![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > otthg | Structured version Visualization version GIF version |
Description: Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
Ref | Expression |
---|---|
otthg | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4657 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | df-ot 4657 | . . 3 ⊢ 〈𝐷, 𝐸, 𝐹〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 | |
3 | 1, 2 | eqeq12i 2758 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉) |
4 | opex 5484 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
5 | opthg 5497 | . . . . 5 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑊) → (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ∧ 𝐶 = 𝐹))) | |
6 | 4, 5 | mpan 689 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ∧ 𝐶 = 𝐹))) |
7 | opthg 5497 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → (〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸))) | |
8 | 7 | anbi1d 630 | . . . . 5 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ∧ 𝐶 = 𝐹) ↔ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐸) ∧ 𝐶 = 𝐹))) |
9 | df-3an 1089 | . . . . 5 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹) ↔ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐸) ∧ 𝐶 = 𝐹)) | |
10 | 8, 9 | bitr4di 289 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((〈𝐴, 𝐵〉 = 〈𝐷, 𝐸〉 ∧ 𝐶 = 𝐹) ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
11 | 6, 10 | sylan9bbr 510 | . . 3 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑊) → (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
12 | 11 | 3impa 1110 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝐷, 𝐸〉, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
13 | 3, 12 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (〈𝐴, 𝐵, 𝐶〉 = 〈𝐷, 𝐸, 𝐹〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 〈cotp 4656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 |
This theorem is referenced by: otsndisj 5538 otiunsndisj 5539 otiunsndisjX 47194 |
Copyright terms: Public domain | W3C validator |