![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteq2 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq2 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4898 | . . 3 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
2 | 1 | opeq1d 4903 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐶, 𝐴〉, 𝐷〉 = 〈〈𝐶, 𝐵〉, 𝐷〉) |
3 | df-ot 4657 | . 2 ⊢ 〈𝐶, 𝐴, 𝐷〉 = 〈〈𝐶, 𝐴〉, 𝐷〉 | |
4 | df-ot 4657 | . 2 ⊢ 〈𝐶, 𝐵, 𝐷〉 = 〈〈𝐶, 𝐵〉, 𝐷〉 | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 〈cop 4654 〈cotp 4656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 |
This theorem is referenced by: oteq2d 4910 frxp3 8192 xpord3pred 8193 efgi 19761 efgtf 19764 efgtval 19765 |
Copyright terms: Public domain | W3C validator |