Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrfval Structured version   Visualization version   GIF version

Theorem msrfval 33798
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v 𝑉 = (mVars‘𝑇)
msrfval.p 𝑃 = (mPreSt‘𝑇)
msrfval.r 𝑅 = (mStRed‘𝑇)
Assertion
Ref Expression
msrfval 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
Distinct variable groups:   ,𝑎,𝑠,𝑧,𝑃   𝑇,𝑎,,𝑠   𝑧,𝑉
Allowed substitution hints:   𝑅(𝑧,,𝑠,𝑎)   𝑇(𝑧)   𝑉(,𝑠,𝑎)

Proof of Theorem msrfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 msrfval.r . 2 𝑅 = (mStRed‘𝑇)
2 fveq2 6826 . . . . . 6 (𝑡 = 𝑇 → (mPreSt‘𝑡) = (mPreSt‘𝑇))
3 msrfval.p . . . . . 6 𝑃 = (mPreSt‘𝑇)
42, 3eqtr4di 2794 . . . . 5 (𝑡 = 𝑇 → (mPreSt‘𝑡) = 𝑃)
5 fveq2 6826 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (mVars‘𝑡) = (mVars‘𝑇))
6 msrfval.v . . . . . . . . . . . . 13 𝑉 = (mVars‘𝑇)
75, 6eqtr4di 2794 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (mVars‘𝑡) = 𝑉)
87imaeq1d 5999 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((mVars‘𝑡) “ ( ∪ {𝑎})) = (𝑉 “ ( ∪ {𝑎})))
98unieqd 4867 . . . . . . . . . 10 (𝑡 = 𝑇 ((mVars‘𝑡) “ ( ∪ {𝑎})) = (𝑉 “ ( ∪ {𝑎})))
109csbeq1d 3847 . . . . . . . . 9 (𝑡 = 𝑇 ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧) = (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧))
1110ineq2d 4160 . . . . . . . 8 (𝑡 = 𝑇 → ((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)) = ((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)))
1211oteq1d 4830 . . . . . . 7 (𝑡 = 𝑇 → ⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
1312csbeq2dv 3850 . . . . . 6 (𝑡 = 𝑇(2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
1413csbeq2dv 3850 . . . . 5 (𝑡 = 𝑇(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
154, 14mpteq12dv 5184 . . . 4 (𝑡 = 𝑇 → (𝑠 ∈ (mPreSt‘𝑡) ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
16 df-msr 33755 . . . 4 mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
1715, 16, 3mptfvmpt 7161 . . 3 (𝑇 ∈ V → (mStRed‘𝑇) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
18 mpt0 6627 . . . . 5 (𝑠 ∈ ∅ ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) = ∅
1918eqcomi 2745 . . . 4 ∅ = (𝑠 ∈ ∅ ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
20 fvprc 6818 . . . 4 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
21 fvprc 6818 . . . . . 6 𝑇 ∈ V → (mPreSt‘𝑇) = ∅)
223, 21eqtrid 2788 . . . . 5 𝑇 ∈ V → 𝑃 = ∅)
2322mpteq1d 5188 . . . 4 𝑇 ∈ V → (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩) = (𝑠 ∈ ∅ ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
2419, 20, 233eqtr4a 2802 . . 3 𝑇 ∈ V → (mStRed‘𝑇) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
2517, 24pm2.61i 182 . 2 (mStRed‘𝑇) = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
261, 25eqtri 2764 1 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2105  Vcvv 3441  csb 3843  cun 3896  cin 3897  c0 4270  {csn 4574  cotp 4582   cuni 4853  cmpt 5176   × cxp 5619  cima 5624  cfv 6480  1st c1st 7898  2nd c2nd 7899  mVarscmvrs 33730  mPreStcmpst 33734  mStRedcmsr 33735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-ot 4583  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-msr 33755
This theorem is referenced by:  msrval  33799  msrf  33803
  Copyright terms: Public domain W3C validator