MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtval Structured version   Visualization version   GIF version

Theorem efgtval 19643
Description: Value of the extension function, which maps a word (a representation of the group element as a sequence of elements and their inverses) to its direct extensions, defined as the original representation with an element and its inverse inserted somewhere in the string. (Contributed by Mario Carneiro, 29-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgtval ((𝑋𝑊𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑁(𝑇𝑋)𝐴) = (𝑋 splice ⟨𝑁, 𝑁, ⟨“𝐴(𝑀𝐴)”⟩⟩))
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑋(𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem efgtval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . 6 = ( ~FG𝐼)
3 efgval2.m . . . . . 6 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . 6 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
51, 2, 3, 4efgtf 19642 . . . . 5 (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊))
65simpld 494 . . . 4 (𝑋𝑊 → (𝑇𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
76oveqd 7372 . . 3 (𝑋𝑊 → (𝑁(𝑇𝑋)𝐴) = (𝑁(𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))𝐴))
8 oteq1 4835 . . . . . 6 (𝑎 = 𝑁 → ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩ = ⟨𝑁, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)
9 oteq2 4836 . . . . . 6 (𝑎 = 𝑁 → ⟨𝑁, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩ = ⟨𝑁, 𝑁, ⟨“𝑏(𝑀𝑏)”⟩⟩)
108, 9eqtrd 2768 . . . . 5 (𝑎 = 𝑁 → ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩ = ⟨𝑁, 𝑁, ⟨“𝑏(𝑀𝑏)”⟩⟩)
1110oveq2d 7371 . . . 4 (𝑎 = 𝑁 → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = (𝑋 splice ⟨𝑁, 𝑁, ⟨“𝑏(𝑀𝑏)”⟩⟩))
12 id 22 . . . . . . 7 (𝑏 = 𝐴𝑏 = 𝐴)
13 fveq2 6831 . . . . . . 7 (𝑏 = 𝐴 → (𝑀𝑏) = (𝑀𝐴))
1412, 13s2eqd 14777 . . . . . 6 (𝑏 = 𝐴 → ⟨“𝑏(𝑀𝑏)”⟩ = ⟨“𝐴(𝑀𝐴)”⟩)
1514oteq3d 4840 . . . . 5 (𝑏 = 𝐴 → ⟨𝑁, 𝑁, ⟨“𝑏(𝑀𝑏)”⟩⟩ = ⟨𝑁, 𝑁, ⟨“𝐴(𝑀𝐴)”⟩⟩)
1615oveq2d 7371 . . . 4 (𝑏 = 𝐴 → (𝑋 splice ⟨𝑁, 𝑁, ⟨“𝑏(𝑀𝑏)”⟩⟩) = (𝑋 splice ⟨𝑁, 𝑁, ⟨“𝐴(𝑀𝐴)”⟩⟩))
17 eqid 2733 . . . 4 (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
18 ovex 7388 . . . 4 (𝑋 splice ⟨𝑁, 𝑁, ⟨“𝐴(𝑀𝐴)”⟩⟩) ∈ V
1911, 16, 17, 18ovmpo 7515 . . 3 ((𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑁(𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))𝐴) = (𝑋 splice ⟨𝑁, 𝑁, ⟨“𝐴(𝑀𝐴)”⟩⟩))
207, 19sylan9eq 2788 . 2 ((𝑋𝑊 ∧ (𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o))) → (𝑁(𝑇𝑋)𝐴) = (𝑋 splice ⟨𝑁, 𝑁, ⟨“𝐴(𝑀𝐴)”⟩⟩))
21203impb 1114 1 ((𝑋𝑊𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑁(𝑇𝑋)𝐴) = (𝑋 splice ⟨𝑁, 𝑁, ⟨“𝐴(𝑀𝐴)”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cdif 3895  cop 4583  cotp 4585  cmpt 5176   I cid 5515   × cxp 5619  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  1oc1o 8387  2oc2o 8388  0cc0 11017  ...cfz 13414  chash 14244  Word cword 14427   splice csplice 14663  ⟨“cs2 14755   ~FG cefg 19626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-hash 14245  df-word 14428  df-concat 14485  df-s1 14511  df-substr 14556  df-pfx 14586  df-splice 14664  df-s2 14762
This theorem is referenced by:  efginvrel2  19647  efgredleme  19663  efgredlemc  19665  efgcpbllemb  19675
  Copyright terms: Public domain W3C validator