Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmsta Structured version   Visualization version   GIF version

Theorem elmsta 35542
Description: Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstapst.p 𝑃 = (mPreSt‘𝑇)
mstapst.s 𝑆 = (mStat‘𝑇)
elmsta.v 𝑉 = (mVars‘𝑇)
elmsta.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
Assertion
Ref Expression
elmsta (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))

Proof of Theorem elmsta
StepHypRef Expression
1 mstapst.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 mstapst.s . . . . 5 𝑆 = (mStat‘𝑇)
31, 2mstapst 35541 . . . 4 𝑆𝑃
43sseli 3945 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
5 elmsta.v . . . . . . . . . 10 𝑉 = (mVars‘𝑇)
6 eqid 2730 . . . . . . . . . 10 (mStRed‘𝑇) = (mStRed‘𝑇)
7 elmsta.z . . . . . . . . . 10 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
85, 1, 6, 7msrval 35532 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
94, 8syl 17 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
106, 2msrid 35539 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨𝐷, 𝐻, 𝐴⟩)
119, 10eqtr3d 2767 . . . . . . 7 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
1211fveq2d 6865 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩) = (1st ‘⟨𝐷, 𝐻, 𝐴⟩))
1312fveq2d 6865 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
14 inss1 4203 . . . . . . 7 (𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷
151mpstrcl 35535 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
164, 15syl 17 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
1716simp1d 1142 . . . . . . 7 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐷 ∈ V)
18 ssexg 5281 . . . . . . 7 (((𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷𝐷 ∈ V) → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V)
1914, 17, 18sylancr 587 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V)
2016simp2d 1143 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐻 ∈ V)
2116simp3d 1144 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐴 ∈ V)
22 ot1stg 7985 . . . . . 6 (((𝐷 ∩ (𝑍 × 𝑍)) ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (𝐷 ∩ (𝑍 × 𝑍)))
2319, 20, 21, 22syl3anc 1373 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (𝐷 ∩ (𝑍 × 𝑍)))
24 ot1stg 7985 . . . . . 6 ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2516, 24syl 17 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2613, 23, 253eqtr3d 2773 . . . 4 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
27 inss2 4204 . . . 4 (𝐷 ∩ (𝑍 × 𝑍)) ⊆ (𝑍 × 𝑍)
2826, 27eqsstrrdi 3995 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐷 ⊆ (𝑍 × 𝑍))
294, 28jca 511 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))
308adantr 480 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
31 simpr 484 . . . . . . 7 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → 𝐷 ⊆ (𝑍 × 𝑍))
32 dfss2 3935 . . . . . . 7 (𝐷 ⊆ (𝑍 × 𝑍) ↔ (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
3331, 32sylib 218 . . . . . 6 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
3433oteq1d 4852 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
3530, 34eqtrd 2765 . . . 4 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨𝐷, 𝐻, 𝐴⟩)
361, 6msrf 35536 . . . . . 6 (mStRed‘𝑇):𝑃𝑃
37 ffn 6691 . . . . . 6 ((mStRed‘𝑇):𝑃𝑃 → (mStRed‘𝑇) Fn 𝑃)
3836, 37ax-mp 5 . . . . 5 (mStRed‘𝑇) Fn 𝑃
39 simpl 482 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
40 fnfvelrn 7055 . . . . 5 (((mStRed‘𝑇) Fn 𝑃 ∧ ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) ∈ ran (mStRed‘𝑇))
4138, 39, 40sylancr 587 . . . 4 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) ∈ ran (mStRed‘𝑇))
4235, 41eqeltrrd 2830 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ ran (mStRed‘𝑇))
436, 2mstaval 35538 . . 3 𝑆 = ran (mStRed‘𝑇)
4442, 43eleqtrrdi 2840 . 2 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆)
4529, 44impbii 209 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  cin 3916  wss 3917  {csn 4592  cotp 4600   cuni 4874   × cxp 5639  ran crn 5642  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  1st c1st 7969  mVarscmvrs 35463  mPreStcmpst 35467  mStRedcmsr 35468  mStatcmsta 35469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1st 7971  df-2nd 7972  df-mpst 35487  df-msr 35488  df-msta 35489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator