MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq123d Structured version   Visualization version   GIF version

Theorem oteq123d 4841
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
oteq1d.1 (𝜑𝐴 = 𝐵)
oteq123d.2 (𝜑𝐶 = 𝐷)
oteq123d.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
oteq123d (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)

Proof of Theorem oteq123d
StepHypRef Expression
1 oteq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21oteq1d 4838 . 2 (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐶, 𝐸⟩)
3 oteq123d.2 . . 3 (𝜑𝐶 = 𝐷)
43oteq2d 4839 . 2 (𝜑 → ⟨𝐵, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐸⟩)
5 oteq123d.3 . . 3 (𝜑𝐸 = 𝐹)
65oteq3d 4840 . 2 (𝜑 → ⟨𝐵, 𝐷, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
72, 4, 63eqtrd 2772 1 (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cotp 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586
This theorem is referenced by:  idaval  17973  coaval  17983  matval  22346  msrval  35654  mclsax  35685  elmpps  35689  mthmpps  35698  ackval0012  48851  ackval1012  48852  ackval2012  48853  ackval3012  48854  termcarweu  49689  mndtcval  49740
  Copyright terms: Public domain W3C validator