Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmsta Structured version   Visualization version   GIF version

Theorem elmsta 33510
Description: Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstapst.p 𝑃 = (mPreSt‘𝑇)
mstapst.s 𝑆 = (mStat‘𝑇)
elmsta.v 𝑉 = (mVars‘𝑇)
elmsta.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
Assertion
Ref Expression
elmsta (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))

Proof of Theorem elmsta
StepHypRef Expression
1 mstapst.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 mstapst.s . . . . 5 𝑆 = (mStat‘𝑇)
31, 2mstapst 33509 . . . 4 𝑆𝑃
43sseli 3917 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
5 elmsta.v . . . . . . . . . 10 𝑉 = (mVars‘𝑇)
6 eqid 2738 . . . . . . . . . 10 (mStRed‘𝑇) = (mStRed‘𝑇)
7 elmsta.z . . . . . . . . . 10 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
85, 1, 6, 7msrval 33500 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
94, 8syl 17 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
106, 2msrid 33507 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨𝐷, 𝐻, 𝐴⟩)
119, 10eqtr3d 2780 . . . . . . 7 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
1211fveq2d 6778 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩) = (1st ‘⟨𝐷, 𝐻, 𝐴⟩))
1312fveq2d 6778 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
14 inss1 4162 . . . . . . 7 (𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷
151mpstrcl 33503 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
164, 15syl 17 . . . . . . . 8 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V))
1716simp1d 1141 . . . . . . 7 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐷 ∈ V)
18 ssexg 5247 . . . . . . 7 (((𝐷 ∩ (𝑍 × 𝑍)) ⊆ 𝐷𝐷 ∈ V) → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V)
1914, 17, 18sylancr 587 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) ∈ V)
2016simp2d 1142 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐻 ∈ V)
2116simp3d 1143 . . . . . 6 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐴 ∈ V)
22 ot1stg 7845 . . . . . 6 (((𝐷 ∩ (𝑍 × 𝑍)) ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (𝐷 ∩ (𝑍 × 𝑍)))
2319, 20, 21, 22syl3anc 1370 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)) = (𝐷 ∩ (𝑍 × 𝑍)))
24 ot1stg 7845 . . . . . 6 ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2516, 24syl 17 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2613, 23, 253eqtr3d 2786 . . . 4 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
27 inss2 4163 . . . 4 (𝐷 ∩ (𝑍 × 𝑍)) ⊆ (𝑍 × 𝑍)
2826, 27eqsstrrdi 3976 . . 3 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆𝐷 ⊆ (𝑍 × 𝑍))
294, 28jca 512 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 → (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))
308adantr 481 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
31 simpr 485 . . . . . . 7 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → 𝐷 ⊆ (𝑍 × 𝑍))
32 df-ss 3904 . . . . . . 7 (𝐷 ⊆ (𝑍 × 𝑍) ↔ (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
3331, 32sylib 217 . . . . . 6 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → (𝐷 ∩ (𝑍 × 𝑍)) = 𝐷)
3433oteq1d 4816 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
3530, 34eqtrd 2778 . . . 4 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨𝐷, 𝐻, 𝐴⟩)
361, 6msrf 33504 . . . . . 6 (mStRed‘𝑇):𝑃𝑃
37 ffn 6600 . . . . . 6 ((mStRed‘𝑇):𝑃𝑃 → (mStRed‘𝑇) Fn 𝑃)
3836, 37ax-mp 5 . . . . 5 (mStRed‘𝑇) Fn 𝑃
39 simpl 483 . . . . 5 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
40 fnfvelrn 6958 . . . . 5 (((mStRed‘𝑇) Fn 𝑃 ∧ ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) ∈ ran (mStRed‘𝑇))
4138, 39, 40sylancr 587 . . . 4 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ((mStRed‘𝑇)‘⟨𝐷, 𝐻, 𝐴⟩) ∈ ran (mStRed‘𝑇))
4235, 41eqeltrrd 2840 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ ran (mStRed‘𝑇))
436, 2mstaval 33506 . . 3 𝑆 = ran (mStRed‘𝑇)
4442, 43eleqtrrdi 2850 . 2 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)) → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆)
4529, 44impbii 208 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑆 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (𝑍 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  cin 3886  wss 3887  {csn 4561  cotp 4569   cuni 4839   × cxp 5587  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  1st c1st 7829  mVarscmvrs 33431  mPreStcmpst 33435  mStRedcmsr 33436  mStatcmsta 33437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1st 7831  df-2nd 7832  df-mpst 33455  df-msr 33456  df-msta 33457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator