Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteq1 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq1 | ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4816 | . . 3 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
2 | 1 | opeq1d 4822 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐴, 𝐶〉, 𝐷〉 = 〈〈𝐵, 𝐶〉, 𝐷〉) |
3 | df-ot 4581 | . 2 ⊢ 〈𝐴, 𝐶, 𝐷〉 = 〈〈𝐴, 𝐶〉, 𝐷〉 | |
4 | df-ot 4581 | . 2 ⊢ 〈𝐵, 𝐶, 𝐷〉 = 〈〈𝐵, 𝐶〉, 𝐷〉 | |
5 | 2, 3, 4 | 3eqtr4g 2801 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 〈cop 4578 〈cotp 4580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-ot 4581 |
This theorem is referenced by: oteq1d 4828 otiunsndisj 5458 efgi 19412 efgtf 19415 efgtval 19416 mapdh9a 40050 mapdh9aOLDN 40051 hdmapval2 40093 otiunsndisjX 45111 |
Copyright terms: Public domain | W3C validator |