| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oteq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| oteq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| oteq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| oteq123d | ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oteq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | oteq1d 4832 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐶, 𝐸〉) |
| 3 | oteq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | oteq2d 4833 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐸〉) |
| 5 | oteq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
| 6 | 5 | oteq3d 4834 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐷, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
| 7 | 2, 4, 6 | 3eqtrd 2770 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈cotp 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-ot 4580 |
| This theorem is referenced by: idaval 17960 coaval 17970 matval 22321 msrval 35574 mclsax 35605 elmpps 35609 mthmpps 35618 ackval0012 48721 ackval1012 48722 ackval2012 48723 ackval3012 48724 termcarweu 49560 mndtcval 49611 |
| Copyright terms: Public domain | W3C validator |