Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpm2tr Structured version   Visualization version   GIF version

Theorem cycpm2tr 31968
Description: A cyclic permutation of 2 elements is a transposition. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cycpm2.c 𝐶 = (toCyc‘𝐷)
cycpm2.d (𝜑𝐷𝑉)
cycpm2.i (𝜑𝐼𝐷)
cycpm2.j (𝜑𝐽𝐷)
cycpm2.1 (𝜑𝐼𝐽)
cycpm2tr.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
cycpm2tr (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))

Proof of Theorem cycpm2tr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 partfun 6648 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
21a1i 11 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
3 cycpm2.i . . . . . . 7 (𝜑𝐼𝐷)
4 cycpm2.j . . . . . . 7 (𝜑𝐽𝐷)
5 cshw1s2 31814 . . . . . . 7 ((𝐼𝐷𝐽𝐷) → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
63, 4, 5syl2anc 584 . . . . . 6 (𝜑 → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
76coeq1d 5817 . . . . 5 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩))
8 0nn0 12428 . . . . . . . 8 0 ∈ ℕ0
98a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
10 1nn0 12429 . . . . . . . 8 1 ∈ ℕ0
1110a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ0)
12 0ne1 12224 . . . . . . . 8 0 ≠ 1
1312a1i 11 . . . . . . 7 (𝜑 → 0 ≠ 1)
14 cycpm2.1 . . . . . . 7 (𝜑𝐼𝐽)
159, 4, 11, 3, 13, 3, 4, 14coprprop 31613 . . . . . 6 (𝜑 → ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
16 s2prop 14796 . . . . . . . 8 ((𝐽𝐷𝐼𝐷) → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
174, 3, 16syl2anc 584 . . . . . . 7 (𝜑 → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
18 s2prop 14796 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
193, 4, 18syl2anc 584 . . . . . . . . 9 (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
2019cnveqd 5831 . . . . . . . 8 (𝜑⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
21 cnvprop 31610 . . . . . . . . 9 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
229, 3, 11, 4, 21syl22anc 837 . . . . . . . 8 (𝜑{⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2320, 22eqtrd 2776 . . . . . . 7 (𝜑⟨“𝐼𝐽”⟩ = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2417, 23coeq12d 5820 . . . . . 6 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}))
253, 4, 4, 3, 14mptprop 31612 . . . . . . 7 (𝜑 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)))
263, 4prssd 4782 . . . . . . . . . 10 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
27 df-ss 3927 . . . . . . . . . 10 ({𝐼, 𝐽} ⊆ 𝐷 ↔ ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
2826, 27sylib 217 . . . . . . . . 9 (𝜑 → ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
29 incom 4161 . . . . . . . . 9 ({𝐼, 𝐽} ∩ 𝐷) = (𝐷 ∩ {𝐼, 𝐽})
3028, 29eqtr3di 2791 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} = (𝐷 ∩ {𝐼, 𝐽}))
31 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼)
3231sneqd 4598 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → {𝑥} = {𝐼})
3332difeq2d 4082 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
3433unieqd 4879 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
35 difprsn1 4760 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3635unieqd 4879 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3714, 36syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
38 unisng 4886 . . . . . . . . . . . . 13 (𝐽𝐷 {𝐽} = 𝐽)
394, 38syl 17 . . . . . . . . . . . 12 (𝜑 {𝐽} = 𝐽)
4037, 39eqtrd 2776 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4140ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4234, 41eqtr2d 2777 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝐽 = ({𝐼, 𝐽} ∖ {𝑥}))
43 vex 3449 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
4443elpr 4609 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝐼, 𝐽} ↔ (𝑥 = 𝐼𝑥 = 𝐽))
45 df-or 846 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐼𝑥 = 𝐽) ↔ (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4644, 45sylbb 218 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐼, 𝐽} → (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4746imp 407 . . . . . . . . . . . . . 14 ((𝑥 ∈ {𝐼, 𝐽} ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4847adantll 712 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4948sneqd 4598 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → {𝑥} = {𝐽})
5049difeq2d 4082 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
5150unieqd 4879 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
52 difprsn2 4761 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5352unieqd 4879 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5414, 53syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
55 unisng 4886 . . . . . . . . . . . . 13 (𝐼𝐷 {𝐼} = 𝐼)
563, 55syl 17 . . . . . . . . . . . 12 (𝜑 {𝐼} = 𝐼)
5754, 56eqtrd 2776 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5857ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5951, 58eqtr2d 2777 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝐼 = ({𝐼, 𝐽} ∖ {𝑥}))
6042, 59ifeqda 4522 . . . . . . . 8 ((𝜑𝑥 ∈ {𝐼, 𝐽}) → if(𝑥 = 𝐼, 𝐽, 𝐼) = ({𝐼, 𝐽} ∖ {𝑥}))
6130, 60mpteq12dva 5194 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
6225, 61eqtr2d 2777 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
6315, 24, 623eqtr4d 2786 . . . . 5 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
647, 63eqtrd 2776 . . . 4 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
653, 4s2rn 31800 . . . . . . 7 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
6665difeq2d 4082 . . . . . 6 (𝜑 → (𝐷 ∖ ran ⟨“𝐼𝐽”⟩) = (𝐷 ∖ {𝐼, 𝐽}))
6766reseq2d 5937 . . . . 5 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = ( I ↾ (𝐷 ∖ {𝐼, 𝐽})))
68 mptresid 6004 . . . . 5 ( I ↾ (𝐷 ∖ {𝐼, 𝐽})) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)
6967, 68eqtrdi 2792 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
7064, 69uneq12d 4124 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
71 uncom 4113 . . . 4 (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩))
7271a1i 11 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
732, 70, 723eqtr2rd 2783 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
74 cycpm2.c . . 3 𝐶 = (toCyc‘𝐷)
75 cycpm2.d . . 3 (𝜑𝐷𝑉)
763, 4s2cld 14760 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
773, 4, 14s2f1 31801 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
7874, 75, 76, 77tocycfv 31958 . 2 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
79 enpr2 9938 . . . 4 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
803, 4, 14, 79syl3anc 1371 . . 3 (𝜑 → {𝐼, 𝐽} ≈ 2o)
81 cycpm2tr.t . . . 4 𝑇 = (pmTrsp‘𝐷)
8281pmtrval 19233 . . 3 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8375, 26, 80, 82syl3anc 1371 . 2 (𝜑 → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8473, 78, 833eqtr4d 2786 1 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  cdif 3907  cun 3908  cin 3909  wss 3910  ifcif 4486  {csn 4586  {cpr 4588  cop 4592   cuni 4865   class class class wbr 5105  cmpt 5188   I cid 5530  ccnv 5632  ran crn 5634  cres 5635  ccom 5637  cfv 6496  (class class class)co 7357  2oc2o 8406  cen 8880  0cc0 11051  1c1 11052  0cn0 12413   cyclShift ccsh 14676  ⟨“cs2 14730  pmTrspcpmtr 19223  toCycctocyc 31955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-csh 14677  df-s2 14737  df-pmtr 19224  df-tocyc 31956
This theorem is referenced by:  trsp2cyc  31972  cyc3evpm  31999  cyc3genpmlem  32000  cyc3conja  32006
  Copyright terms: Public domain W3C validator