Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrfval Structured version   Visualization version   GIF version

Theorem msrfval 33166
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v 𝑉 = (mVars‘𝑇)
msrfval.p 𝑃 = (mPreSt‘𝑇)
msrfval.r 𝑅 = (mStRed‘𝑇)
Assertion
Ref Expression
msrfval 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
Distinct variable groups:   ,𝑎,𝑠,𝑧,𝑃   𝑇,𝑎,,𝑠   𝑧,𝑉
Allowed substitution hints:   𝑅(𝑧,,𝑠,𝑎)   𝑇(𝑧)   𝑉(,𝑠,𝑎)

Proof of Theorem msrfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 msrfval.r . 2 𝑅 = (mStRed‘𝑇)
2 fveq2 6695 . . . . . 6 (𝑡 = 𝑇 → (mPreSt‘𝑡) = (mPreSt‘𝑇))
3 msrfval.p . . . . . 6 𝑃 = (mPreSt‘𝑇)
42, 3eqtr4di 2789 . . . . 5 (𝑡 = 𝑇 → (mPreSt‘𝑡) = 𝑃)
5 fveq2 6695 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mVars‘𝑡) = (mVars‘𝑇))
6 msrfval.v . . . . . . . . . . . . 13 𝑉 = (mVars‘𝑇)
75, 6eqtr4di 2789 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (mVars‘𝑡) = 𝑉)
87imaeq1d 5913 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((mVars‘𝑡) “ ( ∪ {𝑎})) = (𝑉 “ ( ∪ {𝑎})))
98unieqd 4819 . . . . . . . . . 10 (𝑡 = 𝑇 ((mVars‘𝑡) “ ( ∪ {𝑎})) = (𝑉 “ ( ∪ {𝑎})))
109csbeq1d 3802 . . . . . . . . 9 (𝑡 = 𝑇 ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧) = (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧))
1110ineq2d 4113 . . . . . . . 8 (𝑡 = 𝑇 → ((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)) = ((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)))
1211oteq1d 4782 . . . . . . 7 (𝑡 = 𝑇 → ⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
1312csbeq2dv 3805 . . . . . 6 (𝑡 = 𝑇(2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
1413csbeq2dv 3805 . . . . 5 (𝑡 = 𝑇(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
154, 14mpteq12dv 5125 . . . 4 (𝑡 = 𝑇 → (𝑠 ∈ (mPreSt‘𝑡) ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
16 df-msr 33123 . . . 4 mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
1715, 16, 3mptfvmpt 7022 . . 3 (𝑇 ∈ V → (mStRed‘𝑇) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
18 mpt0 6498 . . . . 5 (𝑠 ∈ ∅ ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) = ∅
1918eqcomi 2745 . . . 4 ∅ = (𝑠 ∈ ∅ ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
20 fvprc 6687 . . . 4 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
21 fvprc 6687 . . . . . 6 𝑇 ∈ V → (mPreSt‘𝑇) = ∅)
223, 21syl5eq 2783 . . . . 5 𝑇 ∈ V → 𝑃 = ∅)
2322mpteq1d 5129 . . . 4 𝑇 ∈ V → (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) = (𝑠 ∈ ∅ ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
2419, 20, 233eqtr4a 2797 . . 3 𝑇 ∈ V → (mStRed‘𝑇) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
2517, 24pm2.61i 185 . 2 (mStRed‘𝑇) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
261, 25eqtri 2759 1 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1543  wcel 2112  Vcvv 3398  csb 3798  cun 3851  cin 3852  c0 4223  {csn 4527  cotp 4535   cuni 4805  cmpt 5120   × cxp 5534  cima 5539  cfv 6358  1st c1st 7737  2nd c2nd 7738  mVarscmvrs 33098  mPreStcmpst 33102  mStRedcmsr 33103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-ot 4536  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-msr 33123
This theorem is referenced by:  msrval  33167  msrf  33171
  Copyright terms: Public domain W3C validator