MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq123d Structured version   Visualization version   GIF version

Theorem oteq123d 4816
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
oteq1d.1 (𝜑𝐴 = 𝐵)
oteq123d.2 (𝜑𝐶 = 𝐷)
oteq123d.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
oteq123d (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)

Proof of Theorem oteq123d
StepHypRef Expression
1 oteq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21oteq1d 4813 . 2 (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐶, 𝐸⟩)
3 oteq123d.2 . . 3 (𝜑𝐶 = 𝐷)
43oteq2d 4814 . 2 (𝜑 → ⟨𝐵, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐸⟩)
5 oteq123d.3 . . 3 (𝜑𝐸 = 𝐹)
65oteq3d 4815 . 2 (𝜑 → ⟨𝐵, 𝐷, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
72, 4, 63eqtrd 2782 1 (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cotp 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567
This theorem is referenced by:  idaval  17689  coaval  17699  matval  21468  msrval  33400  mclsax  33431  elmpps  33435  mthmpps  33444  ackval0012  45923  ackval1012  45924  ackval2012  45925  ackval3012  45926  mndtcval  46252
  Copyright terms: Public domain W3C validator