MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq123d Structured version   Visualization version   GIF version

Theorem oteq123d 4813
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
oteq1d.1 (𝜑𝐴 = 𝐵)
oteq123d.2 (𝜑𝐶 = 𝐷)
oteq123d.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
oteq123d (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)

Proof of Theorem oteq123d
StepHypRef Expression
1 oteq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21oteq1d 4810 . 2 (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐶, 𝐸⟩)
3 oteq123d.2 . . 3 (𝜑𝐶 = 𝐷)
43oteq2d 4811 . 2 (𝜑 → ⟨𝐵, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐸⟩)
5 oteq123d.3 . . 3 (𝜑𝐸 = 𝐹)
65oteq3d 4812 . 2 (𝜑 → ⟨𝐵, 𝐷, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
72, 4, 63eqtrd 2782 1 (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  cotp 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-ext 2709
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3071  df-v 3422  df-dif 3883  df-un 3885  df-nul 4252  df-if 4454  df-sn 4556  df-pr 4558  df-op 4562  df-ot 4564
This theorem is referenced by:  idaval  17588  coaval  17598  matval  21332  msrval  33236  mclsax  33267  elmpps  33271  mthmpps  33280  ackval0012  45736  ackval1012  45737  ackval2012  45738  ackval3012  45739  mndtcval  46065
  Copyright terms: Public domain W3C validator