MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi Structured version   Visualization version   GIF version

Theorem efgi 19240
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
Assertion
Ref Expression
efgi (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩))

Proof of Theorem efgi
Dummy variables 𝑎 𝑏 𝑖 𝑟 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . . . . . . 11 (𝑢 = 𝐴 → (♯‘𝑢) = (♯‘𝐴))
21oveq2d 7271 . . . . . . . . . 10 (𝑢 = 𝐴 → (0...(♯‘𝑢)) = (0...(♯‘𝐴)))
3 id 22 . . . . . . . . . . . 12 (𝑢 = 𝐴𝑢 = 𝐴)
4 oveq1 7262 . . . . . . . . . . . 12 (𝑢 = 𝐴 → (𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
53, 4breq12d 5083 . . . . . . . . . . 11 (𝑢 = 𝐴 → (𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
652ralbidv 3122 . . . . . . . . . 10 (𝑢 = 𝐴 → (∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
72, 6raleqbidv 3327 . . . . . . . . 9 (𝑢 = 𝐴 → (∀𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑖 ∈ (0...(♯‘𝐴))∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
87rspcv 3547 . . . . . . . 8 (𝐴𝑊 → (∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ∀𝑖 ∈ (0...(♯‘𝐴))∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
9 oteq1 4810 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)
10 oteq2 4811 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → ⟨𝑁, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)
119, 10eqtrd 2778 . . . . . . . . . . . 12 (𝑖 = 𝑁 → ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)
1211oveq2d 7271 . . . . . . . . . . 11 (𝑖 = 𝑁 → (𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))
1312breq2d 5082 . . . . . . . . . 10 (𝑖 = 𝑁 → (𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
14132ralbidv 3122 . . . . . . . . 9 (𝑖 = 𝑁 → (∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
1514rspcv 3547 . . . . . . . 8 (𝑁 ∈ (0...(♯‘𝐴)) → (∀𝑖 ∈ (0...(♯‘𝐴))∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
168, 15sylan9 507 . . . . . . 7 ((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) → (∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)))
17 opeq1 4801 . . . . . . . . . . . 12 (𝑎 = 𝐽 → ⟨𝑎, 𝑏⟩ = ⟨𝐽, 𝑏⟩)
18 opeq1 4801 . . . . . . . . . . . 12 (𝑎 = 𝐽 → ⟨𝑎, (1o𝑏)⟩ = ⟨𝐽, (1o𝑏)⟩)
1917, 18s2eqd 14504 . . . . . . . . . . 11 (𝑎 = 𝐽 → ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩ = ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩)
2019oteq3d 4815 . . . . . . . . . 10 (𝑎 = 𝐽 → ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩)
2120oveq2d 7271 . . . . . . . . 9 (𝑎 = 𝐽 → (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩))
2221breq2d 5082 . . . . . . . 8 (𝑎 = 𝐽 → (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩)))
23 opeq2 4802 . . . . . . . . . . . . 13 (𝑏 = 𝐾 → ⟨𝐽, 𝑏⟩ = ⟨𝐽, 𝐾⟩)
24 difeq2 4047 . . . . . . . . . . . . . 14 (𝑏 = 𝐾 → (1o𝑏) = (1o𝐾))
2524opeq2d 4808 . . . . . . . . . . . . 13 (𝑏 = 𝐾 → ⟨𝐽, (1o𝑏)⟩ = ⟨𝐽, (1o𝐾)⟩)
2623, 25s2eqd 14504 . . . . . . . . . . . 12 (𝑏 = 𝐾 → ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩ = ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩)
2726oteq3d 4815 . . . . . . . . . . 11 (𝑏 = 𝐾 → ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩ = ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)
2827oveq2d 7271 . . . . . . . . . 10 (𝑏 = 𝐾 → (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩) = (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩))
2928breq2d 5082 . . . . . . . . 9 (𝑏 = 𝐾 → (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩) ↔ 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)))
30 df-br 5071 . . . . . . . . 9 (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩) ↔ ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟)
3129, 30bitrdi 286 . . . . . . . 8 (𝑏 = 𝐾 → (𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝑏⟩⟨𝐽, (1o𝑏)⟩”⟩⟩) ↔ ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3222, 31rspc2v 3562 . . . . . . 7 ((𝐽𝐼𝐾 ∈ 2o) → (∀𝑎𝐼𝑏 ∈ 2o 𝐴𝑟(𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3316, 32sylan9 507 . . . . . 6 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → (∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3433adantld 490 . . . . 5 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → ((𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3534alrimiv 1931 . . . 4 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
36 opex 5373 . . . . 5 𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ V
3736elintab 4887 . . . 4 (⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))} ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ 𝑟))
3835, 37sylibr 233 . . 3 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))})
39 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
40 efgval.r . . . 4 = ( ~FG𝐼)
4139, 40efgval 19238 . . 3 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑢𝑊𝑖 ∈ (0...(♯‘𝑢))∀𝑎𝐼𝑏 ∈ 2o 𝑢𝑟(𝑢 splice ⟨𝑖, 𝑖, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1o𝑏)⟩”⟩⟩))}
4238, 41eleqtrrdi 2850 . 2 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ )
43 df-br 5071 . 2 (𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩) ↔ ⟨𝐴, (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩)⟩ ∈ )
4442, 43sylibr 233 1 (((𝐴𝑊𝑁 ∈ (0...(♯‘𝐴))) ∧ (𝐽𝐼𝐾 ∈ 2o)) → 𝐴 (𝐴 splice ⟨𝑁, 𝑁, ⟨“⟨𝐽, 𝐾⟩⟨𝐽, (1o𝐾)⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wral 3063  cdif 3880  cop 4564  cotp 4566   cint 4876   class class class wbr 5070   I cid 5479   × cxp 5578  cfv 6418  (class class class)co 7255  1oc1o 8260  2oc2o 8261   Er wer 8453  0cc0 10802  ...cfz 13168  chash 13972  Word cword 14145   splice csplice 14390  ⟨“cs2 14482   ~FG cefg 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-s2 14489  df-efg 19230
This theorem is referenced by:  efgi0  19241  efgi1  19242
  Copyright terms: Public domain W3C validator