Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmsta Structured version   Visualization version   GIF version

Theorem elmsta 33223
Description: Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstapst.p 𝑃 = (mPreSt‘𝑇)
mstapst.s 𝑆 = (mStat‘𝑇)
elmsta.v 𝑉 = (mVars‘𝑇)
elmsta.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
Assertion
Ref Expression
elmsta (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))

Proof of Theorem elmsta
StepHypRef Expression
1 mstapst.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 mstapst.s . . . . 5 𝑆 = (mStat‘𝑇)
31, 2mstapst 33222 . . . 4 𝑆𝑃
43sseli 3896 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
5 elmsta.v . . . . . . . . . 10 𝑉 = (mVars‘𝑇)
6 eqid 2737 . . . . . . . . . 10 (mStRed‘𝑇) = (mStRed‘𝑇)
7 elmsta.z . . . . . . . . . 10 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
85, 1, 6, 7msrval 33213 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
94, 8syl 17 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
106, 2msrid 33220 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨𝐷, 𝐻, 𝐴⟩)
119, 10eqtr3d 2779 . . . . . . 7 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
1211fveq2d 6721 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩) = (1st ‘⟨𝐷, 𝐻, 𝐴⟩))
1312fveq2d 6721 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
14 inss1 4143 . . . . . . 7 (𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷
151mpstrcl 33216 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
164, 15syl 17 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
1716simp1d 1144 . . . . . . 7 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐷 ∈ V)
18 ssexg 5216 . . . . . . 7 (((𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷𝐷 ∈ V) → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V)
1914, 17, 18sylancr 590 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V)
2016simp2d 1145 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐻 ∈ V)
2116simp3d 1146 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐴 ∈ V)
22 ot1stg 7775 . . . . . 6 (((𝐷 ∩ (𝑍 × 𝑍)) ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (𝐷 ∩ (𝑍 × 𝑍)))
2319, 20, 21, 22syl3anc 1373 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (𝐷 ∩ (𝑍 × 𝑍)))
24 ot1stg 7775 . . . . . 6 ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2516, 24syl 17 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2613, 23, 253eqtr3d 2785 . . . 4 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
27 inss2 4144 . . . 4 (𝐷 ∩ (𝑍 × 𝑍)) ⊆ (𝑍 × 𝑍)
2826, 27eqsstrrdi 3956 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐷 ⊆ (𝑍 × 𝑍))
294, 28jca 515 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))
308adantr 484 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
31 simpr 488 . . . . . . 7 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → 𝐷 ⊆ (𝑍 × 𝑍))
32 df-ss 3883 . . . . . . 7 (𝐷 ⊆ (𝑍 × 𝑍) ↔ (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
3331, 32sylib 221 . . . . . 6 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
3433oteq1d 4796 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
3530, 34eqtrd 2777 . . . 4 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨𝐷, 𝐻, 𝐴⟩)
361, 6msrf 33217 . . . . . 6 (mStRed‘𝑇):𝑃𝑃
37 ffn 6545 . . . . . 6 ((mStRed‘𝑇):𝑃𝑃 → (mStRed‘𝑇) Fn 𝑃)
3836, 37ax-mp 5 . . . . 5 (mStRed‘𝑇) Fn 𝑃
39 simpl 486 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
40 fnfvelrn 6901 . . . . 5 (((mStRed‘𝑇) Fn 𝑃 ∧ ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) ∈ ran (mStRed‘𝑇))
4138, 39, 40sylancr 590 . . . 4 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) ∈ ran (mStRed‘𝑇))
4235, 41eqeltrrd 2839 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ ran (mStRed‘𝑇))
436, 2mstaval 33219 . . 3 𝑆 = ran (mStRed‘𝑇)
4442, 43eleqtrrdi 2849 . 2 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆)
4529, 44impbii 212 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3408  cun 3864  cin 3865  wss 3866  {csn 4541  cotp 4549   cuni 4819   × cxp 5549  ran crn 5552  cima 5554   Fn wfn 6375  wf 6376  cfv 6380  1st c1st 7759  mVarscmvrs 33144  mPreStcmpst 33148  mStRedcmsr 33149  mStatcmsta 33150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-ot 4550  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-1st 7761  df-2nd 7762  df-mpst 33168  df-msr 33169  df-msta 33170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator