| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgtval | Structured version Visualization version GIF version | ||
| Description: Value of the extension function, which maps a word (a representation of the group element as a sequence of elements and their inverses) to its direct extensions, defined as the original representation with an element and its inverse inserted somewhere in the string. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| Ref | Expression |
|---|---|
| efgtval | ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑁(𝑇‘𝑋)𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . . . 6 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | efgval2.m | . . . . . 6 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 4 | efgval2.t | . . . . . 6 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 5 | 1, 2, 3, 4 | efgtf 19629 | . . . . 5 ⊢ (𝑋 ∈ 𝑊 → ((𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) ∧ (𝑇‘𝑋):((0...(♯‘𝑋)) × (𝐼 × 2o))⟶𝑊)) |
| 6 | 5 | simpld 494 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → (𝑇‘𝑋) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))) |
| 7 | 6 | oveqd 7358 | . . 3 ⊢ (𝑋 ∈ 𝑊 → (𝑁(𝑇‘𝑋)𝐴) = (𝑁(𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))𝐴)) |
| 8 | oteq1 4829 | . . . . . 6 ⊢ (𝑎 = 𝑁 → 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉 = 〈𝑁, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) | |
| 9 | oteq2 4830 | . . . . . 6 ⊢ (𝑎 = 𝑁 → 〈𝑁, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉 = 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉) | |
| 10 | 8, 9 | eqtrd 2766 | . . . . 5 ⊢ (𝑎 = 𝑁 → 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉 = 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉) |
| 11 | 10 | oveq2d 7357 | . . . 4 ⊢ (𝑎 = 𝑁 → (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉)) |
| 12 | id 22 | . . . . . . 7 ⊢ (𝑏 = 𝐴 → 𝑏 = 𝐴) | |
| 13 | fveq2 6817 | . . . . . . 7 ⊢ (𝑏 = 𝐴 → (𝑀‘𝑏) = (𝑀‘𝐴)) | |
| 14 | 12, 13 | s2eqd 14765 | . . . . . 6 ⊢ (𝑏 = 𝐴 → 〈“𝑏(𝑀‘𝑏)”〉 = 〈“𝐴(𝑀‘𝐴)”〉) |
| 15 | 14 | oteq3d 4834 | . . . . 5 ⊢ (𝑏 = 𝐴 → 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉 = 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉) |
| 16 | 15 | oveq2d 7357 | . . . 4 ⊢ (𝑏 = 𝐴 → (𝑋 splice 〈𝑁, 𝑁, 〈“𝑏(𝑀‘𝑏)”〉〉) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
| 17 | eqid 2731 | . . . 4 ⊢ (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) = (𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉)) | |
| 18 | ovex 7374 | . . . 4 ⊢ (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉) ∈ V | |
| 19 | 11, 16, 17, 18 | ovmpo 7501 | . . 3 ⊢ ((𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑁(𝑎 ∈ (0...(♯‘𝑋)), 𝑏 ∈ (𝐼 × 2o) ↦ (𝑋 splice 〈𝑎, 𝑎, 〈“𝑏(𝑀‘𝑏)”〉〉))𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
| 20 | 7, 19 | sylan9eq 2786 | . 2 ⊢ ((𝑋 ∈ 𝑊 ∧ (𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o))) → (𝑁(𝑇‘𝑋)𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
| 21 | 20 | 3impb 1114 | 1 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝑋)) ∧ 𝐴 ∈ (𝐼 × 2o)) → (𝑁(𝑇‘𝑋)𝐴) = (𝑋 splice 〈𝑁, 𝑁, 〈“𝐴(𝑀‘𝐴)”〉〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 〈cop 4577 〈cotp 4579 ↦ cmpt 5167 I cid 5505 × cxp 5609 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 1oc1o 8373 2oc2o 8374 0cc0 11001 ...cfz 13402 ♯chash 14232 Word cword 14415 splice csplice 14651 〈“cs2 14743 ~FG cefg 19613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 df-splice 14652 df-s2 14750 |
| This theorem is referenced by: efginvrel2 19634 efgredleme 19650 efgredlemc 19652 efgcpbllemb 19662 |
| Copyright terms: Public domain | W3C validator |