Proof of Theorem elmsta
| Step | Hyp | Ref
| Expression |
| 1 | | mstapst.p |
. . . . 5
⊢ 𝑃 = (mPreSt‘𝑇) |
| 2 | | mstapst.s |
. . . . 5
⊢ 𝑆 = (mStat‘𝑇) |
| 3 | 1, 2 | mstapst 35552 |
. . . 4
⊢ 𝑆 ⊆ 𝑃 |
| 4 | 3 | sseli 3979 |
. . 3
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → 〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃) |
| 5 | | elmsta.v |
. . . . . . . . . 10
⊢ 𝑉 = (mVars‘𝑇) |
| 6 | | eqid 2737 |
. . . . . . . . . 10
⊢
(mStRed‘𝑇) =
(mStRed‘𝑇) |
| 7 | | elmsta.z |
. . . . . . . . . 10
⊢ 𝑍 = ∪
(𝑉 “ (𝐻 ∪ {𝐴})) |
| 8 | 5, 1, 6, 7 | msrval 35543 |
. . . . . . . . 9
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → ((mStRed‘𝑇)‘〈𝐷, 𝐻, 𝐴〉) = 〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 9 | 4, 8 | syl 17 |
. . . . . . . 8
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → ((mStRed‘𝑇)‘〈𝐷, 𝐻, 𝐴〉) = 〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 10 | 6, 2 | msrid 35550 |
. . . . . . . 8
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → ((mStRed‘𝑇)‘〈𝐷, 𝐻, 𝐴〉) = 〈𝐷, 𝐻, 𝐴〉) |
| 11 | 9, 10 | eqtr3d 2779 |
. . . . . . 7
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → 〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉 = 〈𝐷, 𝐻, 𝐴〉) |
| 12 | 11 | fveq2d 6910 |
. . . . . 6
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → (1st ‘〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) = (1st ‘〈𝐷, 𝐻, 𝐴〉)) |
| 13 | 12 | fveq2d 6910 |
. . . . 5
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → (1st
‘(1st ‘〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉)) = (1st
‘(1st ‘〈𝐷, 𝐻, 𝐴〉))) |
| 14 | | inss1 4237 |
. . . . . . 7
⊢ (𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷 |
| 15 | 1 | mpstrcl 35546 |
. . . . . . . . 9
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| 16 | 4, 15 | syl 17 |
. . . . . . . 8
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) |
| 17 | 16 | simp1d 1143 |
. . . . . . 7
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → 𝐷 ∈ V) |
| 18 | | ssexg 5323 |
. . . . . . 7
⊢ (((𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷 ∧ 𝐷 ∈ V) → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V) |
| 19 | 14, 17, 18 | sylancr 587 |
. . . . . 6
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V) |
| 20 | 16 | simp2d 1144 |
. . . . . 6
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → 𝐻 ∈ V) |
| 21 | 16 | simp3d 1145 |
. . . . . 6
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → 𝐴 ∈ V) |
| 22 | | ot1stg 8028 |
. . . . . 6
⊢ (((𝐷 ∩ (𝑍 × 𝑍)) ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (1st
‘(1st ‘〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉)) = (𝐷 ∩ (𝑍 × 𝑍))) |
| 23 | 19, 20, 21, 22 | syl3anc 1373 |
. . . . 5
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → (1st
‘(1st ‘〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉)) = (𝐷 ∩ (𝑍 × 𝑍))) |
| 24 | | ot1stg 8028 |
. . . . . 6
⊢ ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) →
(1st ‘(1st ‘〈𝐷, 𝐻, 𝐴〉)) = 𝐷) |
| 25 | 16, 24 | syl 17 |
. . . . 5
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → (1st
‘(1st ‘〈𝐷, 𝐻, 𝐴〉)) = 𝐷) |
| 26 | 13, 23, 25 | 3eqtr3d 2785 |
. . . 4
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷) |
| 27 | | inss2 4238 |
. . . 4
⊢ (𝐷 ∩ (𝑍 × 𝑍)) ⊆ (𝑍 × 𝑍) |
| 28 | 26, 27 | eqsstrrdi 4029 |
. . 3
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → 𝐷 ⊆ (𝑍 × 𝑍)) |
| 29 | 4, 28 | jca 511 |
. 2
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 → (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍))) |
| 30 | 8 | adantr 480 |
. . . . 5
⊢
((〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘〈𝐷, 𝐻, 𝐴〉) = 〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) |
| 31 | | simpr 484 |
. . . . . . 7
⊢
((〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍)) → 𝐷 ⊆ (𝑍 × 𝑍)) |
| 32 | | dfss2 3969 |
. . . . . . 7
⊢ (𝐷 ⊆ (𝑍 × 𝑍) ↔ (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷) |
| 33 | 31, 32 | sylib 218 |
. . . . . 6
⊢
((〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍)) → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷) |
| 34 | 33 | oteq1d 4885 |
. . . . 5
⊢
((〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍)) → 〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉 = 〈𝐷, 𝐻, 𝐴〉) |
| 35 | 30, 34 | eqtrd 2777 |
. . . 4
⊢
((〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘〈𝐷, 𝐻, 𝐴〉) = 〈𝐷, 𝐻, 𝐴〉) |
| 36 | 1, 6 | msrf 35547 |
. . . . . 6
⊢
(mStRed‘𝑇):𝑃⟶𝑃 |
| 37 | | ffn 6736 |
. . . . . 6
⊢
((mStRed‘𝑇):𝑃⟶𝑃 → (mStRed‘𝑇) Fn 𝑃) |
| 38 | 36, 37 | ax-mp 5 |
. . . . 5
⊢
(mStRed‘𝑇) Fn
𝑃 |
| 39 | | simpl 482 |
. . . . 5
⊢
((〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍)) → 〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃) |
| 40 | | fnfvelrn 7100 |
. . . . 5
⊢
(((mStRed‘𝑇)
Fn 𝑃 ∧ 〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃) → ((mStRed‘𝑇)‘〈𝐷, 𝐻, 𝐴〉) ∈ ran (mStRed‘𝑇)) |
| 41 | 38, 39, 40 | sylancr 587 |
. . . 4
⊢
((〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘〈𝐷, 𝐻, 𝐴〉) ∈ ran (mStRed‘𝑇)) |
| 42 | 35, 41 | eqeltrrd 2842 |
. . 3
⊢
((〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍)) → 〈𝐷, 𝐻, 𝐴〉 ∈ ran (mStRed‘𝑇)) |
| 43 | 6, 2 | mstaval 35549 |
. . 3
⊢ 𝑆 = ran (mStRed‘𝑇) |
| 44 | 42, 43 | eleqtrrdi 2852 |
. 2
⊢
((〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍)) → 〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆) |
| 45 | 29, 44 | impbii 209 |
1
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍))) |