Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrid Structured version   Visualization version   GIF version

Theorem msrid 32796
Description: The reduct of a statement is itself. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
msrid (𝑋𝑆 → (𝑅𝑋) = 𝑋)

Proof of Theorem msrid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 (mPreSt‘𝑇) = (mPreSt‘𝑇)
2 mstaval.r . . . . 5 𝑅 = (mStRed‘𝑇)
31, 2msrf 32793 . . . 4 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇)
4 ffn 6517 . . . 4 (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇))
5 fvelrnb 6729 . . . 4 (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ ran 𝑅 ↔ ∃𝑠 ∈ (mPreSt‘𝑇)(𝑅𝑠) = 𝑋))
63, 4, 5mp2b 10 . . 3 (𝑋 ∈ ran 𝑅 ↔ ∃𝑠 ∈ (mPreSt‘𝑇)(𝑅𝑠) = 𝑋)
71mpst123 32791 . . . . . . . . . . 11 (𝑠 ∈ (mPreSt‘𝑇) → 𝑠 = ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
87fveq2d 6677 . . . . . . . . . 10 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅𝑠) = (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
9 id 22 . . . . . . . . . . . 12 (𝑠 ∈ (mPreSt‘𝑇) → 𝑠 ∈ (mPreSt‘𝑇))
107, 9eqeltrrd 2917 . . . . . . . . . . 11 (𝑠 ∈ (mPreSt‘𝑇) → ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇))
11 eqid 2824 . . . . . . . . . . . 12 (mVars‘𝑇) = (mVars‘𝑇)
12 eqid 2824 . . . . . . . . . . . 12 ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) = ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))
1311, 1, 2, 12msrval 32789 . . . . . . . . . . 11 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1410, 13syl 17 . . . . . . . . . 10 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
158, 14eqtrd 2859 . . . . . . . . 9 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅𝑠) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
163ffvelrni 6853 . . . . . . . . 9 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅𝑠) ∈ (mPreSt‘𝑇))
1715, 16eqeltrrd 2917 . . . . . . . 8 (𝑠 ∈ (mPreSt‘𝑇) → ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇))
1811, 1, 2, 12msrval 32789 . . . . . . . 8 (⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨(((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1917, 18syl 17 . . . . . . 7 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨(((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
20 inass 4199 . . . . . . . . . 10 (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ (( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
21 inidm 4198 . . . . . . . . . . 11 (( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))
2221ineq2i 4189 . . . . . . . . . 10 ((1st ‘(1st𝑠)) ∩ (( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2320, 22eqtri 2847 . . . . . . . . 9 (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2423a1i 11 . . . . . . . 8 (𝑠 ∈ (mPreSt‘𝑇) → (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
2524oteq1d 4818 . . . . . . 7 (𝑠 ∈ (mPreSt‘𝑇) → ⟨(((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
2619, 25eqtrd 2859 . . . . . 6 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
2715fveq2d 6677 . . . . . 6 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘(𝑅𝑠)) = (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
2826, 27, 153eqtr4d 2869 . . . . 5 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘(𝑅𝑠)) = (𝑅𝑠))
29 fveq2 6673 . . . . . 6 ((𝑅𝑠) = 𝑋 → (𝑅‘(𝑅𝑠)) = (𝑅𝑋))
30 id 22 . . . . . 6 ((𝑅𝑠) = 𝑋 → (𝑅𝑠) = 𝑋)
3129, 30eqeq12d 2840 . . . . 5 ((𝑅𝑠) = 𝑋 → ((𝑅‘(𝑅𝑠)) = (𝑅𝑠) ↔ (𝑅𝑋) = 𝑋))
3228, 31syl5ibcom 247 . . . 4 (𝑠 ∈ (mPreSt‘𝑇) → ((𝑅𝑠) = 𝑋 → (𝑅𝑋) = 𝑋))
3332rexlimiv 3283 . . 3 (∃𝑠 ∈ (mPreSt‘𝑇)(𝑅𝑠) = 𝑋 → (𝑅𝑋) = 𝑋)
346, 33sylbi 219 . 2 (𝑋 ∈ ran 𝑅 → (𝑅𝑋) = 𝑋)
35 mstaval.s . . 3 𝑆 = (mStat‘𝑇)
362, 35mstaval 32795 . 2 𝑆 = ran 𝑅
3734, 36eleq2s 2934 1 (𝑋𝑆 → (𝑅𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1536  wcel 2113  wrex 3142  cun 3937  cin 3938  {csn 4570  cotp 4578   cuni 4841   × cxp 5556  ran crn 5559  cima 5561   Fn wfn 6353  wf 6354  cfv 6358  1st c1st 7690  2nd c2nd 7691  mVarscmvrs 32720  mPreStcmpst 32724  mStRedcmsr 32725  mStatcmsta 32726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-ot 4579  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-1st 7692  df-2nd 7693  df-mpst 32744  df-msr 32745  df-msta 32746
This theorem is referenced by:  elmsta  32799
  Copyright terms: Public domain W3C validator