Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteq123d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oteq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
oteq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
Ref | Expression |
---|---|
oteq123d | ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | oteq1d 4813 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐶, 𝐸〉) |
3 | oteq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | oteq2d 4814 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐸〉) |
5 | oteq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
6 | 5 | oteq3d 4815 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐷, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
7 | 2, 4, 6 | 3eqtrd 2782 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cotp 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 |
This theorem is referenced by: idaval 17689 coaval 17699 matval 21468 msrval 33400 mclsax 33431 elmpps 33435 mthmpps 33444 ackval0012 45923 ackval1012 45924 ackval2012 45925 ackval3012 45926 mndtcval 46252 |
Copyright terms: Public domain | W3C validator |