![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteq123d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oteq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
oteq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
Ref | Expression |
---|---|
oteq123d | ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | oteq1d 4909 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐶, 𝐸〉) |
3 | oteq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | oteq2d 4910 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐸〉) |
5 | oteq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
6 | 5 | oteq3d 4911 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐷, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
7 | 2, 4, 6 | 3eqtrd 2784 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 〈cotp 4656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 |
This theorem is referenced by: idaval 18125 coaval 18135 matval 22436 msrval 35506 mclsax 35537 elmpps 35541 mthmpps 35550 ackval0012 48423 ackval1012 48424 ackval2012 48425 ackval3012 48426 mndtcval 48752 |
Copyright terms: Public domain | W3C validator |