![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteq1 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq1 | ⊢ (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4872 | . . 3 ⊢ (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩) | |
2 | 1 | opeq1d 4878 | . 2 ⊢ (𝐴 = 𝐵 → ⟨⟨𝐴, 𝐶⟩, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷⟩) |
3 | df-ot 4636 | . 2 ⊢ ⟨𝐴, 𝐶, 𝐷⟩ = ⟨⟨𝐴, 𝐶⟩, 𝐷⟩ | |
4 | df-ot 4636 | . 2 ⊢ ⟨𝐵, 𝐶, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷⟩ | |
5 | 2, 3, 4 | 3eqtr4g 2797 | 1 ⊢ (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⟨cop 4633 ⟨cotp 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-ot 4636 |
This theorem is referenced by: oteq1d 4884 otiunsndisj 5519 frxp3 8133 xpord3pred 8134 efgi 19581 efgtf 19584 efgtval 19585 mapdh9a 40648 mapdh9aOLDN 40649 hdmapval2 40691 otiunsndisjX 45973 |
Copyright terms: Public domain | W3C validator |