Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrid Structured version   Visualization version   GIF version

Theorem msrid 31988
Description: The reduct of a statement is itself. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
msrid (𝑋𝑆 → (𝑅𝑋) = 𝑋)

Proof of Theorem msrid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . . 5 (mPreSt‘𝑇) = (mPreSt‘𝑇)
2 mstaval.r . . . . 5 𝑅 = (mStRed‘𝑇)
31, 2msrf 31985 . . . 4 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇)
4 ffn 6278 . . . 4 (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇))
5 fvelrnb 6490 . . . 4 (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ ran 𝑅 ↔ ∃𝑠 ∈ (mPreSt‘𝑇)(𝑅𝑠) = 𝑋))
63, 4, 5mp2b 10 . . 3 (𝑋 ∈ ran 𝑅 ↔ ∃𝑠 ∈ (mPreSt‘𝑇)(𝑅𝑠) = 𝑋)
71mpst123 31983 . . . . . . . . . . 11 (𝑠 ∈ (mPreSt‘𝑇) → 𝑠 = ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
87fveq2d 6437 . . . . . . . . . 10 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅𝑠) = (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
9 id 22 . . . . . . . . . . . 12 (𝑠 ∈ (mPreSt‘𝑇) → 𝑠 ∈ (mPreSt‘𝑇))
107, 9eqeltrrd 2907 . . . . . . . . . . 11 (𝑠 ∈ (mPreSt‘𝑇) → ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇))
11 eqid 2825 . . . . . . . . . . . 12 (mVars‘𝑇) = (mVars‘𝑇)
12 eqid 2825 . . . . . . . . . . . 12 ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) = ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))
1311, 1, 2, 12msrval 31981 . . . . . . . . . . 11 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1410, 13syl 17 . . . . . . . . . 10 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
158, 14eqtrd 2861 . . . . . . . . 9 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅𝑠) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
163ffvelrni 6607 . . . . . . . . 9 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅𝑠) ∈ (mPreSt‘𝑇))
1715, 16eqeltrrd 2907 . . . . . . . 8 (𝑠 ∈ (mPreSt‘𝑇) → ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇))
1811, 1, 2, 12msrval 31981 . . . . . . . 8 (⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨(((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1917, 18syl 17 . . . . . . 7 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨(((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
20 inass 4048 . . . . . . . . . 10 (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ (( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
21 inidm 4047 . . . . . . . . . . 11 (( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))
2221ineq2i 4038 . . . . . . . . . 10 ((1st ‘(1st𝑠)) ∩ (( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2320, 22eqtri 2849 . . . . . . . . 9 (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2423a1i 11 . . . . . . . 8 (𝑠 ∈ (mPreSt‘𝑇) → (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
2524oteq1d 4635 . . . . . . 7 (𝑠 ∈ (mPreSt‘𝑇) → ⟨(((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
2619, 25eqtrd 2861 . . . . . 6 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
2715fveq2d 6437 . . . . . 6 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘(𝑅𝑠)) = (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
2826, 27, 153eqtr4d 2871 . . . . 5 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘(𝑅𝑠)) = (𝑅𝑠))
29 fveq2 6433 . . . . . 6 ((𝑅𝑠) = 𝑋 → (𝑅‘(𝑅𝑠)) = (𝑅𝑋))
30 id 22 . . . . . 6 ((𝑅𝑠) = 𝑋 → (𝑅𝑠) = 𝑋)
3129, 30eqeq12d 2840 . . . . 5 ((𝑅𝑠) = 𝑋 → ((𝑅‘(𝑅𝑠)) = (𝑅𝑠) ↔ (𝑅𝑋) = 𝑋))
3228, 31syl5ibcom 237 . . . 4 (𝑠 ∈ (mPreSt‘𝑇) → ((𝑅𝑠) = 𝑋 → (𝑅𝑋) = 𝑋))
3332rexlimiv 3236 . . 3 (∃𝑠 ∈ (mPreSt‘𝑇)(𝑅𝑠) = 𝑋 → (𝑅𝑋) = 𝑋)
346, 33sylbi 209 . 2 (𝑋 ∈ ran 𝑅 → (𝑅𝑋) = 𝑋)
35 mstaval.s . . 3 𝑆 = (mStat‘𝑇)
362, 35mstaval 31987 . 2 𝑆 = ran 𝑅
3734, 36eleq2s 2924 1 (𝑋𝑆 → (𝑅𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166  wrex 3118  cun 3796  cin 3797  {csn 4397  cotp 4405   cuni 4658   × cxp 5340  ran crn 5343  cima 5345   Fn wfn 6118  wf 6119  cfv 6123  1st c1st 7426  2nd c2nd 7427  mVarscmvrs 31912  mPreStcmpst 31916  mStRedcmsr 31917  mStatcmsta 31918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-ot 4406  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-1st 7428  df-2nd 7429  df-mpst 31936  df-msr 31937  df-msta 31938
This theorem is referenced by:  elmsta  31991
  Copyright terms: Public domain W3C validator