Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteq2 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
Ref | Expression |
---|---|
oteq2 | ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4810 | . . 3 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
2 | 1 | opeq1d 4815 | . 2 ⊢ (𝐴 = 𝐵 → 〈〈𝐶, 𝐴〉, 𝐷〉 = 〈〈𝐶, 𝐵〉, 𝐷〉) |
3 | df-ot 4575 | . 2 ⊢ 〈𝐶, 𝐴, 𝐷〉 = 〈〈𝐶, 𝐴〉, 𝐷〉 | |
4 | df-ot 4575 | . 2 ⊢ 〈𝐶, 𝐵, 𝐷〉 = 〈〈𝐶, 𝐵〉, 𝐷〉 | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 〈cop 4572 〈cotp 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-ot 4575 |
This theorem is referenced by: oteq2d 4822 efgi 19306 efgtf 19309 efgtval 19310 |
Copyright terms: Public domain | W3C validator |