| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval40 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (4,0). (Contributed by AV, 9-May-2024.) |
| Ref | Expression |
|---|---|
| ackval40 | ⊢ ((Ack‘4)‘0) = ;13 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12305 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | fveq2i 6879 | . . 3 ⊢ (Ack‘4) = (Ack‘(3 + 1)) |
| 3 | 2 | fveq1i 6877 | . 2 ⊢ ((Ack‘4)‘0) = ((Ack‘(3 + 1))‘0) |
| 4 | 3nn0 12519 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 5 | ackvalsuc0val 48667 | . . 3 ⊢ (3 ∈ ℕ0 → ((Ack‘(3 + 1))‘0) = ((Ack‘3)‘1)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ ((Ack‘(3 + 1))‘0) = ((Ack‘3)‘1) |
| 7 | ackval3012 48672 | . . 3 ⊢ 〈((Ack‘3)‘0), ((Ack‘3)‘1), ((Ack‘3)‘2)〉 = 〈5, ;13, ;29〉 | |
| 8 | fvex 6889 | . . . . 5 ⊢ ((Ack‘3)‘0) ∈ V | |
| 9 | fvex 6889 | . . . . 5 ⊢ ((Ack‘3)‘1) ∈ V | |
| 10 | fvex 6889 | . . . . 5 ⊢ ((Ack‘3)‘2) ∈ V | |
| 11 | 8, 9, 10 | otth 5459 | . . . 4 ⊢ (〈((Ack‘3)‘0), ((Ack‘3)‘1), ((Ack‘3)‘2)〉 = 〈5, ;13, ;29〉 ↔ (((Ack‘3)‘0) = 5 ∧ ((Ack‘3)‘1) = ;13 ∧ ((Ack‘3)‘2) = ;29)) |
| 12 | 11 | simp2bi 1146 | . . 3 ⊢ (〈((Ack‘3)‘0), ((Ack‘3)‘1), ((Ack‘3)‘2)〉 = 〈5, ;13, ;29〉 → ((Ack‘3)‘1) = ;13) |
| 13 | 7, 12 | ax-mp 5 | . 2 ⊢ ((Ack‘3)‘1) = ;13 |
| 14 | 3, 6, 13 | 3eqtri 2762 | 1 ⊢ ((Ack‘4)‘0) = ;13 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 〈cotp 4609 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 2c2 12295 3c3 12296 4c4 12297 5c5 12298 9c9 12302 ℕ0cn0 12501 ;cdc 12708 Ackcack 48638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-seq 14020 df-exp 14080 df-itco 48639 df-ack 48640 |
| This theorem is referenced by: ackval41a 48674 |
| Copyright terms: Public domain | W3C validator |