![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgtval | Structured version Visualization version GIF version |
Description: Value of the extension function, which maps a word (a representation of the group element as a sequence of elements and their inverses) to its direct extensions, defined as the original representation with an element and its inverse inserted somewhere in the string. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
Ref | Expression |
---|---|
efgtval | ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2𝑜)) → (𝑁(𝑇‘𝑋)𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . 6 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
2 | efgval.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | efgval2.m | . . . . . 6 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
4 | efgval2.t | . . . . . 6 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
5 | 1, 2, 3, 4 | efgtf 18448 | . . . . 5 ⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊)) |
6 | 5 | simpld 489 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → (𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
7 | 6 | oveqd 6895 | . . 3 ⊢ (𝑋 ∈ 𝑊 → (𝑁(𝑇‘𝑋)𝐴) = (𝑁(𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))𝐴)) |
8 | oteq1 4602 | . . . . . 6 ⊢ (𝑎 = 𝑁 → 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉 = 〈𝑁, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) | |
9 | oteq2 4603 | . . . . . 6 ⊢ (𝑎 = 𝑁 → 〈𝑁, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉 = 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉) | |
10 | 8, 9 | eqtrd 2833 | . . . . 5 ⊢ (𝑎 = 𝑁 → 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉 = 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉) |
11 | 10 | oveq2d 6894 | . . . 4 ⊢ (𝑎 = 𝑁 → (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
12 | id 22 | . . . . . . 7 ⊢ (𝑏 = 𝐴 → 𝑏 = 𝐴) | |
13 | fveq2 6411 | . . . . . . 7 ⊢ (𝑏 = 𝐴 → (𝑀‘𝑏) = (𝑀‘𝐴)) | |
14 | 12, 13 | s2eqd 13948 | . . . . . 6 ⊢ (𝑏 = 𝐴 → 〈“𝑏(𝑀‘𝑏)”〉 = 〈“𝐴(𝑀‘𝐴)”〉) |
15 | 14 | oteq3d 4607 | . . . . 5 ⊢ (𝑏 = 𝐴 → 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉 = 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉) |
16 | 15 | oveq2d 6894 | . . . 4 ⊢ (𝑏 = 𝐴 → (𝑋 splice 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
17 | eqid 2799 | . . . 4 ⊢ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) | |
18 | ovex 6910 | . . . 4 ⊢ (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉) ∈ V | |
19 | 11, 16, 17, 18 | ovmpt2 7030 | . . 3 ⊢ ((𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2𝑜)) → (𝑁(𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
20 | 7, 19 | sylan9eq 2853 | . 2 ⊢ ((𝑋 ∈ 𝑊 ∧ (𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2𝑜))) → (𝑁(𝑇‘𝑋)𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
21 | 20 | 3impb 1144 | 1 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2𝑜)) → (𝑁(𝑇‘𝑋)𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∖ cdif 3766 〈cop 4374 〈cotp 4376 ↦ cmpt 4922 I cid 5219 × cxp 5310 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 1𝑜c1o 7792 2𝑜c2o 7793 0cc0 10224 ...cfz 12580 ♯chash 13370 Word cword 13534 splice csplice 13819 〈“cs2 13926 ~FG cefg 18432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-ot 4377 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-fz 12581 df-fzo 12721 df-hash 13371 df-word 13535 df-concat 13591 df-s1 13616 df-substr 13665 df-pfx 13714 df-splice 13821 df-s2 13933 |
This theorem is referenced by: efginvrel2 18453 efgredleme 18470 efgredlemc 18472 efgcpbllemb 18483 |
Copyright terms: Public domain | W3C validator |