Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrid Structured version   Visualization version   GIF version

Theorem msrid 33407
Description: The reduct of a statement is itself. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
msrid (𝑋𝑆 → (𝑅𝑋) = 𝑋)

Proof of Theorem msrid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (mPreSt‘𝑇) = (mPreSt‘𝑇)
2 mstaval.r . . . . 5 𝑅 = (mStRed‘𝑇)
31, 2msrf 33404 . . . 4 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇)
4 ffn 6584 . . . 4 (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇))
5 fvelrnb 6812 . . . 4 (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ ran 𝑅 ↔ ∃𝑠 ∈ (mPreSt‘𝑇)(𝑅𝑠) = 𝑋))
63, 4, 5mp2b 10 . . 3 (𝑋 ∈ ran 𝑅 ↔ ∃𝑠 ∈ (mPreSt‘𝑇)(𝑅𝑠) = 𝑋)
71mpst123 33402 . . . . . . . . . . 11 (𝑠 ∈ (mPreSt‘𝑇) → 𝑠 = ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
87fveq2d 6760 . . . . . . . . . 10 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅𝑠) = (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
9 id 22 . . . . . . . . . . . 12 (𝑠 ∈ (mPreSt‘𝑇) → 𝑠 ∈ (mPreSt‘𝑇))
107, 9eqeltrrd 2840 . . . . . . . . . . 11 (𝑠 ∈ (mPreSt‘𝑇) → ⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇))
11 eqid 2738 . . . . . . . . . . . 12 (mVars‘𝑇) = (mVars‘𝑇)
12 eqid 2738 . . . . . . . . . . . 12 ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) = ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))
1311, 1, 2, 12msrval 33400 . . . . . . . . . . 11 (⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1410, 13syl 17 . . . . . . . . . 10 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑠)), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
158, 14eqtrd 2778 . . . . . . . . 9 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅𝑠) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
163ffvelrni 6942 . . . . . . . . 9 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅𝑠) ∈ (mPreSt‘𝑇))
1715, 16eqeltrrd 2840 . . . . . . . 8 (𝑠 ∈ (mPreSt‘𝑇) → ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇))
1811, 1, 2, 12msrval 33400 . . . . . . . 8 (⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨(((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
1917, 18syl 17 . . . . . . 7 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨(((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
20 inass 4150 . . . . . . . . . 10 (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ (( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
21 inidm 4149 . . . . . . . . . . 11 (( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))
2221ineq2i 4140 . . . . . . . . . 10 ((1st ‘(1st𝑠)) ∩ (( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2320, 22eqtri 2766 . . . . . . . . 9 (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)}))))
2423a1i 11 . . . . . . . 8 (𝑠 ∈ (mPreSt‘𝑇) → (((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) = ((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))))
2524oteq1d 4813 . . . . . . 7 (𝑠 ∈ (mPreSt‘𝑇) → ⟨(((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩ = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
2619, 25eqtrd 2778 . . . . . 6 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩) = ⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩)
2715fveq2d 6760 . . . . . 6 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘(𝑅𝑠)) = (𝑅‘⟨((1st ‘(1st𝑠)) ∩ ( ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})) × ((mVars‘𝑇) “ ((2nd ‘(1st𝑠)) ∪ {(2nd𝑠)})))), (2nd ‘(1st𝑠)), (2nd𝑠)⟩))
2826, 27, 153eqtr4d 2788 . . . . 5 (𝑠 ∈ (mPreSt‘𝑇) → (𝑅‘(𝑅𝑠)) = (𝑅𝑠))
29 fveq2 6756 . . . . . 6 ((𝑅𝑠) = 𝑋 → (𝑅‘(𝑅𝑠)) = (𝑅𝑋))
30 id 22 . . . . . 6 ((𝑅𝑠) = 𝑋 → (𝑅𝑠) = 𝑋)
3129, 30eqeq12d 2754 . . . . 5 ((𝑅𝑠) = 𝑋 → ((𝑅‘(𝑅𝑠)) = (𝑅𝑠) ↔ (𝑅𝑋) = 𝑋))
3228, 31syl5ibcom 244 . . . 4 (𝑠 ∈ (mPreSt‘𝑇) → ((𝑅𝑠) = 𝑋 → (𝑅𝑋) = 𝑋))
3332rexlimiv 3208 . . 3 (∃𝑠 ∈ (mPreSt‘𝑇)(𝑅𝑠) = 𝑋 → (𝑅𝑋) = 𝑋)
346, 33sylbi 216 . 2 (𝑋 ∈ ran 𝑅 → (𝑅𝑋) = 𝑋)
35 mstaval.s . . 3 𝑆 = (mStat‘𝑇)
362, 35mstaval 33406 . 2 𝑆 = ran 𝑅
3734, 36eleq2s 2857 1 (𝑋𝑆 → (𝑅𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wrex 3064  cun 3881  cin 3882  {csn 4558  cotp 4566   cuni 4836   × cxp 5578  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  1st c1st 7802  2nd c2nd 7803  mVarscmvrs 33331  mPreStcmpst 33335  mStRedcmsr 33336  mStatcmsta 33337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1st 7804  df-2nd 7805  df-mpst 33355  df-msr 33356  df-msta 33357
This theorem is referenced by:  elmsta  33410
  Copyright terms: Public domain W3C validator