MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq1 Structured version   Visualization version   GIF version

Theorem oteq1 4846
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq1 (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)

Proof of Theorem oteq1
StepHypRef Expression
1 opeq1 4837 . . 3 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
21opeq1d 4843 . 2 (𝐴 = 𝐵 → ⟨⟨𝐴, 𝐶⟩, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷⟩)
3 df-ot 4598 . 2 𝐴, 𝐶, 𝐷⟩ = ⟨⟨𝐴, 𝐶⟩, 𝐷
4 df-ot 4598 . 2 𝐵, 𝐶, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷
52, 3, 43eqtr4g 2789 1 (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cop 4595  cotp 4597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598
This theorem is referenced by:  oteq1d  4849  otiunsndisj  5480  frxp3  8130  xpord3pred  8131  efgi  19649  efgtf  19652  efgtval  19653  mapdh9a  41783  mapdh9aOLDN  41784  hdmapval2  41826  otiunsndisjX  47280
  Copyright terms: Public domain W3C validator