| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oteq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| oteq2d | ⊢ (𝜑 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oteq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | oteq2 4830 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈cotp 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-ot 4580 |
| This theorem is referenced by: oteq123d 4835 mapdh9a 41828 mapdh9aOLDN 41829 hdmap1eulem 41861 hdmap1eulemOLDN 41862 hdmapffval 41865 hdmapfval 41866 hdmapval2 41871 |
| Copyright terms: Public domain | W3C validator |