MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq123d Structured version   Visualization version   GIF version

Theorem oteq123d 4888
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
oteq1d.1 (𝜑𝐴 = 𝐵)
oteq123d.2 (𝜑𝐶 = 𝐷)
oteq123d.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
oteq123d (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)

Proof of Theorem oteq123d
StepHypRef Expression
1 oteq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21oteq1d 4885 . 2 (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐶, 𝐸⟩)
3 oteq123d.2 . . 3 (𝜑𝐶 = 𝐷)
43oteq2d 4886 . 2 (𝜑 → ⟨𝐵, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐸⟩)
5 oteq123d.3 . . 3 (𝜑𝐸 = 𝐹)
65oteq3d 4887 . 2 (𝜑 → ⟨𝐵, 𝐷, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
72, 4, 63eqtrd 2775 1 (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cotp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637
This theorem is referenced by:  idaval  18013  coaval  18023  matval  22132  msrval  34828  mclsax  34859  elmpps  34863  mthmpps  34872  ackval0012  47463  ackval1012  47464  ackval2012  47465  ackval3012  47466  mndtcval  47793
  Copyright terms: Public domain W3C validator