Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmsta Structured version   Visualization version   GIF version

Theorem elmsta 35516
Description: Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstapst.p 𝑃 = (mPreSt‘𝑇)
mstapst.s 𝑆 = (mStat‘𝑇)
elmsta.v 𝑉 = (mVars‘𝑇)
elmsta.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
Assertion
Ref Expression
elmsta (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))

Proof of Theorem elmsta
StepHypRef Expression
1 mstapst.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 mstapst.s . . . . 5 𝑆 = (mStat‘𝑇)
31, 2mstapst 35515 . . . 4 𝑆𝑃
43sseli 4004 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
5 elmsta.v . . . . . . . . . 10 𝑉 = (mVars‘𝑇)
6 eqid 2740 . . . . . . . . . 10 (mStRed‘𝑇) = (mStRed‘𝑇)
7 elmsta.z . . . . . . . . . 10 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
85, 1, 6, 7msrval 35506 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
94, 8syl 17 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
106, 2msrid 35513 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨𝐷, 𝐻, 𝐴⟩)
119, 10eqtr3d 2782 . . . . . . 7 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
1211fveq2d 6924 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩) = (1st ‘⟨𝐷, 𝐻, 𝐴⟩))
1312fveq2d 6924 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
14 inss1 4258 . . . . . . 7 (𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷
151mpstrcl 35509 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
164, 15syl 17 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
1716simp1d 1142 . . . . . . 7 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐷 ∈ V)
18 ssexg 5341 . . . . . . 7 (((𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷𝐷 ∈ V) → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V)
1914, 17, 18sylancr 586 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V)
2016simp2d 1143 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐻 ∈ V)
2116simp3d 1144 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐴 ∈ V)
22 ot1stg 8044 . . . . . 6 (((𝐷 ∩ (𝑍 × 𝑍)) ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (𝐷 ∩ (𝑍 × 𝑍)))
2319, 20, 21, 22syl3anc 1371 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (𝐷 ∩ (𝑍 × 𝑍)))
24 ot1stg 8044 . . . . . 6 ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2516, 24syl 17 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2613, 23, 253eqtr3d 2788 . . . 4 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
27 inss2 4259 . . . 4 (𝐷 ∩ (𝑍 × 𝑍)) ⊆ (𝑍 × 𝑍)
2826, 27eqsstrrdi 4064 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐷 ⊆ (𝑍 × 𝑍))
294, 28jca 511 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))
308adantr 480 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
31 simpr 484 . . . . . . 7 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → 𝐷 ⊆ (𝑍 × 𝑍))
32 dfss2 3994 . . . . . . 7 (𝐷 ⊆ (𝑍 × 𝑍) ↔ (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
3331, 32sylib 218 . . . . . 6 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
3433oteq1d 4909 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
3530, 34eqtrd 2780 . . . 4 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨𝐷, 𝐻, 𝐴⟩)
361, 6msrf 35510 . . . . . 6 (mStRed‘𝑇):𝑃𝑃
37 ffn 6747 . . . . . 6 ((mStRed‘𝑇):𝑃𝑃 → (mStRed‘𝑇) Fn 𝑃)
3836, 37ax-mp 5 . . . . 5 (mStRed‘𝑇) Fn 𝑃
39 simpl 482 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
40 fnfvelrn 7114 . . . . 5 (((mStRed‘𝑇) Fn 𝑃 ∧ ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) ∈ ran (mStRed‘𝑇))
4138, 39, 40sylancr 586 . . . 4 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) ∈ ran (mStRed‘𝑇))
4235, 41eqeltrrd 2845 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ ran (mStRed‘𝑇))
436, 2mstaval 35512 . . 3 𝑆 = ran (mStRed‘𝑇)
4442, 43eleqtrrdi 2855 . 2 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆)
4529, 44impbii 209 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  wss 3976  {csn 4648  cotp 4656   cuni 4931   × cxp 5698  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  1st c1st 8028  mVarscmvrs 35437  mPreStcmpst 35441  mStRedcmsr 35442  mStatcmsta 35443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031  df-mpst 35461  df-msr 35462  df-msta 35463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator