MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi Structured version   Visualization version   GIF version

Theorem efgi 19630
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
Assertion
Ref Expression
efgi (((𝐴 ∈ π‘Š ∧ 𝑁 ∈ (0...(β™―β€˜π΄))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) β†’ 𝐴 ∼ (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©))

Proof of Theorem efgi
Dummy variables π‘Ž 𝑏 𝑖 π‘Ÿ 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . . . . . . . 11 (𝑒 = 𝐴 β†’ (β™―β€˜π‘’) = (β™―β€˜π΄))
21oveq2d 7429 . . . . . . . . . 10 (𝑒 = 𝐴 β†’ (0...(β™―β€˜π‘’)) = (0...(β™―β€˜π΄)))
3 id 22 . . . . . . . . . . . 12 (𝑒 = 𝐴 β†’ 𝑒 = 𝐴)
4 oveq1 7420 . . . . . . . . . . . 12 (𝑒 = 𝐴 β†’ (𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) = (𝐴 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©))
53, 4breq12d 5162 . . . . . . . . . . 11 (𝑒 = 𝐴 β†’ (π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) ↔ π΄π‘Ÿ(𝐴 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)))
652ralbidv 3216 . . . . . . . . . 10 (𝑒 = 𝐴 β†’ (βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) ↔ βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π΄π‘Ÿ(𝐴 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)))
72, 6raleqbidv 3340 . . . . . . . . 9 (𝑒 = 𝐴 β†’ (βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) ↔ βˆ€π‘– ∈ (0...(β™―β€˜π΄))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π΄π‘Ÿ(𝐴 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)))
87rspcv 3609 . . . . . . . 8 (𝐴 ∈ π‘Š β†’ (βˆ€π‘’ ∈ π‘Š βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) β†’ βˆ€π‘– ∈ (0...(β™―β€˜π΄))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π΄π‘Ÿ(𝐴 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)))
9 oteq1 4883 . . . . . . . . . . . . 13 (𝑖 = 𝑁 β†’ βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ© = βŸ¨π‘, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)
10 oteq2 4884 . . . . . . . . . . . . 13 (𝑖 = 𝑁 β†’ βŸ¨π‘, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ© = βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)
119, 10eqtrd 2770 . . . . . . . . . . . 12 (𝑖 = 𝑁 β†’ βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ© = βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)
1211oveq2d 7429 . . . . . . . . . . 11 (𝑖 = 𝑁 β†’ (𝐴 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) = (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©))
1312breq2d 5161 . . . . . . . . . 10 (𝑖 = 𝑁 β†’ (π΄π‘Ÿ(𝐴 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) ↔ π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)))
14132ralbidv 3216 . . . . . . . . 9 (𝑖 = 𝑁 β†’ (βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π΄π‘Ÿ(𝐴 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) ↔ βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)))
1514rspcv 3609 . . . . . . . 8 (𝑁 ∈ (0...(β™―β€˜π΄)) β†’ (βˆ€π‘– ∈ (0...(β™―β€˜π΄))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π΄π‘Ÿ(𝐴 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) β†’ βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)))
168, 15sylan9 506 . . . . . . 7 ((𝐴 ∈ π‘Š ∧ 𝑁 ∈ (0...(β™―β€˜π΄))) β†’ (βˆ€π‘’ ∈ π‘Š βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) β†’ βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)))
17 opeq1 4874 . . . . . . . . . . . 12 (π‘Ž = 𝐽 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨𝐽, π‘βŸ©)
18 opeq1 4874 . . . . . . . . . . . 12 (π‘Ž = 𝐽 β†’ βŸ¨π‘Ž, (1o βˆ– 𝑏)⟩ = ⟨𝐽, (1o βˆ– 𝑏)⟩)
1917, 18s2eqd 14820 . . . . . . . . . . 11 (π‘Ž = 𝐽 β†’ βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ© = βŸ¨β€œβŸ¨π½, π‘βŸ©βŸ¨π½, (1o βˆ– 𝑏)βŸ©β€βŸ©)
2019oteq3d 4888 . . . . . . . . . 10 (π‘Ž = 𝐽 β†’ βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ© = βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, π‘βŸ©βŸ¨π½, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)
2120oveq2d 7429 . . . . . . . . 9 (π‘Ž = 𝐽 β†’ (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) = (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, π‘βŸ©βŸ¨π½, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©))
2221breq2d 5161 . . . . . . . 8 (π‘Ž = 𝐽 β†’ (π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) ↔ π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, π‘βŸ©βŸ¨π½, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)))
23 opeq2 4875 . . . . . . . . . . . . 13 (𝑏 = 𝐾 β†’ ⟨𝐽, π‘βŸ© = ⟨𝐽, 𝐾⟩)
24 difeq2 4117 . . . . . . . . . . . . . 14 (𝑏 = 𝐾 β†’ (1o βˆ– 𝑏) = (1o βˆ– 𝐾))
2524opeq2d 4881 . . . . . . . . . . . . 13 (𝑏 = 𝐾 β†’ ⟨𝐽, (1o βˆ– 𝑏)⟩ = ⟨𝐽, (1o βˆ– 𝐾)⟩)
2623, 25s2eqd 14820 . . . . . . . . . . . 12 (𝑏 = 𝐾 β†’ βŸ¨β€œβŸ¨π½, π‘βŸ©βŸ¨π½, (1o βˆ– 𝑏)βŸ©β€βŸ© = βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©)
2726oteq3d 4888 . . . . . . . . . . 11 (𝑏 = 𝐾 β†’ βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, π‘βŸ©βŸ¨π½, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ© = βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)
2827oveq2d 7429 . . . . . . . . . 10 (𝑏 = 𝐾 β†’ (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, π‘βŸ©βŸ¨π½, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) = (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©))
2928breq2d 5161 . . . . . . . . 9 (𝑏 = 𝐾 β†’ (π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, π‘βŸ©βŸ¨π½, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) ↔ π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)))
30 df-br 5150 . . . . . . . . 9 (π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©) ↔ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ π‘Ÿ)
3129, 30bitrdi 286 . . . . . . . 8 (𝑏 = 𝐾 β†’ (π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, π‘βŸ©βŸ¨π½, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) ↔ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ π‘Ÿ))
3222, 31rspc2v 3623 . . . . . . 7 ((𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o) β†’ (βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π΄π‘Ÿ(𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) β†’ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ π‘Ÿ))
3316, 32sylan9 506 . . . . . 6 (((𝐴 ∈ π‘Š ∧ 𝑁 ∈ (0...(β™―β€˜π΄))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) β†’ (βˆ€π‘’ ∈ π‘Š βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©) β†’ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ π‘Ÿ))
3433adantld 489 . . . . 5 (((𝐴 ∈ π‘Š ∧ 𝑁 ∈ (0...(β™―β€˜π΄))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) β†’ ((π‘Ÿ Er π‘Š ∧ βˆ€π‘’ ∈ π‘Š βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)) β†’ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ π‘Ÿ))
3534alrimiv 1928 . . . 4 (((𝐴 ∈ π‘Š ∧ 𝑁 ∈ (0...(β™―β€˜π΄))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) β†’ βˆ€π‘Ÿ((π‘Ÿ Er π‘Š ∧ βˆ€π‘’ ∈ π‘Š βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)) β†’ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ π‘Ÿ))
36 opex 5465 . . . . 5 ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ V
3736elintab 4963 . . . 4 (⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ ∩ {π‘Ÿ ∣ (π‘Ÿ Er π‘Š ∧ βˆ€π‘’ ∈ π‘Š βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©))} ↔ βˆ€π‘Ÿ((π‘Ÿ Er π‘Š ∧ βˆ€π‘’ ∈ π‘Š βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©)) β†’ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ π‘Ÿ))
3835, 37sylibr 233 . . 3 (((𝐴 ∈ π‘Š ∧ 𝑁 ∈ (0...(β™―β€˜π΄))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) β†’ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ ∩ {π‘Ÿ ∣ (π‘Ÿ Er π‘Š ∧ βˆ€π‘’ ∈ π‘Š βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©))})
39 efgval.w . . . 4 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
40 efgval.r . . . 4 ∼ = ( ~FG β€˜πΌ)
4139, 40efgval 19628 . . 3 ∼ = ∩ {π‘Ÿ ∣ (π‘Ÿ Er π‘Š ∧ βˆ€π‘’ ∈ π‘Š βˆ€π‘– ∈ (0...(β™―β€˜π‘’))βˆ€π‘Ž ∈ 𝐼 βˆ€π‘ ∈ 2o π‘’π‘Ÿ(𝑒 splice βŸ¨π‘–, 𝑖, βŸ¨β€œβŸ¨π‘Ž, π‘βŸ©βŸ¨π‘Ž, (1o βˆ– 𝑏)βŸ©β€βŸ©βŸ©))}
4238, 41eleqtrrdi 2842 . 2 (((𝐴 ∈ π‘Š ∧ 𝑁 ∈ (0...(β™―β€˜π΄))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) β†’ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ ∼ )
43 df-br 5150 . 2 (𝐴 ∼ (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©) ↔ ⟨𝐴, (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©)⟩ ∈ ∼ )
4442, 43sylibr 233 1 (((𝐴 ∈ π‘Š ∧ 𝑁 ∈ (0...(β™―β€˜π΄))) ∧ (𝐽 ∈ 𝐼 ∧ 𝐾 ∈ 2o)) β†’ 𝐴 ∼ (𝐴 splice βŸ¨π‘, 𝑁, βŸ¨β€œβŸ¨π½, 𝐾⟩⟨𝐽, (1o βˆ– 𝐾)βŸ©β€βŸ©βŸ©))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394  βˆ€wal 1537   = wceq 1539   ∈ wcel 2104  {cab 2707  βˆ€wral 3059   βˆ– cdif 3946  βŸ¨cop 4635  βŸ¨cotp 4637  βˆ© cint 4951   class class class wbr 5149   I cid 5574   Γ— cxp 5675  β€˜cfv 6544  (class class class)co 7413  1oc1o 8463  2oc2o 8464   Er wer 8704  0cc0 11114  ...cfz 13490  β™―chash 14296  Word cword 14470   splice csplice 14705  βŸ¨β€œcs2 14798   ~FG cefg 19617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-n0 12479  df-z 12565  df-uz 12829  df-fz 13491  df-fzo 13634  df-hash 14297  df-word 14471  df-concat 14527  df-s1 14552  df-substr 14597  df-pfx 14627  df-splice 14706  df-s2 14805  df-efg 19620
This theorem is referenced by:  efgi0  19631  efgi1  19632
  Copyright terms: Public domain W3C validator