Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmpps Structured version   Visualization version   GIF version

Theorem mthmpps 35554
Description: Given a theorem, there is an explicitly definable witnessing provable pre-statement for the provability of the theorem. (However, this pre-statement requires infinitely many disjoint variable conditions, which is sometimes inconvenient.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmpps.r 𝑅 = (mStRed‘𝑇)
mthmpps.j 𝐽 = (mPPSt‘𝑇)
mthmpps.u 𝑈 = (mThm‘𝑇)
mthmpps.d 𝐷 = (mDV‘𝑇)
mthmpps.v 𝑉 = (mVars‘𝑇)
mthmpps.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
mthmpps.m 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
Assertion
Ref Expression
mthmpps (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))

Proof of Theorem mthmpps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mthmpps.m . . . . . . . 8 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
2 mthmpps.u . . . . . . . . . . . . . 14 𝑈 = (mThm‘𝑇)
3 eqid 2729 . . . . . . . . . . . . . 14 (mPreSt‘𝑇) = (mPreSt‘𝑇)
42, 3mthmsta 35550 . . . . . . . . . . . . 13 𝑈 ⊆ (mPreSt‘𝑇)
5 simpr 484 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈)
64, 5sselid 3935 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
7 mthmpps.d . . . . . . . . . . . . 13 𝐷 = (mDV‘𝑇)
8 eqid 2729 . . . . . . . . . . . . 13 (mEx‘𝑇) = (mEx‘𝑇)
97, 8, 3elmpst 35508 . . . . . . . . . . . 12 (⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ ((𝐶𝐷𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
106, 9sylib 218 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ((𝐶𝐷𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
1110simp1d 1142 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶𝐷𝐶 = 𝐶))
1211simpld 494 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐶𝐷)
13 difssd 4090 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐷 ∖ (𝑍 × 𝑍)) ⊆ 𝐷)
1412, 13unssd 4145 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ⊆ 𝐷)
151, 14eqsstrid 3976 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝑀𝐷)
1611simprd 495 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐶 = 𝐶)
17 cnvdif 6096 . . . . . . . . . . 11 (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷(𝑍 × 𝑍))
18 cnvdif 6096 . . . . . . . . . . . . . 14 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
19 cnvxp 6110 . . . . . . . . . . . . . . 15 ((mVR‘𝑇) × (mVR‘𝑇)) = ((mVR‘𝑇) × (mVR‘𝑇))
20 cnvi 6094 . . . . . . . . . . . . . . 15 I = I
2119, 20difeq12i 4077 . . . . . . . . . . . . . 14 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2218, 21eqtri 2752 . . . . . . . . . . . . 13 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
23 eqid 2729 . . . . . . . . . . . . . . 15 (mVR‘𝑇) = (mVR‘𝑇)
2423, 7mdvval 35476 . . . . . . . . . . . . . 14 𝐷 = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2524cnveqi 5821 . . . . . . . . . . . . 13 𝐷 = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2622, 25, 243eqtr4i 2762 . . . . . . . . . . . 12 𝐷 = 𝐷
27 cnvxp 6110 . . . . . . . . . . . 12 (𝑍 × 𝑍) = (𝑍 × 𝑍)
2826, 27difeq12i 4077 . . . . . . . . . . 11 (𝐷(𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍))
2917, 28eqtri 2752 . . . . . . . . . 10 (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍))
3029a1i 11 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍)))
3116, 30uneq12d 4122 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶(𝐷 ∖ (𝑍 × 𝑍))) = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
321cnveqi 5821 . . . . . . . . 9 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
33 cnvun 6095 . . . . . . . . 9 (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) = (𝐶(𝐷 ∖ (𝑍 × 𝑍)))
3432, 33eqtri 2752 . . . . . . . 8 𝑀 = (𝐶(𝐷 ∖ (𝑍 × 𝑍)))
3531, 34, 13eqtr4g 2789 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝑀 = 𝑀)
3615, 35jca 511 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑀𝐷𝑀 = 𝑀))
3710simp2d 1143 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin))
3810simp3d 1144 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐴 ∈ (mEx‘𝑇))
397, 8, 3elmpst 35508 . . . . . 6 (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑀𝐷𝑀 = 𝑀) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
4036, 37, 38, 39syl3anbrc 1344 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
41 mthmpps.r . . . . . . . 8 𝑅 = (mStRed‘𝑇)
42 mthmpps.j . . . . . . . 8 𝐽 = (mPPSt‘𝑇)
4341, 42, 2elmthm 35548 . . . . . . 7 (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
445, 43sylib 218 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ∃𝑥𝐽 (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
45 eqid 2729 . . . . . . . 8 (mCls‘𝑇) = (mCls‘𝑇)
46 simpll 766 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑇 ∈ mFS)
4715adantr 480 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑀𝐷)
4837simpld 494 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐻 ⊆ (mEx‘𝑇))
4948adantr 480 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐻 ⊆ (mEx‘𝑇))
503, 42mppspst 35546 . . . . . . . . . . . . . . . . . . 19 𝐽 ⊆ (mPreSt‘𝑇)
51 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥𝐽)
5250, 51sselid 3935 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 ∈ (mPreSt‘𝑇))
533mpst123 35512 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (mPreSt‘𝑇) → 𝑥 = ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 = ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
5554fveq2d 6830 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅𝑥) = (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩))
56 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
5755, 56eqtr3d 2766 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
5854, 52eqeltrrd 2829 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ ∈ (mPreSt‘𝑇))
59 mthmpps.v . . . . . . . . . . . . . . . . 17 𝑉 = (mVars‘𝑇)
60 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}))
6159, 3, 41, 60msrval 35510 . . . . . . . . . . . . . . . 16 (⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
6258, 61syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
63 mthmpps.z . . . . . . . . . . . . . . . . . 18 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
6459, 3, 41, 63msrval 35510 . . . . . . . . . . . . . . . . 17 (⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
656, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
6665adantr 480 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
6757, 62, 663eqtr3d 2772 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
68 fvex 6839 . . . . . . . . . . . . . . . 16 (1st ‘(1st𝑥)) ∈ V
6968inex1 5259 . . . . . . . . . . . . . . 15 ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) ∈ V
70 fvex 6839 . . . . . . . . . . . . . . 15 (2nd ‘(1st𝑥)) ∈ V
71 fvex 6839 . . . . . . . . . . . . . . 15 (2nd𝑥) ∈ V
7269, 70, 71otth 5431 . . . . . . . . . . . . . 14 (⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ↔ (((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd ‘(1st𝑥)) = 𝐻 ∧ (2nd𝑥) = 𝐴))
7367, 72sylib 218 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd ‘(1st𝑥)) = 𝐻 ∧ (2nd𝑥) = 𝐴))
7473simp1d 1142 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)))
7573simp2d 1143 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (2nd ‘(1st𝑥)) = 𝐻)
7673simp3d 1144 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (2nd𝑥) = 𝐴)
7776sneqd 4591 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → {(2nd𝑥)} = {𝐴})
7875, 77uneq12d 4122 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}) = (𝐻 ∪ {𝐴}))
7978imaeq2d 6015 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ (𝐻 ∪ {𝐴})))
8079unieqd 4874 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ (𝐻 ∪ {𝐴})))
8180, 63eqtr4di 2782 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = 𝑍)
8281sqxpeqd 5655 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}))) = (𝑍 × 𝑍))
8382ineq2d 4173 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)))
8474, 83eqtr3d 2766 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝐶 ∩ (𝑍 × 𝑍)) = ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)))
85 inss1 4190 . . . . . . . . . . 11 (𝐶 ∩ (𝑍 × 𝑍)) ⊆ 𝐶
8684, 85eqsstrrdi 3983 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶)
87 eqidd 2730 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) = (1st ‘(1st𝑥)))
8887, 75, 76oteq123d 4842 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩)
8954, 88eqtrd 2764 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 = ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩)
9089, 52eqeltrrd 2829 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
917, 8, 3elmpst 35508 . . . . . . . . . . . . . 14 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ (((1st ‘(1st𝑥)) ⊆ 𝐷(1st ‘(1st𝑥)) = (1st ‘(1st𝑥))) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
9291simp1bi 1145 . . . . . . . . . . . . 13 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → ((1st ‘(1st𝑥)) ⊆ 𝐷(1st ‘(1st𝑥)) = (1st ‘(1st𝑥))))
9392simpld 494 . . . . . . . . . . . 12 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (1st ‘(1st𝑥)) ⊆ 𝐷)
9490, 93syl 17 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) ⊆ 𝐷)
9594ssdifd 4098 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍)))
96 unss12 4141 . . . . . . . . . 10 ((((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶 ∧ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍))) → (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
9786, 95, 96syl2anc 584 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
98 inundif 4432 . . . . . . . . . 10 (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) = (1st ‘(1st𝑥))
9998eqcomi 2738 . . . . . . . . 9 (1st ‘(1st𝑥)) = (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)))
10097, 99, 13sstr4g 3991 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) ⊆ 𝑀)
101 ssidd 3961 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐻𝐻)
1027, 8, 45, 46, 47, 49, 100, 101ss2mcls 35540 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻) ⊆ (𝑀(mCls‘𝑇)𝐻))
10389, 51eqeltrrd 2829 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽)
1043, 42, 45elmpps 35545 . . . . . . . . 9 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻)))
105104simprbi 496 . . . . . . . 8 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻))
106103, 105syl 17 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻))
107102, 106sseldd 3938 . . . . . 6 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻))
10844, 107rexlimddv 3136 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻))
1093, 42, 45elmpps 35545 . . . . 5 (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻)))
11040, 108, 109sylanbrc 583 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽)
1111ineq1i 4169 . . . . . . . 8 (𝑀 ∩ (𝑍 × 𝑍)) = ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍))
112 indir 4239 . . . . . . . 8 ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍)) = ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)))
113 disjdifr 4426 . . . . . . . . . 10 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) = ∅
114 0ss 4353 . . . . . . . . . 10 ∅ ⊆ (𝐶 ∩ (𝑍 × 𝑍))
115113, 114eqsstri 3984 . . . . . . . . 9 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍))
116 ssequn2 4142 . . . . . . . . 9 (((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍)) ↔ ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍)))
117115, 116mpbi 230 . . . . . . . 8 ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍))
118111, 112, 1173eqtri 2756 . . . . . . 7 (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍))
119118a1i 11 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍)))
120119oteq1d 4839 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
12159, 3, 41, 63msrval 35510 . . . . . 6 (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
12240, 121syl 17 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
123120, 122, 653eqtr4d 2774 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
124110, 123jca 511 . . 3 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩)))
125124ex 412 . 2 (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 → (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))
12641, 42, 2mthmi 35549 . 2 ((⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩)) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈)
127125, 126impbid1 225 1 (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579  cotp 4587   cuni 4861   I cid 5517   × cxp 5621  ccnv 5622  cima 5626  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Fincfn 8879  mVRcmvar 35433  mExcmex 35439  mDVcmdv 35440  mVarscmvrs 35441  mPreStcmpst 35445  mStRedcmsr 35446  mFScmfs 35448  mClscmcls 35449  mPPStcmpps 35450  mThmcmthm 35451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-frmd 18741  df-mrex 35458  df-mex 35459  df-mdv 35460  df-mrsub 35462  df-msub 35463  df-mvh 35464  df-mpst 35465  df-msr 35466  df-msta 35467  df-mfs 35468  df-mcls 35469  df-mpps 35470  df-mthm 35471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator