![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteq123d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oteq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
oteq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
Ref | Expression |
---|---|
oteq123d | ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | oteq1d 4877 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐶, 𝐸〉) |
3 | oteq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | oteq2d 4878 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐸〉) |
5 | oteq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
6 | 5 | oteq3d 4879 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐷, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
7 | 2, 4, 6 | 3eqtrd 2768 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 〈cotp 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-ot 4629 |
This theorem is referenced by: idaval 18010 coaval 18020 matval 22233 msrval 35018 mclsax 35049 elmpps 35053 mthmpps 35062 ackval0012 47563 ackval1012 47564 ackval2012 47565 ackval3012 47566 mndtcval 47893 |
Copyright terms: Public domain | W3C validator |