Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . . . . . . 10
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
2 | | fviss 6877 |
. . . . . . . . . 10
⊢ ( I
‘Word (𝐼 ×
2o)) ⊆ Word (𝐼 × 2o) |
3 | 1, 2 | eqsstri 3960 |
. . . . . . . . 9
⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
4 | | simpl 484 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋 ∈ 𝑊) |
5 | 3, 4 | sselid 3924 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑋 ∈ Word (𝐼 × 2o)) |
6 | | simprr 771 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o)) |
7 | | efgval2.m |
. . . . . . . . . . . 12
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
8 | 7 | efgmf 19364 |
. . . . . . . . . . 11
⊢ 𝑀:(𝐼 × 2o)⟶(𝐼 ×
2o) |
9 | 8 | ffvelcdmi 6992 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝐼 × 2o) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
10 | 9 | ad2antll 727 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀‘𝑏) ∈ (𝐼 × 2o)) |
11 | 6, 10 | s2cld 14629 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) →
〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o)) |
12 | | splcl 14510 |
. . . . . . . 8
⊢ ((𝑋 ∈ Word (𝐼 × 2o) ∧
〈“𝑏(𝑀‘𝑏)”〉 ∈ Word (𝐼 × 2o)) → (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ Word (𝐼 ×
2o)) |
13 | 5, 11, 12 | syl2anc 585 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ Word (𝐼 ×
2o)) |
14 | 1 | efgrcl 19366 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
15 | 14 | simprd 497 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
16 | 15 | adantr 482 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑊 = Word (𝐼 × 2o)) |
17 | 13, 16 | eleqtrrd 2840 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ 𝑊) |
18 | 17 | ralrimivva 3194 |
. . . . 5
⊢ (𝑋 ∈ 𝑊 → ∀𝑎 ∈ (0...(♯‘𝑋))∀𝑏 ∈ (𝐼 × 2o)(𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ 𝑊) |
19 | | eqid 2736 |
. . . . . 6
⊢ (𝑎 ∈
(0...(♯‘𝑋)),
𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
20 | 19 | fmpo 7940 |
. . . . 5
⊢
(∀𝑎 ∈
(0...(♯‘𝑋))∀𝑏 ∈ (𝐼 × 2o)(𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) ∈ 𝑊 ↔ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊) |
21 | 18, 20 | sylib 217 |
. . . 4
⊢ (𝑋 ∈ 𝑊 → (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊) |
22 | | ovex 7340 |
. . . . 5
⊢
(0...(♯‘𝑋)) ∈ V |
23 | 14 | simpld 496 |
. . . . . 6
⊢ (𝑋 ∈ 𝑊 → 𝐼 ∈ V) |
24 | | 2on 8342 |
. . . . . 6
⊢
2o ∈ On |
25 | | xpexg 7632 |
. . . . . 6
⊢ ((𝐼 ∈ V ∧ 2o
∈ On) → (𝐼
× 2o) ∈ V) |
26 | 23, 24, 25 | sylancl 587 |
. . . . 5
⊢ (𝑋 ∈ 𝑊 → (𝐼 × 2o) ∈
V) |
27 | | xpexg 7632 |
. . . . 5
⊢
(((0...(♯‘𝑋)) ∈ V ∧ (𝐼 × 2o) ∈ V) →
((0...(♯‘𝑋))
× (𝐼 ×
2o)) ∈ V) |
28 | 22, 26, 27 | sylancr 588 |
. . . 4
⊢ (𝑋 ∈ 𝑊 → ((0...(♯‘𝑋)) × (𝐼 × 2o)) ∈
V) |
29 | 21, 28 | fexd 7135 |
. . 3
⊢ (𝑋 ∈ 𝑊 → (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∈
V) |
30 | | fveq2 6804 |
. . . . . 6
⊢ (𝑢 = 𝑋 → (♯‘𝑢) = (♯‘𝑋)) |
31 | 30 | oveq2d 7323 |
. . . . 5
⊢ (𝑢 = 𝑋 → (0...(♯‘𝑢)) = (0...(♯‘𝑋))) |
32 | | eqidd 2737 |
. . . . 5
⊢ (𝑢 = 𝑋 → (𝐼 × 2o) = (𝐼 × 2o)) |
33 | | oveq1 7314 |
. . . . 5
⊢ (𝑢 = 𝑋 → (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
34 | 31, 32, 33 | mpoeq123dv 7382 |
. . . 4
⊢ (𝑢 = 𝑋 → (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
35 | | efgval2.t |
. . . . 5
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
36 | | oteq1 4818 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 → 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉 = 〈𝑎, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉) |
37 | | oteq2 4819 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑎 → 〈𝑎, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉 = 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉) |
38 | 36, 37 | eqtrd 2776 |
. . . . . . . . 9
⊢ (𝑛 = 𝑎 → 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉 = 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉) |
39 | 38 | oveq2d 7323 |
. . . . . . . 8
⊢ (𝑛 = 𝑎 → (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉) = (𝑣 splice 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉)) |
40 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑏 → 𝑤 = 𝑏) |
41 | | fveq2 6804 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑏 → (𝑀‘𝑤) = (𝑀‘𝑏)) |
42 | 40, 41 | s2eqd 14621 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑏 → 〈“𝑤(𝑀‘𝑤)”〉 = 〈“𝑏(𝑀‘𝑏)”〉) |
43 | 42 | oteq3d 4823 |
. . . . . . . . 9
⊢ (𝑤 = 𝑏 → 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉 = 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) |
44 | 43 | oveq2d 7323 |
. . . . . . . 8
⊢ (𝑤 = 𝑏 → (𝑣 splice 〈𝑎, 𝑎, 〈“𝑤(𝑀‘𝑤)”〉〉) = (𝑣 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
45 | 39, 44 | cbvmpov 7402 |
. . . . . . 7
⊢ (𝑛 ∈
(0...(♯‘𝑣)),
𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑣)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
46 | | fveq2 6804 |
. . . . . . . . 9
⊢ (𝑣 = 𝑢 → (♯‘𝑣) = (♯‘𝑢)) |
47 | 46 | oveq2d 7323 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → (0...(♯‘𝑣)) = (0...(♯‘𝑢))) |
48 | | eqidd 2737 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → (𝐼 × 2o) = (𝐼 × 2o)) |
49 | | oveq1 7314 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → (𝑣 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
50 | 47, 48, 49 | mpoeq123dv 7382 |
. . . . . . 7
⊢ (𝑣 = 𝑢 → (𝑎 ∈ (0...(♯‘𝑣)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
51 | 45, 50 | eqtrid 2788 |
. . . . . 6
⊢ (𝑣 = 𝑢 → (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
52 | 51 | cbvmptv 5194 |
. . . . 5
⊢ (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) = (𝑢 ∈ 𝑊 ↦ (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
53 | 35, 52 | eqtri 2764 |
. . . 4
⊢ 𝑇 = (𝑢 ∈ 𝑊 ↦ (𝑎 ∈ (0...(♯‘𝑢)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑢 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
54 | 34, 53 | fvmptg 6905 |
. . 3
⊢ ((𝑋 ∈ 𝑊 ∧ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∈ V) →
(𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
55 | 29, 54 | mpdan 685 |
. 2
⊢ (𝑋 ∈ 𝑊 → (𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
56 | 55 | feq1d 6615 |
. . 3
⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊 ↔ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)) |
57 | 21, 56 | mpbird 257 |
. 2
⊢ (𝑋 ∈ 𝑊 → (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊) |
58 | 55, 57 | jca 513 |
1
⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)) |