Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmpps Structured version   Visualization version   GIF version

Theorem mthmpps 32829
Description: Given a theorem, there is an explicitly definable witnessing provable pre-statement for the provability of the theorem. (However, this pre-statement requires infinitely many disjoint variable conditions, which is sometimes inconvenient.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmpps.r 𝑅 = (mStRed‘𝑇)
mthmpps.j 𝐽 = (mPPSt‘𝑇)
mthmpps.u 𝑈 = (mThm‘𝑇)
mthmpps.d 𝐷 = (mDV‘𝑇)
mthmpps.v 𝑉 = (mVars‘𝑇)
mthmpps.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
mthmpps.m 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
Assertion
Ref Expression
mthmpps (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))

Proof of Theorem mthmpps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mthmpps.m . . . . . . . 8 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
2 mthmpps.u . . . . . . . . . . . . . 14 𝑈 = (mThm‘𝑇)
3 eqid 2821 . . . . . . . . . . . . . 14 (mPreSt‘𝑇) = (mPreSt‘𝑇)
42, 3mthmsta 32825 . . . . . . . . . . . . 13 𝑈 ⊆ (mPreSt‘𝑇)
5 simpr 487 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈)
64, 5sseldi 3965 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
7 mthmpps.d . . . . . . . . . . . . 13 𝐷 = (mDV‘𝑇)
8 eqid 2821 . . . . . . . . . . . . 13 (mEx‘𝑇) = (mEx‘𝑇)
97, 8, 3elmpst 32783 . . . . . . . . . . . 12 (⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ ((𝐶𝐷𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
106, 9sylib 220 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ((𝐶𝐷𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
1110simp1d 1138 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶𝐷𝐶 = 𝐶))
1211simpld 497 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐶𝐷)
13 difssd 4109 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐷 ∖ (𝑍 × 𝑍)) ⊆ 𝐷)
1412, 13unssd 4162 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ⊆ 𝐷)
151, 14eqsstrid 4015 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝑀𝐷)
1611simprd 498 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐶 = 𝐶)
17 cnvdif 6002 . . . . . . . . . . 11 (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷(𝑍 × 𝑍))
18 cnvdif 6002 . . . . . . . . . . . . . 14 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
19 cnvxp 6014 . . . . . . . . . . . . . . 15 ((mVR‘𝑇) × (mVR‘𝑇)) = ((mVR‘𝑇) × (mVR‘𝑇))
20 cnvi 6000 . . . . . . . . . . . . . . 15 I = I
2119, 20difeq12i 4097 . . . . . . . . . . . . . 14 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2218, 21eqtri 2844 . . . . . . . . . . . . 13 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
23 eqid 2821 . . . . . . . . . . . . . . 15 (mVR‘𝑇) = (mVR‘𝑇)
2423, 7mdvval 32751 . . . . . . . . . . . . . 14 𝐷 = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2524cnveqi 5745 . . . . . . . . . . . . 13 𝐷 = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2622, 25, 243eqtr4i 2854 . . . . . . . . . . . 12 𝐷 = 𝐷
27 cnvxp 6014 . . . . . . . . . . . 12 (𝑍 × 𝑍) = (𝑍 × 𝑍)
2826, 27difeq12i 4097 . . . . . . . . . . 11 (𝐷(𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍))
2917, 28eqtri 2844 . . . . . . . . . 10 (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍))
3029a1i 11 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍)))
3116, 30uneq12d 4140 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶(𝐷 ∖ (𝑍 × 𝑍))) = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
321cnveqi 5745 . . . . . . . . 9 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
33 cnvun 6001 . . . . . . . . 9 (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) = (𝐶(𝐷 ∖ (𝑍 × 𝑍)))
3432, 33eqtri 2844 . . . . . . . 8 𝑀 = (𝐶(𝐷 ∖ (𝑍 × 𝑍)))
3531, 34, 13eqtr4g 2881 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝑀 = 𝑀)
3615, 35jca 514 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑀𝐷𝑀 = 𝑀))
3710simp2d 1139 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin))
3810simp3d 1140 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐴 ∈ (mEx‘𝑇))
397, 8, 3elmpst 32783 . . . . . 6 (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑀𝐷𝑀 = 𝑀) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
4036, 37, 38, 39syl3anbrc 1339 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
41 mthmpps.r . . . . . . . 8 𝑅 = (mStRed‘𝑇)
42 mthmpps.j . . . . . . . 8 𝐽 = (mPPSt‘𝑇)
4341, 42, 2elmthm 32823 . . . . . . 7 (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
445, 43sylib 220 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ∃𝑥𝐽 (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
45 eqid 2821 . . . . . . . 8 (mCls‘𝑇) = (mCls‘𝑇)
46 simpll 765 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑇 ∈ mFS)
4715adantr 483 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑀𝐷)
4837simpld 497 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐻 ⊆ (mEx‘𝑇))
4948adantr 483 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐻 ⊆ (mEx‘𝑇))
503, 42mppspst 32821 . . . . . . . . . . . . . . . . . . 19 𝐽 ⊆ (mPreSt‘𝑇)
51 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥𝐽)
5250, 51sseldi 3965 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 ∈ (mPreSt‘𝑇))
533mpst123 32787 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (mPreSt‘𝑇) → 𝑥 = ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 = ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
5554fveq2d 6674 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅𝑥) = (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩))
56 simprr 771 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
5755, 56eqtr3d 2858 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
5854, 52eqeltrrd 2914 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ ∈ (mPreSt‘𝑇))
59 mthmpps.v . . . . . . . . . . . . . . . . 17 𝑉 = (mVars‘𝑇)
60 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}))
6159, 3, 41, 60msrval 32785 . . . . . . . . . . . . . . . 16 (⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
6258, 61syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
63 mthmpps.z . . . . . . . . . . . . . . . . . 18 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
6459, 3, 41, 63msrval 32785 . . . . . . . . . . . . . . . . 17 (⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
656, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
6665adantr 483 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
6757, 62, 663eqtr3d 2864 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
68 fvex 6683 . . . . . . . . . . . . . . . 16 (1st ‘(1st𝑥)) ∈ V
6968inex1 5221 . . . . . . . . . . . . . . 15 ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) ∈ V
70 fvex 6683 . . . . . . . . . . . . . . 15 (2nd ‘(1st𝑥)) ∈ V
71 fvex 6683 . . . . . . . . . . . . . . 15 (2nd𝑥) ∈ V
7269, 70, 71otth 5376 . . . . . . . . . . . . . 14 (⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ↔ (((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd ‘(1st𝑥)) = 𝐻 ∧ (2nd𝑥) = 𝐴))
7367, 72sylib 220 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd ‘(1st𝑥)) = 𝐻 ∧ (2nd𝑥) = 𝐴))
7473simp1d 1138 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)))
7573simp2d 1139 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (2nd ‘(1st𝑥)) = 𝐻)
7673simp3d 1140 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (2nd𝑥) = 𝐴)
7776sneqd 4579 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → {(2nd𝑥)} = {𝐴})
7875, 77uneq12d 4140 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}) = (𝐻 ∪ {𝐴}))
7978imaeq2d 5929 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ (𝐻 ∪ {𝐴})))
8079unieqd 4852 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ (𝐻 ∪ {𝐴})))
8180, 63syl6eqr 2874 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = 𝑍)
8281sqxpeqd 5587 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}))) = (𝑍 × 𝑍))
8382ineq2d 4189 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)))
8474, 83eqtr3d 2858 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝐶 ∩ (𝑍 × 𝑍)) = ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)))
85 inss1 4205 . . . . . . . . . . 11 (𝐶 ∩ (𝑍 × 𝑍)) ⊆ 𝐶
8684, 85eqsstrrdi 4022 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶)
87 eqidd 2822 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) = (1st ‘(1st𝑥)))
8887, 75, 76oteq123d 4818 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩)
8954, 88eqtrd 2856 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 = ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩)
9089, 52eqeltrrd 2914 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
917, 8, 3elmpst 32783 . . . . . . . . . . . . . 14 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ (((1st ‘(1st𝑥)) ⊆ 𝐷(1st ‘(1st𝑥)) = (1st ‘(1st𝑥))) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
9291simp1bi 1141 . . . . . . . . . . . . 13 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → ((1st ‘(1st𝑥)) ⊆ 𝐷(1st ‘(1st𝑥)) = (1st ‘(1st𝑥))))
9392simpld 497 . . . . . . . . . . . 12 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (1st ‘(1st𝑥)) ⊆ 𝐷)
9490, 93syl 17 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) ⊆ 𝐷)
9594ssdifd 4117 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍)))
96 unss12 4158 . . . . . . . . . 10 ((((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶 ∧ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍))) → (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
9786, 95, 96syl2anc 586 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
98 inundif 4427 . . . . . . . . . 10 (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) = (1st ‘(1st𝑥))
9998eqcomi 2830 . . . . . . . . 9 (1st ‘(1st𝑥)) = (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)))
10097, 99, 13sstr4g 4012 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) ⊆ 𝑀)
101 ssidd 3990 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐻𝐻)
1027, 8, 45, 46, 47, 49, 100, 101ss2mcls 32815 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻) ⊆ (𝑀(mCls‘𝑇)𝐻))
10389, 51eqeltrrd 2914 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽)
1043, 42, 45elmpps 32820 . . . . . . . . 9 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻)))
105104simprbi 499 . . . . . . . 8 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻))
106103, 105syl 17 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻))
107102, 106sseldd 3968 . . . . . 6 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻))
10844, 107rexlimddv 3291 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻))
1093, 42, 45elmpps 32820 . . . . 5 (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻)))
11040, 108, 109sylanbrc 585 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽)
1111ineq1i 4185 . . . . . . . 8 (𝑀 ∩ (𝑍 × 𝑍)) = ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍))
112 indir 4252 . . . . . . . 8 ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍)) = ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)))
113 incom 4178 . . . . . . . . . . 11 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) = ((𝑍 × 𝑍) ∩ (𝐷 ∖ (𝑍 × 𝑍)))
114 disjdif 4421 . . . . . . . . . . 11 ((𝑍 × 𝑍) ∩ (𝐷 ∖ (𝑍 × 𝑍))) = ∅
115113, 114eqtri 2844 . . . . . . . . . 10 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) = ∅
116 0ss 4350 . . . . . . . . . 10 ∅ ⊆ (𝐶 ∩ (𝑍 × 𝑍))
117115, 116eqsstri 4001 . . . . . . . . 9 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍))
118 ssequn2 4159 . . . . . . . . 9 (((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍)) ↔ ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍)))
119117, 118mpbi 232 . . . . . . . 8 ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍))
120111, 112, 1193eqtri 2848 . . . . . . 7 (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍))
121120a1i 11 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍)))
122121oteq1d 4815 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
12359, 3, 41, 63msrval 32785 . . . . . 6 (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
12440, 123syl 17 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
125122, 124, 653eqtr4d 2866 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
126110, 125jca 514 . . 3 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩)))
127126ex 415 . 2 (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 → (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))
12841, 42, 2mthmi 32824 . 2 ((⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩)) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈)
129127, 128impbid1 227 1 (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567  cotp 4575   cuni 4838   I cid 5459   × cxp 5553  ccnv 5554  cima 5558  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  Fincfn 8509  mVRcmvar 32708  mExcmex 32714  mDVcmdv 32715  mVarscmvrs 32716  mPreStcmpst 32720  mStRedcmsr 32721  mFScmfs 32723  mClscmcls 32724  mPPStcmpps 32725  mThmcmthm 32726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-gsum 16716  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-frmd 18014  df-mrex 32733  df-mex 32734  df-mdv 32735  df-mrsub 32737  df-msub 32738  df-mvh 32739  df-mpst 32740  df-msr 32741  df-msta 32742  df-mfs 32743  df-mcls 32744  df-mpps 32745  df-mthm 32746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator