Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmpps Structured version   Visualization version   GIF version

Theorem mthmpps 35614
Description: Given a theorem, there is an explicitly definable witnessing provable pre-statement for the provability of the theorem. (However, this pre-statement requires infinitely many disjoint variable conditions, which is sometimes inconvenient.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmpps.r 𝑅 = (mStRed‘𝑇)
mthmpps.j 𝐽 = (mPPSt‘𝑇)
mthmpps.u 𝑈 = (mThm‘𝑇)
mthmpps.d 𝐷 = (mDV‘𝑇)
mthmpps.v 𝑉 = (mVars‘𝑇)
mthmpps.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
mthmpps.m 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
Assertion
Ref Expression
mthmpps (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))

Proof of Theorem mthmpps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mthmpps.m . . . . . . . 8 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
2 mthmpps.u . . . . . . . . . . . . . 14 𝑈 = (mThm‘𝑇)
3 eqid 2731 . . . . . . . . . . . . . 14 (mPreSt‘𝑇) = (mPreSt‘𝑇)
42, 3mthmsta 35610 . . . . . . . . . . . . 13 𝑈 ⊆ (mPreSt‘𝑇)
5 simpr 484 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈)
64, 5sselid 3932 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
7 mthmpps.d . . . . . . . . . . . . 13 𝐷 = (mDV‘𝑇)
8 eqid 2731 . . . . . . . . . . . . 13 (mEx‘𝑇) = (mEx‘𝑇)
97, 8, 3elmpst 35568 . . . . . . . . . . . 12 (⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ ((𝐶𝐷𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
106, 9sylib 218 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ((𝐶𝐷𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
1110simp1d 1142 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶𝐷𝐶 = 𝐶))
1211simpld 494 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐶𝐷)
13 difssd 4087 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐷 ∖ (𝑍 × 𝑍)) ⊆ 𝐷)
1412, 13unssd 4142 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ⊆ 𝐷)
151, 14eqsstrid 3973 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝑀𝐷)
1611simprd 495 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐶 = 𝐶)
17 cnvdif 6090 . . . . . . . . . . 11 (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷(𝑍 × 𝑍))
18 cnvdif 6090 . . . . . . . . . . . . . 14 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
19 cnvxp 6104 . . . . . . . . . . . . . . 15 ((mVR‘𝑇) × (mVR‘𝑇)) = ((mVR‘𝑇) × (mVR‘𝑇))
20 cnvi 6088 . . . . . . . . . . . . . . 15 I = I
2119, 20difeq12i 4074 . . . . . . . . . . . . . 14 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2218, 21eqtri 2754 . . . . . . . . . . . . 13 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
23 eqid 2731 . . . . . . . . . . . . . . 15 (mVR‘𝑇) = (mVR‘𝑇)
2423, 7mdvval 35536 . . . . . . . . . . . . . 14 𝐷 = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2524cnveqi 5814 . . . . . . . . . . . . 13 𝐷 = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2622, 25, 243eqtr4i 2764 . . . . . . . . . . . 12 𝐷 = 𝐷
27 cnvxp 6104 . . . . . . . . . . . 12 (𝑍 × 𝑍) = (𝑍 × 𝑍)
2826, 27difeq12i 4074 . . . . . . . . . . 11 (𝐷(𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍))
2917, 28eqtri 2754 . . . . . . . . . 10 (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍))
3029a1i 11 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍)))
3116, 30uneq12d 4119 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶(𝐷 ∖ (𝑍 × 𝑍))) = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
321cnveqi 5814 . . . . . . . . 9 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
33 cnvun 6089 . . . . . . . . 9 (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) = (𝐶(𝐷 ∖ (𝑍 × 𝑍)))
3432, 33eqtri 2754 . . . . . . . 8 𝑀 = (𝐶(𝐷 ∖ (𝑍 × 𝑍)))
3531, 34, 13eqtr4g 2791 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝑀 = 𝑀)
3615, 35jca 511 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑀𝐷𝑀 = 𝑀))
3710simp2d 1143 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin))
3810simp3d 1144 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐴 ∈ (mEx‘𝑇))
397, 8, 3elmpst 35568 . . . . . 6 (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑀𝐷𝑀 = 𝑀) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
4036, 37, 38, 39syl3anbrc 1344 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
41 mthmpps.r . . . . . . . 8 𝑅 = (mStRed‘𝑇)
42 mthmpps.j . . . . . . . 8 𝐽 = (mPPSt‘𝑇)
4341, 42, 2elmthm 35608 . . . . . . 7 (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
445, 43sylib 218 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ∃𝑥𝐽 (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
45 eqid 2731 . . . . . . . 8 (mCls‘𝑇) = (mCls‘𝑇)
46 simpll 766 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑇 ∈ mFS)
4715adantr 480 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑀𝐷)
4837simpld 494 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐻 ⊆ (mEx‘𝑇))
4948adantr 480 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐻 ⊆ (mEx‘𝑇))
503, 42mppspst 35606 . . . . . . . . . . . . . . . . . . 19 𝐽 ⊆ (mPreSt‘𝑇)
51 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥𝐽)
5250, 51sselid 3932 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 ∈ (mPreSt‘𝑇))
533mpst123 35572 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (mPreSt‘𝑇) → 𝑥 = ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 = ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
5554fveq2d 6826 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅𝑥) = (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩))
56 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
5755, 56eqtr3d 2768 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
5854, 52eqeltrrd 2832 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ ∈ (mPreSt‘𝑇))
59 mthmpps.v . . . . . . . . . . . . . . . . 17 𝑉 = (mVars‘𝑇)
60 eqid 2731 . . . . . . . . . . . . . . . . 17 (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}))
6159, 3, 41, 60msrval 35570 . . . . . . . . . . . . . . . 16 (⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
6258, 61syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
63 mthmpps.z . . . . . . . . . . . . . . . . . 18 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
6459, 3, 41, 63msrval 35570 . . . . . . . . . . . . . . . . 17 (⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
656, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
6665adantr 480 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
6757, 62, 663eqtr3d 2774 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
68 fvex 6835 . . . . . . . . . . . . . . . 16 (1st ‘(1st𝑥)) ∈ V
6968inex1 5255 . . . . . . . . . . . . . . 15 ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) ∈ V
70 fvex 6835 . . . . . . . . . . . . . . 15 (2nd ‘(1st𝑥)) ∈ V
71 fvex 6835 . . . . . . . . . . . . . . 15 (2nd𝑥) ∈ V
7269, 70, 71otth 5424 . . . . . . . . . . . . . 14 (⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ↔ (((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd ‘(1st𝑥)) = 𝐻 ∧ (2nd𝑥) = 𝐴))
7367, 72sylib 218 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd ‘(1st𝑥)) = 𝐻 ∧ (2nd𝑥) = 𝐴))
7473simp1d 1142 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)))
7573simp2d 1143 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (2nd ‘(1st𝑥)) = 𝐻)
7673simp3d 1144 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (2nd𝑥) = 𝐴)
7776sneqd 4588 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → {(2nd𝑥)} = {𝐴})
7875, 77uneq12d 4119 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}) = (𝐻 ∪ {𝐴}))
7978imaeq2d 6009 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ (𝐻 ∪ {𝐴})))
8079unieqd 4872 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ (𝐻 ∪ {𝐴})))
8180, 63eqtr4di 2784 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = 𝑍)
8281sqxpeqd 5648 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}))) = (𝑍 × 𝑍))
8382ineq2d 4170 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)))
8474, 83eqtr3d 2768 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝐶 ∩ (𝑍 × 𝑍)) = ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)))
85 inss1 4187 . . . . . . . . . . 11 (𝐶 ∩ (𝑍 × 𝑍)) ⊆ 𝐶
8684, 85eqsstrrdi 3980 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶)
87 eqidd 2732 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) = (1st ‘(1st𝑥)))
8887, 75, 76oteq123d 4840 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩)
8954, 88eqtrd 2766 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 = ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩)
9089, 52eqeltrrd 2832 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
917, 8, 3elmpst 35568 . . . . . . . . . . . . . 14 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ (((1st ‘(1st𝑥)) ⊆ 𝐷(1st ‘(1st𝑥)) = (1st ‘(1st𝑥))) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
9291simp1bi 1145 . . . . . . . . . . . . 13 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → ((1st ‘(1st𝑥)) ⊆ 𝐷(1st ‘(1st𝑥)) = (1st ‘(1st𝑥))))
9392simpld 494 . . . . . . . . . . . 12 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (1st ‘(1st𝑥)) ⊆ 𝐷)
9490, 93syl 17 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) ⊆ 𝐷)
9594ssdifd 4095 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍)))
96 unss12 4138 . . . . . . . . . 10 ((((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶 ∧ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍))) → (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
9786, 95, 96syl2anc 584 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
98 inundif 4429 . . . . . . . . . 10 (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) = (1st ‘(1st𝑥))
9998eqcomi 2740 . . . . . . . . 9 (1st ‘(1st𝑥)) = (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)))
10097, 99, 13sstr4g 3988 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) ⊆ 𝑀)
101 ssidd 3958 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐻𝐻)
1027, 8, 45, 46, 47, 49, 100, 101ss2mcls 35600 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻) ⊆ (𝑀(mCls‘𝑇)𝐻))
10389, 51eqeltrrd 2832 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽)
1043, 42, 45elmpps 35605 . . . . . . . . 9 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻)))
105104simprbi 496 . . . . . . . 8 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻))
106103, 105syl 17 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻))
107102, 106sseldd 3935 . . . . . 6 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻))
10844, 107rexlimddv 3139 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻))
1093, 42, 45elmpps 35605 . . . . 5 (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻)))
11040, 108, 109sylanbrc 583 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽)
1111ineq1i 4166 . . . . . . . 8 (𝑀 ∩ (𝑍 × 𝑍)) = ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍))
112 indir 4236 . . . . . . . 8 ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍)) = ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)))
113 disjdifr 4423 . . . . . . . . . 10 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) = ∅
114 0ss 4350 . . . . . . . . . 10 ∅ ⊆ (𝐶 ∩ (𝑍 × 𝑍))
115113, 114eqsstri 3981 . . . . . . . . 9 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍))
116 ssequn2 4139 . . . . . . . . 9 (((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍)) ↔ ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍)))
117115, 116mpbi 230 . . . . . . . 8 ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍))
118111, 112, 1173eqtri 2758 . . . . . . 7 (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍))
119118a1i 11 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍)))
120119oteq1d 4837 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
12159, 3, 41, 63msrval 35570 . . . . . 6 (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
12240, 121syl 17 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
123120, 122, 653eqtr4d 2776 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
124110, 123jca 511 . . 3 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩)))
125124ex 412 . 2 (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 → (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))
12641, 42, 2mthmi 35609 . 2 ((⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩)) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈)
127125, 126impbid1 225 1 (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  {csn 4576  cotp 4584   cuni 4859   I cid 5510   × cxp 5614  ccnv 5615  cima 5619  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Fincfn 8869  mVRcmvar 35493  mExcmex 35499  mDVcmdv 35500  mVarscmvrs 35501  mPreStcmpst 35505  mStRedcmsr 35506  mFScmfs 35508  mClscmcls 35509  mPPStcmpps 35510  mThmcmthm 35511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-gsum 17343  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-frmd 18754  df-mrex 35518  df-mex 35519  df-mdv 35520  df-mrsub 35522  df-msub 35523  df-mvh 35524  df-mpst 35525  df-msr 35526  df-msta 35527  df-mfs 35528  df-mcls 35529  df-mpps 35530  df-mthm 35531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator