Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmpps Structured version   Visualization version   GIF version

Theorem mthmpps 34871
Description: Given a theorem, there is an explicitly definable witnessing provable pre-statement for the provability of the theorem. (However, this pre-statement requires infinitely many disjoint variable conditions, which is sometimes inconvenient.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmpps.r 𝑅 = (mStRedβ€˜π‘‡)
mthmpps.j 𝐽 = (mPPStβ€˜π‘‡)
mthmpps.u π‘ˆ = (mThmβ€˜π‘‡)
mthmpps.d 𝐷 = (mDVβ€˜π‘‡)
mthmpps.v 𝑉 = (mVarsβ€˜π‘‡)
mthmpps.z 𝑍 = βˆͺ (𝑉 β€œ (𝐻 βˆͺ {𝐴}))
mthmpps.m 𝑀 = (𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍)))
Assertion
Ref Expression
mthmpps (𝑇 ∈ mFS β†’ (⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ ↔ (βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (π‘…β€˜βŸ¨π‘€, 𝐻, 𝐴⟩) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))))

Proof of Theorem mthmpps
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 mthmpps.m . . . . . . . 8 𝑀 = (𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍)))
2 mthmpps.u . . . . . . . . . . . . . 14 π‘ˆ = (mThmβ€˜π‘‡)
3 eqid 2730 . . . . . . . . . . . . . 14 (mPreStβ€˜π‘‡) = (mPreStβ€˜π‘‡)
42, 3mthmsta 34867 . . . . . . . . . . . . 13 π‘ˆ βŠ† (mPreStβ€˜π‘‡)
5 simpr 483 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ)
64, 5sselid 3979 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ ⟨𝐢, 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡))
7 mthmpps.d . . . . . . . . . . . . 13 𝐷 = (mDVβ€˜π‘‡)
8 eqid 2730 . . . . . . . . . . . . 13 (mExβ€˜π‘‡) = (mExβ€˜π‘‡)
97, 8, 3elmpst 34825 . . . . . . . . . . . 12 (⟨𝐢, 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡) ↔ ((𝐢 βŠ† 𝐷 ∧ ◑𝐢 = 𝐢) ∧ (𝐻 βŠ† (mExβ€˜π‘‡) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mExβ€˜π‘‡)))
106, 9sylib 217 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ ((𝐢 βŠ† 𝐷 ∧ ◑𝐢 = 𝐢) ∧ (𝐻 βŠ† (mExβ€˜π‘‡) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mExβ€˜π‘‡)))
1110simp1d 1140 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (𝐢 βŠ† 𝐷 ∧ ◑𝐢 = 𝐢))
1211simpld 493 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ 𝐢 βŠ† 𝐷)
13 difssd 4131 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (𝐷 βˆ– (𝑍 Γ— 𝑍)) βŠ† 𝐷)
1412, 13unssd 4185 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍))) βŠ† 𝐷)
151, 14eqsstrid 4029 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ 𝑀 βŠ† 𝐷)
1611simprd 494 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ ◑𝐢 = 𝐢)
17 cnvdif 6142 . . . . . . . . . . 11 β—‘(𝐷 βˆ– (𝑍 Γ— 𝑍)) = (◑𝐷 βˆ– β—‘(𝑍 Γ— 𝑍))
18 cnvdif 6142 . . . . . . . . . . . . . 14 β—‘(((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡)) βˆ– I ) = (β—‘((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡)) βˆ– β—‘ I )
19 cnvxp 6155 . . . . . . . . . . . . . . 15 β—‘((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡)) = ((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡))
20 cnvi 6140 . . . . . . . . . . . . . . 15 β—‘ I = I
2119, 20difeq12i 4119 . . . . . . . . . . . . . 14 (β—‘((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡)) βˆ– β—‘ I ) = (((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡)) βˆ– I )
2218, 21eqtri 2758 . . . . . . . . . . . . 13 β—‘(((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡)) βˆ– I ) = (((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡)) βˆ– I )
23 eqid 2730 . . . . . . . . . . . . . . 15 (mVRβ€˜π‘‡) = (mVRβ€˜π‘‡)
2423, 7mdvval 34793 . . . . . . . . . . . . . 14 𝐷 = (((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡)) βˆ– I )
2524cnveqi 5873 . . . . . . . . . . . . 13 ◑𝐷 = β—‘(((mVRβ€˜π‘‡) Γ— (mVRβ€˜π‘‡)) βˆ– I )
2622, 25, 243eqtr4i 2768 . . . . . . . . . . . 12 ◑𝐷 = 𝐷
27 cnvxp 6155 . . . . . . . . . . . 12 β—‘(𝑍 Γ— 𝑍) = (𝑍 Γ— 𝑍)
2826, 27difeq12i 4119 . . . . . . . . . . 11 (◑𝐷 βˆ– β—‘(𝑍 Γ— 𝑍)) = (𝐷 βˆ– (𝑍 Γ— 𝑍))
2917, 28eqtri 2758 . . . . . . . . . 10 β—‘(𝐷 βˆ– (𝑍 Γ— 𝑍)) = (𝐷 βˆ– (𝑍 Γ— 𝑍))
3029a1i 11 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ β—‘(𝐷 βˆ– (𝑍 Γ— 𝑍)) = (𝐷 βˆ– (𝑍 Γ— 𝑍)))
3116, 30uneq12d 4163 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (◑𝐢 βˆͺ β—‘(𝐷 βˆ– (𝑍 Γ— 𝑍))) = (𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍))))
321cnveqi 5873 . . . . . . . . 9 ◑𝑀 = β—‘(𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍)))
33 cnvun 6141 . . . . . . . . 9 β—‘(𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍))) = (◑𝐢 βˆͺ β—‘(𝐷 βˆ– (𝑍 Γ— 𝑍)))
3432, 33eqtri 2758 . . . . . . . 8 ◑𝑀 = (◑𝐢 βˆͺ β—‘(𝐷 βˆ– (𝑍 Γ— 𝑍)))
3531, 34, 13eqtr4g 2795 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ ◑𝑀 = 𝑀)
3615, 35jca 510 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (𝑀 βŠ† 𝐷 ∧ ◑𝑀 = 𝑀))
3710simp2d 1141 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (𝐻 βŠ† (mExβ€˜π‘‡) ∧ 𝐻 ∈ Fin))
3810simp3d 1142 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ 𝐴 ∈ (mExβ€˜π‘‡))
397, 8, 3elmpst 34825 . . . . . 6 (βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡) ↔ ((𝑀 βŠ† 𝐷 ∧ ◑𝑀 = 𝑀) ∧ (𝐻 βŠ† (mExβ€˜π‘‡) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mExβ€˜π‘‡)))
4036, 37, 38, 39syl3anbrc 1341 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡))
41 mthmpps.r . . . . . . . 8 𝑅 = (mStRedβ€˜π‘‡)
42 mthmpps.j . . . . . . . 8 𝐽 = (mPPStβ€˜π‘‡)
4341, 42, 2elmthm 34865 . . . . . . 7 (⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ ↔ βˆƒπ‘₯ ∈ 𝐽 (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))
445, 43sylib 217 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ βˆƒπ‘₯ ∈ 𝐽 (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))
45 eqid 2730 . . . . . . . 8 (mClsβ€˜π‘‡) = (mClsβ€˜π‘‡)
46 simpll 763 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ 𝑇 ∈ mFS)
4715adantr 479 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ 𝑀 βŠ† 𝐷)
4837simpld 493 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ 𝐻 βŠ† (mExβ€˜π‘‡))
4948adantr 479 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ 𝐻 βŠ† (mExβ€˜π‘‡))
503, 42mppspst 34863 . . . . . . . . . . . . . . . . . . 19 𝐽 βŠ† (mPreStβ€˜π‘‡)
51 simprl 767 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ π‘₯ ∈ 𝐽)
5250, 51sselid 3979 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ π‘₯ ∈ (mPreStβ€˜π‘‡))
533mpst123 34829 . . . . . . . . . . . . . . . . . 18 (π‘₯ ∈ (mPreStβ€˜π‘‡) β†’ π‘₯ = ⟨(1st β€˜(1st β€˜π‘₯)), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩)
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ π‘₯ = ⟨(1st β€˜(1st β€˜π‘₯)), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩)
5554fveq2d 6894 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨(1st β€˜(1st β€˜π‘₯)), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩))
56 simprr 769 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))
5755, 56eqtr3d 2772 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (π‘…β€˜βŸ¨(1st β€˜(1st β€˜π‘₯)), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))
5854, 52eqeltrrd 2832 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ⟨(1st β€˜(1st β€˜π‘₯)), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩ ∈ (mPreStβ€˜π‘‡))
59 mthmpps.v . . . . . . . . . . . . . . . . 17 𝑉 = (mVarsβ€˜π‘‡)
60 eqid 2730 . . . . . . . . . . . . . . . . 17 βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) = βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)}))
6159, 3, 41, 60msrval 34827 . . . . . . . . . . . . . . . 16 (⟨(1st β€˜(1st β€˜π‘₯)), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩ ∈ (mPreStβ€˜π‘‡) β†’ (π‘…β€˜βŸ¨(1st β€˜(1st β€˜π‘₯)), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩) = ⟨((1st β€˜(1st β€˜π‘₯)) ∩ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})))), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩)
6258, 61syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (π‘…β€˜βŸ¨(1st β€˜(1st β€˜π‘₯)), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩) = ⟨((1st β€˜(1st β€˜π‘₯)) ∩ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})))), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩)
63 mthmpps.z . . . . . . . . . . . . . . . . . 18 𝑍 = βˆͺ (𝑉 β€œ (𝐻 βˆͺ {𝐴}))
6459, 3, 41, 63msrval 34827 . . . . . . . . . . . . . . . . 17 (⟨𝐢, 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡) β†’ (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩) = ⟨(𝐢 ∩ (𝑍 Γ— 𝑍)), 𝐻, 𝐴⟩)
656, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩) = ⟨(𝐢 ∩ (𝑍 Γ— 𝑍)), 𝐻, 𝐴⟩)
6665adantr 479 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩) = ⟨(𝐢 ∩ (𝑍 Γ— 𝑍)), 𝐻, 𝐴⟩)
6757, 62, 663eqtr3d 2778 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ⟨((1st β€˜(1st β€˜π‘₯)) ∩ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})))), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩ = ⟨(𝐢 ∩ (𝑍 Γ— 𝑍)), 𝐻, 𝐴⟩)
68 fvex 6903 . . . . . . . . . . . . . . . 16 (1st β€˜(1st β€˜π‘₯)) ∈ V
6968inex1 5316 . . . . . . . . . . . . . . 15 ((1st β€˜(1st β€˜π‘₯)) ∩ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})))) ∈ V
70 fvex 6903 . . . . . . . . . . . . . . 15 (2nd β€˜(1st β€˜π‘₯)) ∈ V
71 fvex 6903 . . . . . . . . . . . . . . 15 (2nd β€˜π‘₯) ∈ V
7269, 70, 71otth 5483 . . . . . . . . . . . . . 14 (⟨((1st β€˜(1st β€˜π‘₯)) ∩ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})))), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩ = ⟨(𝐢 ∩ (𝑍 Γ— 𝑍)), 𝐻, 𝐴⟩ ↔ (((1st β€˜(1st β€˜π‘₯)) ∩ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})))) = (𝐢 ∩ (𝑍 Γ— 𝑍)) ∧ (2nd β€˜(1st β€˜π‘₯)) = 𝐻 ∧ (2nd β€˜π‘₯) = 𝐴))
7367, 72sylib 217 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (((1st β€˜(1st β€˜π‘₯)) ∩ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})))) = (𝐢 ∩ (𝑍 Γ— 𝑍)) ∧ (2nd β€˜(1st β€˜π‘₯)) = 𝐻 ∧ (2nd β€˜π‘₯) = 𝐴))
7473simp1d 1140 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ((1st β€˜(1st β€˜π‘₯)) ∩ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})))) = (𝐢 ∩ (𝑍 Γ— 𝑍)))
7573simp2d 1141 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (2nd β€˜(1st β€˜π‘₯)) = 𝐻)
7673simp3d 1142 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (2nd β€˜π‘₯) = 𝐴)
7776sneqd 4639 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ {(2nd β€˜π‘₯)} = {𝐴})
7875, 77uneq12d 4163 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)}) = (𝐻 βˆͺ {𝐴}))
7978imaeq2d 6058 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) = (𝑉 β€œ (𝐻 βˆͺ {𝐴})))
8079unieqd 4921 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) = βˆͺ (𝑉 β€œ (𝐻 βˆͺ {𝐴})))
8180, 63eqtr4di 2788 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) = 𝑍)
8281sqxpeqd 5707 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)}))) = (𝑍 Γ— 𝑍))
8382ineq2d 4211 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ((1st β€˜(1st β€˜π‘₯)) ∩ (βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})) Γ— βˆͺ (𝑉 β€œ ((2nd β€˜(1st β€˜π‘₯)) βˆͺ {(2nd β€˜π‘₯)})))) = ((1st β€˜(1st β€˜π‘₯)) ∩ (𝑍 Γ— 𝑍)))
8474, 83eqtr3d 2772 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (𝐢 ∩ (𝑍 Γ— 𝑍)) = ((1st β€˜(1st β€˜π‘₯)) ∩ (𝑍 Γ— 𝑍)))
85 inss1 4227 . . . . . . . . . . 11 (𝐢 ∩ (𝑍 Γ— 𝑍)) βŠ† 𝐢
8684, 85eqsstrrdi 4036 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ((1st β€˜(1st β€˜π‘₯)) ∩ (𝑍 Γ— 𝑍)) βŠ† 𝐢)
87 eqidd 2731 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (1st β€˜(1st β€˜π‘₯)) = (1st β€˜(1st β€˜π‘₯)))
8887, 75, 76oteq123d 4887 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ⟨(1st β€˜(1st β€˜π‘₯)), (2nd β€˜(1st β€˜π‘₯)), (2nd β€˜π‘₯)⟩ = ⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩)
8954, 88eqtrd 2770 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ π‘₯ = ⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩)
9089, 52eqeltrrd 2832 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡))
917, 8, 3elmpst 34825 . . . . . . . . . . . . . 14 (⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡) ↔ (((1st β€˜(1st β€˜π‘₯)) βŠ† 𝐷 ∧ β—‘(1st β€˜(1st β€˜π‘₯)) = (1st β€˜(1st β€˜π‘₯))) ∧ (𝐻 βŠ† (mExβ€˜π‘‡) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mExβ€˜π‘‡)))
9291simp1bi 1143 . . . . . . . . . . . . 13 (⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡) β†’ ((1st β€˜(1st β€˜π‘₯)) βŠ† 𝐷 ∧ β—‘(1st β€˜(1st β€˜π‘₯)) = (1st β€˜(1st β€˜π‘₯))))
9392simpld 493 . . . . . . . . . . . 12 (⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡) β†’ (1st β€˜(1st β€˜π‘₯)) βŠ† 𝐷)
9490, 93syl 17 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (1st β€˜(1st β€˜π‘₯)) βŠ† 𝐷)
9594ssdifd 4139 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ((1st β€˜(1st β€˜π‘₯)) βˆ– (𝑍 Γ— 𝑍)) βŠ† (𝐷 βˆ– (𝑍 Γ— 𝑍)))
96 unss12 4181 . . . . . . . . . 10 ((((1st β€˜(1st β€˜π‘₯)) ∩ (𝑍 Γ— 𝑍)) βŠ† 𝐢 ∧ ((1st β€˜(1st β€˜π‘₯)) βˆ– (𝑍 Γ— 𝑍)) βŠ† (𝐷 βˆ– (𝑍 Γ— 𝑍))) β†’ (((1st β€˜(1st β€˜π‘₯)) ∩ (𝑍 Γ— 𝑍)) βˆͺ ((1st β€˜(1st β€˜π‘₯)) βˆ– (𝑍 Γ— 𝑍))) βŠ† (𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍))))
9786, 95, 96syl2anc 582 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (((1st β€˜(1st β€˜π‘₯)) ∩ (𝑍 Γ— 𝑍)) βˆͺ ((1st β€˜(1st β€˜π‘₯)) βˆ– (𝑍 Γ— 𝑍))) βŠ† (𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍))))
98 inundif 4477 . . . . . . . . . 10 (((1st β€˜(1st β€˜π‘₯)) ∩ (𝑍 Γ— 𝑍)) βˆͺ ((1st β€˜(1st β€˜π‘₯)) βˆ– (𝑍 Γ— 𝑍))) = (1st β€˜(1st β€˜π‘₯))
9998eqcomi 2739 . . . . . . . . 9 (1st β€˜(1st β€˜π‘₯)) = (((1st β€˜(1st β€˜π‘₯)) ∩ (𝑍 Γ— 𝑍)) βˆͺ ((1st β€˜(1st β€˜π‘₯)) βˆ– (𝑍 Γ— 𝑍)))
10097, 99, 13sstr4g 4026 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ (1st β€˜(1st β€˜π‘₯)) βŠ† 𝑀)
101 ssidd 4004 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ 𝐻 βŠ† 𝐻)
1027, 8, 45, 46, 47, 49, 100, 101ss2mcls 34857 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ((1st β€˜(1st β€˜π‘₯))(mClsβ€˜π‘‡)𝐻) βŠ† (𝑀(mClsβ€˜π‘‡)𝐻))
10389, 51eqeltrrd 2832 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ ⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩ ∈ 𝐽)
1043, 42, 45elmpps 34862 . . . . . . . . 9 (⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡) ∧ 𝐴 ∈ ((1st β€˜(1st β€˜π‘₯))(mClsβ€˜π‘‡)𝐻)))
105104simprbi 495 . . . . . . . 8 (⟨(1st β€˜(1st β€˜π‘₯)), 𝐻, 𝐴⟩ ∈ 𝐽 β†’ 𝐴 ∈ ((1st β€˜(1st β€˜π‘₯))(mClsβ€˜π‘‡)𝐻))
106103, 105syl 17 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ 𝐴 ∈ ((1st β€˜(1st β€˜π‘₯))(mClsβ€˜π‘‡)𝐻))
107102, 106sseldd 3982 . . . . . 6 (((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) ∧ (π‘₯ ∈ 𝐽 ∧ (π‘…β€˜π‘₯) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))) β†’ 𝐴 ∈ (𝑀(mClsβ€˜π‘‡)𝐻))
10844, 107rexlimddv 3159 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ 𝐴 ∈ (𝑀(mClsβ€˜π‘‡)𝐻))
1093, 42, 45elmpps 34862 . . . . 5 (βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡) ∧ 𝐴 ∈ (𝑀(mClsβ€˜π‘‡)𝐻)))
11040, 108, 109sylanbrc 581 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ 𝐽)
1111ineq1i 4207 . . . . . . . 8 (𝑀 ∩ (𝑍 Γ— 𝑍)) = ((𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍))) ∩ (𝑍 Γ— 𝑍))
112 indir 4274 . . . . . . . 8 ((𝐢 βˆͺ (𝐷 βˆ– (𝑍 Γ— 𝑍))) ∩ (𝑍 Γ— 𝑍)) = ((𝐢 ∩ (𝑍 Γ— 𝑍)) βˆͺ ((𝐷 βˆ– (𝑍 Γ— 𝑍)) ∩ (𝑍 Γ— 𝑍)))
113 disjdifr 4471 . . . . . . . . . 10 ((𝐷 βˆ– (𝑍 Γ— 𝑍)) ∩ (𝑍 Γ— 𝑍)) = βˆ…
114 0ss 4395 . . . . . . . . . 10 βˆ… βŠ† (𝐢 ∩ (𝑍 Γ— 𝑍))
115113, 114eqsstri 4015 . . . . . . . . 9 ((𝐷 βˆ– (𝑍 Γ— 𝑍)) ∩ (𝑍 Γ— 𝑍)) βŠ† (𝐢 ∩ (𝑍 Γ— 𝑍))
116 ssequn2 4182 . . . . . . . . 9 (((𝐷 βˆ– (𝑍 Γ— 𝑍)) ∩ (𝑍 Γ— 𝑍)) βŠ† (𝐢 ∩ (𝑍 Γ— 𝑍)) ↔ ((𝐢 ∩ (𝑍 Γ— 𝑍)) βˆͺ ((𝐷 βˆ– (𝑍 Γ— 𝑍)) ∩ (𝑍 Γ— 𝑍))) = (𝐢 ∩ (𝑍 Γ— 𝑍)))
117115, 116mpbi 229 . . . . . . . 8 ((𝐢 ∩ (𝑍 Γ— 𝑍)) βˆͺ ((𝐷 βˆ– (𝑍 Γ— 𝑍)) ∩ (𝑍 Γ— 𝑍))) = (𝐢 ∩ (𝑍 Γ— 𝑍))
118111, 112, 1173eqtri 2762 . . . . . . 7 (𝑀 ∩ (𝑍 Γ— 𝑍)) = (𝐢 ∩ (𝑍 Γ— 𝑍))
119118a1i 11 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (𝑀 ∩ (𝑍 Γ— 𝑍)) = (𝐢 ∩ (𝑍 Γ— 𝑍)))
120119oteq1d 4884 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ ⟨(𝑀 ∩ (𝑍 Γ— 𝑍)), 𝐻, 𝐴⟩ = ⟨(𝐢 ∩ (𝑍 Γ— 𝑍)), 𝐻, 𝐴⟩)
12159, 3, 41, 63msrval 34827 . . . . . 6 (βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ (mPreStβ€˜π‘‡) β†’ (π‘…β€˜βŸ¨π‘€, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 Γ— 𝑍)), 𝐻, 𝐴⟩)
12240, 121syl 17 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (π‘…β€˜βŸ¨π‘€, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 Γ— 𝑍)), 𝐻, 𝐴⟩)
123120, 122, 653eqtr4d 2780 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (π‘…β€˜βŸ¨π‘€, 𝐻, 𝐴⟩) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))
124110, 123jca 510 . . 3 ((𝑇 ∈ mFS ∧ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ) β†’ (βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (π‘…β€˜βŸ¨π‘€, 𝐻, 𝐴⟩) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩)))
125124ex 411 . 2 (𝑇 ∈ mFS β†’ (⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ β†’ (βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (π‘…β€˜βŸ¨π‘€, 𝐻, 𝐴⟩) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))))
12641, 42, 2mthmi 34866 . 2 ((βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (π‘…β€˜βŸ¨π‘€, 𝐻, 𝐴⟩) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩)) β†’ ⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ)
127125, 126impbid1 224 1 (𝑇 ∈ mFS β†’ (⟨𝐢, 𝐻, 𝐴⟩ ∈ π‘ˆ ↔ (βŸ¨π‘€, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (π‘…β€˜βŸ¨π‘€, 𝐻, 𝐴⟩) = (π‘…β€˜βŸ¨πΆ, 𝐻, 𝐴⟩))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆƒwrex 3068   βˆ– cdif 3944   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  {csn 4627  βŸ¨cotp 4635  βˆͺ cuni 4907   I cid 5572   Γ— cxp 5673  β—‘ccnv 5674   β€œ cima 5678  β€˜cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  Fincfn 8941  mVRcmvar 34750  mExcmex 34756  mDVcmdv 34757  mVarscmvrs 34758  mPreStcmpst 34762  mStRedcmsr 34763  mFScmfs 34765  mClscmcls 34766  mPPStcmpps 34767  mThmcmthm 34768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-word 14469  df-concat 14525  df-s1 14550  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-0g 17391  df-gsum 17392  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-frmd 18766  df-mrex 34775  df-mex 34776  df-mdv 34777  df-mrsub 34779  df-msub 34780  df-mvh 34781  df-mpst 34782  df-msr 34783  df-msta 34784  df-mfs 34785  df-mcls 34786  df-mpps 34787  df-mthm 34788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator