MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtf Structured version   Visualization version   GIF version

Theorem efgtf 19764
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgtf (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊))
Distinct variable groups:   𝑎,𝑏,𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧,𝑎   𝑀,𝑎   𝑛,𝑏,𝑣,𝑤,𝑀   𝑇,𝑎,𝑏   𝑋,𝑎,𝑏   𝑊,𝑎,𝑏,𝑛,𝑣,𝑤,𝑦,𝑧   ,𝑎,𝑏,𝑦,𝑧   𝐼,𝑎,𝑏,𝑛,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem efgtf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6999 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 4043 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2o)
4 simpl 482 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋𝑊)
53, 4sselid 4006 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋 ∈ Word (𝐼 × 2o))
6 simprr 772 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o))
7 efgval2.m . . . . . . . . . . . 12 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
87efgmf 19755 . . . . . . . . . . 11 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
98ffvelcdmi 7117 . . . . . . . . . 10 (𝑏 ∈ (𝐼 × 2o) → (𝑀𝑏) ∈ (𝐼 × 2o))
109ad2antll 728 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀𝑏) ∈ (𝐼 × 2o))
116, 10s2cld 14920 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o))
12 splcl 14800 . . . . . . . 8 ((𝑋 ∈ Word (𝐼 × 2o) ∧ ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o)) → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ Word (𝐼 × 2o))
135, 11, 12syl2anc 583 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ Word (𝐼 × 2o))
141efgrcl 19757 . . . . . . . . 9 (𝑋𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
1514simprd 495 . . . . . . . 8 (𝑋𝑊𝑊 = Word (𝐼 × 2o))
1615adantr 480 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑊 = Word (𝐼 × 2o))
1713, 16eleqtrrd 2847 . . . . . 6 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ 𝑊)
1817ralrimivva 3208 . . . . 5 (𝑋𝑊 → ∀𝑎 ∈ (0...(♯‘𝑋))∀𝑏 ∈ (𝐼 × 2o)(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ 𝑊)
19 eqid 2740 . . . . . 6 (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
2019fmpo 8109 . . . . 5 (∀𝑎 ∈ (0...(♯‘𝑋))∀𝑏 ∈ (𝐼 × 2o)(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ 𝑊 ↔ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)
2118, 20sylib 218 . . . 4 (𝑋𝑊 → (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)
22 ovex 7481 . . . . 5 (0...(♯‘𝑋)) ∈ V
2314simpld 494 . . . . . 6 (𝑋𝑊𝐼 ∈ V)
24 2on 8536 . . . . . 6 2o ∈ On
25 xpexg 7785 . . . . . 6 ((𝐼 ∈ V ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
2623, 24, 25sylancl 585 . . . . 5 (𝑋𝑊 → (𝐼 × 2o) ∈ V)
27 xpexg 7785 . . . . 5 (((0...(♯‘𝑋)) ∈ V ∧ (𝐼 × 2o) ∈ V) → ((0...(♯‘𝑋)) × (𝐼 × 2o)) ∈ V)
2822, 26, 27sylancr 586 . . . 4 (𝑋𝑊 → ((0...(♯‘𝑋)) × (𝐼 × 2o)) ∈ V)
2921, 28fexd 7264 . . 3 (𝑋𝑊 → (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∈ V)
30 fveq2 6920 . . . . . 6 (𝑢 = 𝑋 → (♯‘𝑢) = (♯‘𝑋))
3130oveq2d 7464 . . . . 5 (𝑢 = 𝑋 → (0...(♯‘𝑢)) = (0...(♯‘𝑋)))
32 eqidd 2741 . . . . 5 (𝑢 = 𝑋 → (𝐼 × 2o) = (𝐼 × 2o))
33 oveq1 7455 . . . . 5 (𝑢 = 𝑋 → (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
3431, 32, 33mpoeq123dv 7525 . . . 4 (𝑢 = 𝑋 → (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
35 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
36 oteq1 4906 . . . . . . . . . 10 (𝑛 = 𝑎 → ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)
37 oteq2 4907 . . . . . . . . . 10 (𝑛 = 𝑎 → ⟨𝑎, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩)
3836, 37eqtrd 2780 . . . . . . . . 9 (𝑛 = 𝑎 → ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩)
3938oveq2d 7464 . . . . . . . 8 (𝑛 = 𝑎 → (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩) = (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩))
40 id 22 . . . . . . . . . . 11 (𝑤 = 𝑏𝑤 = 𝑏)
41 fveq2 6920 . . . . . . . . . . 11 (𝑤 = 𝑏 → (𝑀𝑤) = (𝑀𝑏))
4240, 41s2eqd 14912 . . . . . . . . . 10 (𝑤 = 𝑏 → ⟨“𝑤(𝑀𝑤)”⟩ = ⟨“𝑏(𝑀𝑏)”⟩)
4342oteq3d 4911 . . . . . . . . 9 (𝑤 = 𝑏 → ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)
4443oveq2d 7464 . . . . . . . 8 (𝑤 = 𝑏 → (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩) = (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
4539, 44cbvmpov 7545 . . . . . . 7 (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)) = (𝑎 ∈ (0...(♯‘𝑣)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
46 fveq2 6920 . . . . . . . . 9 (𝑣 = 𝑢 → (♯‘𝑣) = (♯‘𝑢))
4746oveq2d 7464 . . . . . . . 8 (𝑣 = 𝑢 → (0...(♯‘𝑣)) = (0...(♯‘𝑢)))
48 eqidd 2741 . . . . . . . 8 (𝑣 = 𝑢 → (𝐼 × 2o) = (𝐼 × 2o))
49 oveq1 7455 . . . . . . . 8 (𝑣 = 𝑢 → (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
5047, 48, 49mpoeq123dv 7525 . . . . . . 7 (𝑣 = 𝑢 → (𝑎 ∈ (0...(♯‘𝑣)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5145, 50eqtrid 2792 . . . . . 6 (𝑣 = 𝑢 → (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)) = (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5251cbvmptv 5279 . . . . 5 (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩))) = (𝑢𝑊 ↦ (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5335, 52eqtri 2768 . . . 4 𝑇 = (𝑢𝑊 ↦ (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5434, 53fvmptg 7027 . . 3 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∈ V) → (𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5529, 54mpdan 686 . 2 (𝑋𝑊 → (𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5655feq1d 6732 . . 3 (𝑋𝑊 → ((𝑇𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊 ↔ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊))
5721, 56mpbird 257 . 2 (𝑋𝑊 → (𝑇𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)
5855, 57jca 511 1 (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cop 4654  cotp 4656  cmpt 5249   I cid 5592   × cxp 5698  Oncon0 6395  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516  0cc0 11184  ...cfz 13567  chash 14379  Word cword 14562   splice csplice 14797  ⟨“cs2 14890   ~FG cefg 19748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-s2 14897
This theorem is referenced by:  efgtval  19765  efgval2  19766  efgtlen  19768  efginvrel2  19769  efgsp1  19779  efgredleme  19785  efgredlem  19789  efgrelexlemb  19792  efgcpbllemb  19797  frgpnabllem1  19915
  Copyright terms: Public domain W3C validator