| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > otthg | Structured version Visualization version GIF version | ||
| Description: Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
| Ref | Expression |
|---|---|
| otthg | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot 4615 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
| 2 | df-ot 4615 | . . 3 ⊢ 〈𝐷, 𝐸, 𝐹〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 | |
| 3 | 1, 2 | eqeq12i 2754 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉) |
| 4 | opex 5444 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 5 | opthg 5457 | . . . . 5 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑊) → (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ∧ 𝐶 = 𝐹))) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ∧ 𝐶 = 𝐹))) |
| 7 | opthg 5457 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → (〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸))) | |
| 8 | 7 | anbi1d 631 | . . . . 5 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ∧ 𝐶 = 𝐹) ↔ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐸) ∧ 𝐶 = 𝐹))) |
| 9 | df-3an 1088 | . . . . 5 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹) ↔ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐸) ∧ 𝐶 = 𝐹)) | |
| 10 | 8, 9 | bitr4di 289 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ∧ 𝐶 = 𝐹) ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
| 11 | 6, 10 | sylan9bbr 510 | . . 3 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑊) → (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
| 12 | 11 | 3impa 1109 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
| 13 | 3, 12 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 〈cotp 4614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 |
| This theorem is referenced by: otsndisj 5499 otiunsndisj 5500 otiunsndisjX 47275 |
| Copyright terms: Public domain | W3C validator |