![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteq1 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq1 | ⊢ (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4866 | . . 3 ⊢ (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩) | |
2 | 1 | opeq1d 4872 | . 2 ⊢ (𝐴 = 𝐵 → ⟨⟨𝐴, 𝐶⟩, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷⟩) |
3 | df-ot 4630 | . 2 ⊢ ⟨𝐴, 𝐶, 𝐷⟩ = ⟨⟨𝐴, 𝐶⟩, 𝐷⟩ | |
4 | df-ot 4630 | . 2 ⊢ ⟨𝐵, 𝐶, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷⟩ | |
5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⟨cop 4627 ⟨cotp 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-ot 4630 |
This theorem is referenced by: oteq1d 4878 otiunsndisj 5511 frxp3 8132 xpord3pred 8133 efgi 19635 efgtf 19638 efgtval 19639 mapdh9a 41163 mapdh9aOLDN 41164 hdmapval2 41206 otiunsndisjX 46532 |
Copyright terms: Public domain | W3C validator |