| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | partfun 6715 | . . . 4
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)) | 
| 2 | 1 | a1i 11 | . . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))) | 
| 3 |  | cycpm2.i | . . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝐷) | 
| 4 |  | cycpm2.j | . . . . . . 7
⊢ (𝜑 → 𝐽 ∈ 𝐷) | 
| 5 |  | cshw1s2 32945 | . . . . . . 7
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → (〈“𝐼𝐽”〉 cyclShift 1) =
〈“𝐽𝐼”〉) | 
| 6 | 3, 4, 5 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (〈“𝐼𝐽”〉 cyclShift 1) =
〈“𝐽𝐼”〉) | 
| 7 | 6 | coeq1d 5872 | . . . . 5
⊢ (𝜑 → ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) = (〈“𝐽𝐼”〉 ∘ ◡〈“𝐼𝐽”〉)) | 
| 8 |  | 0nn0 12541 | . . . . . . . 8
⊢ 0 ∈
ℕ0 | 
| 9 | 8 | a1i 11 | . . . . . . 7
⊢ (𝜑 → 0 ∈
ℕ0) | 
| 10 |  | 1nn0 12542 | . . . . . . . 8
⊢ 1 ∈
ℕ0 | 
| 11 | 10 | a1i 11 | . . . . . . 7
⊢ (𝜑 → 1 ∈
ℕ0) | 
| 12 |  | 0ne1 12337 | . . . . . . . 8
⊢ 0 ≠
1 | 
| 13 | 12 | a1i 11 | . . . . . . 7
⊢ (𝜑 → 0 ≠ 1) | 
| 14 |  | cycpm2.1 | . . . . . . 7
⊢ (𝜑 → 𝐼 ≠ 𝐽) | 
| 15 | 9, 4, 11, 3, 13, 3, 4, 14 | coprprop 32708 | . . . . . 6
⊢ (𝜑 → ({〈0, 𝐽〉, 〈1, 𝐼〉} ∘ {〈𝐼, 0〉, 〈𝐽, 1〉}) = {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}) | 
| 16 |  | s2prop 14946 | . . . . . . . 8
⊢ ((𝐽 ∈ 𝐷 ∧ 𝐼 ∈ 𝐷) → 〈“𝐽𝐼”〉 = {〈0, 𝐽〉, 〈1, 𝐼〉}) | 
| 17 | 4, 3, 16 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → 〈“𝐽𝐼”〉 = {〈0, 𝐽〉, 〈1, 𝐼〉}) | 
| 18 |  | s2prop 14946 | . . . . . . . . . 10
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) | 
| 19 | 3, 4, 18 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) | 
| 20 | 19 | cnveqd 5886 | . . . . . . . 8
⊢ (𝜑 → ◡〈“𝐼𝐽”〉 = ◡{〈0, 𝐼〉, 〈1, 𝐽〉}) | 
| 21 |  | cnvprop 32705 | . . . . . . . . 9
⊢ (((0
∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧
𝐽 ∈ 𝐷)) → ◡{〈0, 𝐼〉, 〈1, 𝐽〉} = {〈𝐼, 0〉, 〈𝐽, 1〉}) | 
| 22 | 9, 3, 11, 4, 21 | syl22anc 839 | . . . . . . . 8
⊢ (𝜑 → ◡{〈0, 𝐼〉, 〈1, 𝐽〉} = {〈𝐼, 0〉, 〈𝐽, 1〉}) | 
| 23 | 20, 22 | eqtrd 2777 | . . . . . . 7
⊢ (𝜑 → ◡〈“𝐼𝐽”〉 = {〈𝐼, 0〉, 〈𝐽, 1〉}) | 
| 24 | 17, 23 | coeq12d 5875 | . . . . . 6
⊢ (𝜑 → (〈“𝐽𝐼”〉 ∘ ◡〈“𝐼𝐽”〉) = ({〈0, 𝐽〉, 〈1, 𝐼〉} ∘ {〈𝐼, 0〉, 〈𝐽, 1〉})) | 
| 25 | 3, 4, 4, 3, 14 | mptprop 32707 | . . . . . . 7
⊢ (𝜑 → {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉} = (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼))) | 
| 26 | 3, 4 | prssd 4822 | . . . . . . . . . 10
⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) | 
| 27 |  | dfss2 3969 | . . . . . . . . . 10
⊢ ({𝐼, 𝐽} ⊆ 𝐷 ↔ ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽}) | 
| 28 | 26, 27 | sylib 218 | . . . . . . . . 9
⊢ (𝜑 → ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽}) | 
| 29 |  | incom 4209 | . . . . . . . . 9
⊢ ({𝐼, 𝐽} ∩ 𝐷) = (𝐷 ∩ {𝐼, 𝐽}) | 
| 30 | 28, 29 | eqtr3di 2792 | . . . . . . . 8
⊢ (𝜑 → {𝐼, 𝐽} = (𝐷 ∩ {𝐼, 𝐽})) | 
| 31 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) | 
| 32 | 31 | sneqd 4638 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → {𝑥} = {𝐼}) | 
| 33 | 32 | difeq2d 4126 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼})) | 
| 34 | 33 | unieqd 4920 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝑥}) = ∪ ({𝐼, 𝐽} ∖ {𝐼})) | 
| 35 |  | difprsn1 4800 | . . . . . . . . . . . . . 14
⊢ (𝐼 ≠ 𝐽 → ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽}) | 
| 36 | 35 | unieqd 4920 | . . . . . . . . . . . . 13
⊢ (𝐼 ≠ 𝐽 → ∪ ({𝐼, 𝐽} ∖ {𝐼}) = ∪ {𝐽}) | 
| 37 | 14, 36 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐼}) = ∪ {𝐽}) | 
| 38 |  | unisng 4925 | . . . . . . . . . . . . 13
⊢ (𝐽 ∈ 𝐷 → ∪ {𝐽} = 𝐽) | 
| 39 | 4, 38 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ∪ {𝐽}
= 𝐽) | 
| 40 | 37, 39 | eqtrd 2777 | . . . . . . . . . . 11
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐼}) = 𝐽) | 
| 41 | 40 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝐼}) = 𝐽) | 
| 42 | 34, 41 | eqtr2d 2778 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝐽 = ∪ ({𝐼, 𝐽} ∖ {𝑥})) | 
| 43 |  | vex 3484 | . . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V | 
| 44 | 43 | elpr 4650 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝐼, 𝐽} ↔ (𝑥 = 𝐼 ∨ 𝑥 = 𝐽)) | 
| 45 |  | df-or 849 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝐼 ∨ 𝑥 = 𝐽) ↔ (¬ 𝑥 = 𝐼 → 𝑥 = 𝐽)) | 
| 46 | 44, 45 | sylbb 219 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝐼, 𝐽} → (¬ 𝑥 = 𝐼 → 𝑥 = 𝐽)) | 
| 47 | 46 | imp 406 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ {𝐼, 𝐽} ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽) | 
| 48 | 47 | adantll 714 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽) | 
| 49 | 48 | sneqd 4638 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → {𝑥} = {𝐽}) | 
| 50 | 49 | difeq2d 4126 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽})) | 
| 51 | 50 | unieqd 4920 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝑥}) = ∪ ({𝐼, 𝐽} ∖ {𝐽})) | 
| 52 |  | difprsn2 4801 | . . . . . . . . . . . . . 14
⊢ (𝐼 ≠ 𝐽 → ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼}) | 
| 53 | 52 | unieqd 4920 | . . . . . . . . . . . . 13
⊢ (𝐼 ≠ 𝐽 → ∪ ({𝐼, 𝐽} ∖ {𝐽}) = ∪ {𝐼}) | 
| 54 | 14, 53 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐽}) = ∪ {𝐼}) | 
| 55 |  | unisng 4925 | . . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝐷 → ∪ {𝐼} = 𝐼) | 
| 56 | 3, 55 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ∪ {𝐼}
= 𝐼) | 
| 57 | 54, 56 | eqtrd 2777 | . . . . . . . . . . 11
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐽}) = 𝐼) | 
| 58 | 57 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝐽}) = 𝐼) | 
| 59 | 51, 58 | eqtr2d 2778 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝐼 = ∪ ({𝐼, 𝐽} ∖ {𝑥})) | 
| 60 | 42, 59 | ifeqda 4562 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) → if(𝑥 = 𝐼, 𝐽, 𝐼) = ∪ ({𝐼, 𝐽} ∖ {𝑥})) | 
| 61 | 30, 60 | mpteq12dva 5231 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥}))) | 
| 62 | 25, 61 | eqtr2d 2778 | . . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) = {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}) | 
| 63 | 15, 24, 62 | 3eqtr4d 2787 | . . . . 5
⊢ (𝜑 → (〈“𝐽𝐼”〉 ∘ ◡〈“𝐼𝐽”〉) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥}))) | 
| 64 | 7, 63 | eqtrd 2777 | . . . 4
⊢ (𝜑 → ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥}))) | 
| 65 | 3, 4 | s2rn 15002 | . . . . . . 7
⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) | 
| 66 | 65 | difeq2d 4126 | . . . . . 6
⊢ (𝜑 → (𝐷 ∖ ran 〈“𝐼𝐽”〉) = (𝐷 ∖ {𝐼, 𝐽})) | 
| 67 | 66 | reseq2d 5997 | . . . . 5
⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) = ( I ↾ (𝐷 ∖ {𝐼, 𝐽}))) | 
| 68 |  | mptresid 6069 | . . . . 5
⊢ ( I
↾ (𝐷 ∖ {𝐼, 𝐽})) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥) | 
| 69 | 67, 68 | eqtrdi 2793 | . . . 4
⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)) | 
| 70 | 64, 69 | uneq12d 4169 | . . 3
⊢ (𝜑 → (((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) ∪ ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉))) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))) | 
| 71 |  | uncom 4158 | . . . 4
⊢
(((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) ∪ ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉))) = (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉)) | 
| 72 | 71 | a1i 11 | . . 3
⊢ (𝜑 → (((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) ∪ ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉))) = (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉))) | 
| 73 | 2, 70, 72 | 3eqtr2rd 2784 | . 2
⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉)) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥))) | 
| 74 |  | cycpm2.c | . . 3
⊢ 𝐶 = (toCyc‘𝐷) | 
| 75 |  | cycpm2.d | . . 3
⊢ (𝜑 → 𝐷 ∈ 𝑉) | 
| 76 | 3, 4 | s2cld 14910 | . . 3
⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) | 
| 77 | 3, 4, 14 | s2f1 32929 | . . 3
⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) | 
| 78 | 74, 75, 76, 77 | tocycfv 33129 | . 2
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽”〉) = (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉))) | 
| 79 |  | enpr2 10042 | . . . 4
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) → {𝐼, 𝐽} ≈ 2o) | 
| 80 | 3, 4, 14, 79 | syl3anc 1373 | . . 3
⊢ (𝜑 → {𝐼, 𝐽} ≈ 2o) | 
| 81 |  | cycpm2tr.t | . . . 4
⊢ 𝑇 = (pmTrsp‘𝐷) | 
| 82 | 81 | pmtrval 19469 | . . 3
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥))) | 
| 83 | 75, 26, 80, 82 | syl3anc 1373 | . 2
⊢ (𝜑 → (𝑇‘{𝐼, 𝐽}) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥))) | 
| 84 | 73, 78, 83 | 3eqtr4d 2787 | 1
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽”〉) = (𝑇‘{𝐼, 𝐽})) |