| Step | Hyp | Ref
| Expression |
| 1 | | efgval.w |
. . . . . . . . . 10
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
| 2 | | fviss 6967 |
. . . . . . . . . 10
⊢ ( I
‘Word (𝐼 ×
2o)) ⊆ Word (𝐼 × 2o) |
| 3 | 1, 2 | eqsstri 4012 |
. . . . . . . . 9
⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
| 4 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋 ∈ 𝑊) |
| 5 | 3, 4 | sselid 3963 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋 ∈ Word (𝐼 × 2o)) |
| 6 | | simprr 772 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o)) |
| 7 | | efgval2.m |
. . . . . . . . . . . 12
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| 8 | 7 | efgmf 19704 |
. . . . . . . . . . 11
⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 ×
2o) |
| 9 | 8 | ffvelcdmi 7084 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝐼 × 2o) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
| 10 | 9 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
| 11 | 6, 10 | s2cld 14893 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) →
〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o)) |
| 12 | | splcl 14773 |
. . . . . . . 8
⊢ ((𝑋 ∈ Word (𝐼 × 2o) ∧
〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o)) → (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ Word (𝐼 ×
2o)) |
| 13 | 5, 11, 12 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ Word (𝐼 ×
2o)) |
| 14 | 1 | efgrcl 19706 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
| 15 | 14 | simprd 495 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
| 16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑊 = Word (𝐼 × 2o)) |
| 17 | 13, 16 | eleqtrrd 2836 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ 𝑊) |
| 18 | 17 | ralrimivva 3189 |
. . . . 5
⊢ (𝑋 ∈ 𝑊 → ∀𝑎 ∈ (0...(♯‘𝑋))∀𝑏 ∈ (𝐼 × 2o)(𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ 𝑊) |
| 19 | | eqid 2734 |
. . . . . 6
⊢ (𝑎 ∈
(0...(♯‘𝑋)),
𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 20 | 19 | fmpo 8076 |
. . . . 5
⊢
(∀𝑎 ∈
(0...(♯‘𝑋))∀𝑏 ∈ (𝐼 × 2o)(𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ 𝑊 ↔ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊) |
| 21 | 18, 20 | sylib 218 |
. . . 4
⊢ (𝑋 ∈ 𝑊 → (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊) |
| 22 | | ovex 7447 |
. . . . 5
⊢
(0...(♯‘𝑋)) ∈ V |
| 23 | 14 | simpld 494 |
. . . . . 6
⊢ (𝑋 ∈ 𝑊 → 𝐼 ∈ V) |
| 24 | | 2on 8503 |
. . . . . 6
⊢
2o ∈ On |
| 25 | | xpexg 7753 |
. . . . . 6
⊢ ((𝐼 ∈ V ∧ 2o
∈ On) → (𝐼
× 2o) ∈ V) |
| 26 | 23, 24, 25 | sylancl 586 |
. . . . 5
⊢ (𝑋 ∈ 𝑊 → (𝐼 × 2o) ∈
V) |
| 27 | | xpexg 7753 |
. . . . 5
⊢
(((0...(♯‘𝑋)) ∈ V ∧ (𝐼 × 2o) ∈ V) →
((0...(♯‘𝑋))
× (𝐼 ×
2o)) ∈ V) |
| 28 | 22, 26, 27 | sylancr 587 |
. . . 4
⊢ (𝑋 ∈ 𝑊 → ((0...(♯‘𝑋)) × (𝐼 × 2o)) ∈
V) |
| 29 | 21, 28 | fexd 7230 |
. . 3
⊢ (𝑋 ∈ 𝑊 → (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∈
V) |
| 30 | | fveq2 6887 |
. . . . . 6
⊢ (𝑢 = 𝑋 → (♯‘𝑢) = (♯‘𝑋)) |
| 31 | 30 | oveq2d 7430 |
. . . . 5
⊢ (𝑢 = 𝑋 → (0...(♯‘𝑢)) = (0...(♯‘𝑋))) |
| 32 | | eqidd 2735 |
. . . . 5
⊢ (𝑢 = 𝑋 → (𝐼 × 2o) = (𝐼 × 2o)) |
| 33 | | oveq1 7421 |
. . . . 5
⊢ (𝑢 = 𝑋 → (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 34 | 31, 32, 33 | mpoeq123dv 7491 |
. . . 4
⊢ (𝑢 = 𝑋 → (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 35 | | efgval2.t |
. . . . 5
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| 36 | | oteq1 4864 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 → 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉 = 〈𝑎, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉) |
| 37 | | oteq2 4865 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 → 〈𝑎, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉 = 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉) |
| 38 | 36, 37 | eqtrd 2769 |
. . . . . . . . 9
⊢ (𝑛 = 𝑎 → 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉 = 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉) |
| 39 | 38 | oveq2d 7430 |
. . . . . . . 8
⊢ (𝑛 = 𝑎 → (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉) = (𝑣 splice 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉)) |
| 40 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑏 → 𝑤 = 𝑏) |
| 41 | | fveq2 6887 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑏 → (𝑀‘𝑤) = (𝑀‘𝑏)) |
| 42 | 40, 41 | s2eqd 14885 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑏 → 〈“𝑤(𝑀‘𝑤)”〉 = 〈“𝑏(𝑀‘𝑏)”〉) |
| 43 | 42 | oteq3d 4869 |
. . . . . . . . 9
⊢ (𝑤 = 𝑏 → 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉 = 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) |
| 44 | 43 | oveq2d 7430 |
. . . . . . . 8
⊢ (𝑤 = 𝑏 → (𝑣 splice 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉) = (𝑣 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 45 | 39, 44 | cbvmpov 7511 |
. . . . . . 7
⊢ (𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑣)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 46 | | fveq2 6887 |
. . . . . . . . 9
⊢ (𝑣 = 𝑢 → (♯‘𝑣) = (♯‘𝑢)) |
| 47 | 46 | oveq2d 7430 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → (0...(♯‘𝑣)) = (0...(♯‘𝑢))) |
| 48 | | eqidd 2735 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → (𝐼 × 2o) = (𝐼 × 2o)) |
| 49 | | oveq1 7421 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → (𝑣 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 50 | 47, 48, 49 | mpoeq123dv 7491 |
. . . . . . 7
⊢ (𝑣 = 𝑢 → (𝑎 ∈ (0...(♯‘𝑣)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 51 | 45, 50 | eqtrid 2781 |
. . . . . 6
⊢ (𝑣 = 𝑢 → (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 52 | 51 | cbvmptv 5237 |
. . . . 5
⊢ (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) = (𝑢 ∈ 𝑊 ↦ (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 53 | 35, 52 | eqtri 2757 |
. . . 4
⊢ 𝑇 = (𝑢 ∈ 𝑊 ↦ (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 54 | 34, 53 | fvmptg 6995 |
. . 3
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∈ V) →
(𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 55 | 29, 54 | mpdan 687 |
. 2
⊢ (𝑋 ∈ 𝑊 → (𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 56 | 55 | feq1d 6701 |
. . 3
⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊 ↔ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)) |
| 57 | 21, 56 | mpbird 257 |
. 2
⊢ (𝑋 ∈ 𝑊 → (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊) |
| 58 | 55, 57 | jca 511 |
1
⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)) |