MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq3 Structured version   Visualization version   GIF version

Theorem oteq3 4884
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq3 (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)

Proof of Theorem oteq3
StepHypRef Expression
1 opeq2 4874 . 2 (𝐴 = 𝐵 → ⟨⟨𝐶, 𝐷⟩, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵⟩)
2 df-ot 4637 . 2 𝐶, 𝐷, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐴
3 df-ot 4637 . 2 𝐶, 𝐷, 𝐵⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵
41, 2, 33eqtr4g 2798 1 (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  cop 4634  cotp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637
This theorem is referenced by:  oteq3d  4887  otsndisj  5519  otiunsndisj  5520  xpord3pred  8135  efgi0  19583  efgi1  19584  mapdhcl  40587  mapdh6dN  40599  mapdh8  40648  mapdh9a  40649  mapdh9aOLDN  40650  hdmap1l6d  40673  hdmapval  40688  hdmapval2  40692  hdmapval3N  40698  otiunsndisjX  45974
  Copyright terms: Public domain W3C validator