| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oteq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| oteq1 | ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4822 | . . 3 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 2 | 1 | opeq1d 4828 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐴, 𝐶〉, 𝐷〉 = 〈〈𝐵, 𝐶〉, 𝐷〉) |
| 3 | df-ot 4582 | . 2 ⊢ 〈𝐴, 𝐶, 𝐷〉 = 〈〈𝐴, 𝐶〉, 𝐷〉 | |
| 4 | df-ot 4582 | . 2 ⊢ 〈𝐵, 𝐶, 𝐷〉 = 〈〈𝐵, 𝐶〉, 𝐷〉 | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈cop 4579 〈cotp 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-ot 4582 |
| This theorem is referenced by: oteq1d 4834 otiunsndisj 5458 frxp3 8081 xpord3pred 8082 efgi 19631 efgtf 19634 efgtval 19635 mapdh9a 41836 mapdh9aOLDN 41837 hdmapval2 41879 otiunsndisjX 47318 |
| Copyright terms: Public domain | W3C validator |