 4374 〈cotp 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-ot 4377 |
This theorem is referenced by: oteq3d 4607 otsndisj 5175 otiunsndisj 5176 efgi0 18446 efgi1 18447 mapdhcl 37748 mapdh6dN 37760 mapdh8 37809 mapdh9a 37810 mapdh9aOLDN 37811 hdmap1l6d 37834 hdmapval 37849 hdmapval2 37853 hdmapval3N 37859 otiunsndisjX 42134 |
Copyright terms: Public domain | W3C validator |