Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteq2 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq2 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4810 | . . 3 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
2 | 1 | opeq1d 4815 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐶, 𝐴〉, 𝐷〉 = 〈〈𝐶, 𝐵〉, 𝐷〉) |
3 | df-ot 4574 | . 2 ⊢ 〈𝐶, 𝐴, 𝐷〉 = 〈〈𝐶, 𝐴〉, 𝐷〉 | |
4 | df-ot 4574 | . 2 ⊢ 〈𝐶, 𝐵, 𝐷〉 = 〈〈𝐶, 𝐵〉, 𝐷〉 | |
5 | 2, 3, 4 | 3eqtr4g 2801 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cop 4571 〈cotp 4573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-ot 4574 |
This theorem is referenced by: oteq2d 4822 efgi 19374 efgtf 19377 efgtval 19378 |
Copyright terms: Public domain | W3C validator |