![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteq2d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
oteq2d | ⊢ (𝜑 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | oteq2 4882 | . 2 ⊢ (𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⟨cotp 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-ot 4636 |
This theorem is referenced by: oteq123d 4887 mapdh9a 40648 mapdh9aOLDN 40649 hdmap1eulem 40681 hdmap1eulemOLDN 40682 hdmapffval 40685 hdmapfval 40686 hdmapval2 40691 |
Copyright terms: Public domain | W3C validator |