MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otthg Structured version   Visualization version   GIF version

Theorem otthg 5485
Description: Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otthg ((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))

Proof of Theorem otthg
StepHypRef Expression
1 df-ot 4637 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 df-ot 4637 . . 3 𝐷, 𝐸, 𝐹⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹
31, 2eqeq12i 2749 . 2 (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩)
4 opex 5464 . . . . 5 𝐴, 𝐵⟩ ∈ V
5 opthg 5477 . . . . 5 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹)))
64, 5mpan 687 . . . 4 (𝐶𝑊 → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹)))
7 opthg 5477 . . . . . 6 ((𝐴𝑈𝐵𝑉) → (⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸)))
87anbi1d 629 . . . . 5 ((𝐴𝑈𝐵𝑉) → ((⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹)))
9 df-3an 1088 . . . . 5 ((𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹) ↔ ((𝐴 = 𝐷𝐵 = 𝐸) ∧ 𝐶 = 𝐹))
108, 9bitr4di 289 . . . 4 ((𝐴𝑈𝐵𝑉) → ((⟨𝐴, 𝐵⟩ = ⟨𝐷, 𝐸⟩ ∧ 𝐶 = 𝐹) ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
116, 10sylan9bbr 510 . . 3 (((𝐴𝑈𝐵𝑉) ∧ 𝐶𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
12113impa 1109 . 2 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝐷, 𝐸⟩, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
133, 12bitrid 283 1 ((𝐴𝑈𝐵𝑉𝐶𝑊) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝐷, 𝐸, 𝐹⟩ ↔ (𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  cop 4634  cotp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637
This theorem is referenced by:  otsndisj  5519  otiunsndisj  5520  otiunsndisjX  46446
  Copyright terms: Public domain W3C validator