MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otthg Structured version   Visualization version   GIF version

Theorem otthg 5400
Description: Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otthg ((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))

Proof of Theorem otthg
StepHypRef Expression
1 df-ot 4570 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 df-ot 4570 . . 3 𝐷, 𝐸, 𝐹⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹
31, 2eqeq12i 2756 . 2 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩)
4 opex 5379 . . . . 5 𝐴, 𝐵⟩ ∈ V
5 opthg 5392 . . . . 5 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹)))
64, 5mpan 687 . . . 4 (𝐶𝑊 → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹)))
7 opthg 5392 . . . . . 6 ((𝐴𝑈𝐵𝑉) → (⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸)))
87anbi1d 630 . . . . 5 ((𝐴𝑈𝐵𝑉) → ((⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹)))
9 df-3an 1088 . . . . 5 ((𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹))
108, 9bitr4di 289 . . . 4 ((𝐴𝑈𝐵𝑉) → ((⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹) ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
116, 10sylan9bbr 511 . . 3 (((𝐴𝑈𝐵𝑉) ∧ 𝐶𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
12113impa 1109 . 2 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
133, 12bitrid 282 1 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  cotp 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570
This theorem is referenced by:  otsndisj  5433  otiunsndisj  5434  otiunsndisjX  44771
  Copyright terms: Public domain W3C validator