Step | Hyp | Ref
| Expression |
1 | | partfun 6564 |
. . . 4
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))) |
3 | | cycpm2.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
4 | | cycpm2.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ 𝐷) |
5 | | cshw1s2 31134 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → (〈“𝐼𝐽”〉 cyclShift 1) =
〈“𝐽𝐼”〉) |
6 | 3, 4, 5 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (〈“𝐼𝐽”〉 cyclShift 1) =
〈“𝐽𝐼”〉) |
7 | 6 | coeq1d 5759 |
. . . . 5
⊢ (𝜑 → ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) = (〈“𝐽𝐼”〉 ∘ ◡〈“𝐼𝐽”〉)) |
8 | | 0nn0 12178 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
9 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℕ0) |
10 | | 1nn0 12179 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
11 | 10 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℕ0) |
12 | | 0ne1 11974 |
. . . . . . . 8
⊢ 0 ≠
1 |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ≠ 1) |
14 | | cycpm2.1 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ≠ 𝐽) |
15 | 9, 4, 11, 3, 13, 3, 4, 14 | coprprop 30934 |
. . . . . 6
⊢ (𝜑 → ({〈0, 𝐽〉, 〈1, 𝐼〉} ∘ {〈𝐼, 0〉, 〈𝐽, 1〉}) = {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}) |
16 | | s2prop 14548 |
. . . . . . . 8
⊢ ((𝐽 ∈ 𝐷 ∧ 𝐼 ∈ 𝐷) → 〈“𝐽𝐼”〉 = {〈0, 𝐽〉, 〈1, 𝐼〉}) |
17 | 4, 3, 16 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐽𝐼”〉 = {〈0, 𝐽〉, 〈1, 𝐼〉}) |
18 | | s2prop 14548 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) |
19 | 3, 4, 18 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) |
20 | 19 | cnveqd 5773 |
. . . . . . . 8
⊢ (𝜑 → ◡〈“𝐼𝐽”〉 = ◡{〈0, 𝐼〉, 〈1, 𝐽〉}) |
21 | | cnvprop 30931 |
. . . . . . . . 9
⊢ (((0
∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧
𝐽 ∈ 𝐷)) → ◡{〈0, 𝐼〉, 〈1, 𝐽〉} = {〈𝐼, 0〉, 〈𝐽, 1〉}) |
22 | 9, 3, 11, 4, 21 | syl22anc 835 |
. . . . . . . 8
⊢ (𝜑 → ◡{〈0, 𝐼〉, 〈1, 𝐽〉} = {〈𝐼, 0〉, 〈𝐽, 1〉}) |
23 | 20, 22 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ◡〈“𝐼𝐽”〉 = {〈𝐼, 0〉, 〈𝐽, 1〉}) |
24 | 17, 23 | coeq12d 5762 |
. . . . . 6
⊢ (𝜑 → (〈“𝐽𝐼”〉 ∘ ◡〈“𝐼𝐽”〉) = ({〈0, 𝐽〉, 〈1, 𝐼〉} ∘ {〈𝐼, 0〉, 〈𝐽, 1〉})) |
25 | 3, 4, 4, 3, 14 | mptprop 30933 |
. . . . . . 7
⊢ (𝜑 → {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉} = (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼))) |
26 | 3, 4 | prssd 4752 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
27 | | df-ss 3900 |
. . . . . . . . . 10
⊢ ({𝐼, 𝐽} ⊆ 𝐷 ↔ ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽}) |
28 | 26, 27 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽}) |
29 | | incom 4131 |
. . . . . . . . 9
⊢ ({𝐼, 𝐽} ∩ 𝐷) = (𝐷 ∩ {𝐼, 𝐽}) |
30 | 28, 29 | eqtr3di 2794 |
. . . . . . . 8
⊢ (𝜑 → {𝐼, 𝐽} = (𝐷 ∩ {𝐼, 𝐽})) |
31 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) |
32 | 31 | sneqd 4570 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → {𝑥} = {𝐼}) |
33 | 32 | difeq2d 4053 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼})) |
34 | 33 | unieqd 4850 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝑥}) = ∪ ({𝐼, 𝐽} ∖ {𝐼})) |
35 | | difprsn1 4730 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ≠ 𝐽 → ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽}) |
36 | 35 | unieqd 4850 |
. . . . . . . . . . . . 13
⊢ (𝐼 ≠ 𝐽 → ∪ ({𝐼, 𝐽} ∖ {𝐼}) = ∪ {𝐽}) |
37 | 14, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐼}) = ∪ {𝐽}) |
38 | | unisng 4857 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ 𝐷 → ∪ {𝐽} = 𝐽) |
39 | 4, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ {𝐽}
= 𝐽) |
40 | 37, 39 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐼}) = 𝐽) |
41 | 40 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝐼}) = 𝐽) |
42 | 34, 41 | eqtr2d 2779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝐽 = ∪ ({𝐼, 𝐽} ∖ {𝑥})) |
43 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V |
44 | 43 | elpr 4581 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝐼, 𝐽} ↔ (𝑥 = 𝐼 ∨ 𝑥 = 𝐽)) |
45 | | df-or 844 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝐼 ∨ 𝑥 = 𝐽) ↔ (¬ 𝑥 = 𝐼 → 𝑥 = 𝐽)) |
46 | 44, 45 | sylbb 218 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝐼, 𝐽} → (¬ 𝑥 = 𝐼 → 𝑥 = 𝐽)) |
47 | 46 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ {𝐼, 𝐽} ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽) |
48 | 47 | adantll 710 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽) |
49 | 48 | sneqd 4570 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → {𝑥} = {𝐽}) |
50 | 49 | difeq2d 4053 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽})) |
51 | 50 | unieqd 4850 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝑥}) = ∪ ({𝐼, 𝐽} ∖ {𝐽})) |
52 | | difprsn2 4731 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ≠ 𝐽 → ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼}) |
53 | 52 | unieqd 4850 |
. . . . . . . . . . . . 13
⊢ (𝐼 ≠ 𝐽 → ∪ ({𝐼, 𝐽} ∖ {𝐽}) = ∪ {𝐼}) |
54 | 14, 53 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐽}) = ∪ {𝐼}) |
55 | | unisng 4857 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝐷 → ∪ {𝐼} = 𝐼) |
56 | 3, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ {𝐼}
= 𝐼) |
57 | 54, 56 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐽}) = 𝐼) |
58 | 57 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝐽}) = 𝐼) |
59 | 51, 58 | eqtr2d 2779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝐼 = ∪ ({𝐼, 𝐽} ∖ {𝑥})) |
60 | 42, 59 | ifeqda 4492 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) → if(𝑥 = 𝐼, 𝐽, 𝐼) = ∪ ({𝐼, 𝐽} ∖ {𝑥})) |
61 | 30, 60 | mpteq12dva 5159 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥}))) |
62 | 25, 61 | eqtr2d 2779 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) = {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}) |
63 | 15, 24, 62 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝜑 → (〈“𝐽𝐼”〉 ∘ ◡〈“𝐼𝐽”〉) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥}))) |
64 | 7, 63 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥}))) |
65 | 3, 4 | s2rn 31120 |
. . . . . . 7
⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
66 | 65 | difeq2d 4053 |
. . . . . 6
⊢ (𝜑 → (𝐷 ∖ ran 〈“𝐼𝐽”〉) = (𝐷 ∖ {𝐼, 𝐽})) |
67 | 66 | reseq2d 5880 |
. . . . 5
⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) = ( I ↾ (𝐷 ∖ {𝐼, 𝐽}))) |
68 | | mptresid 5947 |
. . . . 5
⊢ ( I
↾ (𝐷 ∖ {𝐼, 𝐽})) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥) |
69 | 67, 68 | eqtrdi 2795 |
. . . 4
⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)) |
70 | 64, 69 | uneq12d 4094 |
. . 3
⊢ (𝜑 → (((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) ∪ ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉))) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))) |
71 | | uncom 4083 |
. . . 4
⊢
(((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) ∪ ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉))) = (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉)) |
72 | 71 | a1i 11 |
. . 3
⊢ (𝜑 → (((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) ∪ ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉))) = (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉))) |
73 | 2, 70, 72 | 3eqtr2rd 2785 |
. 2
⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉)) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥))) |
74 | | cycpm2.c |
. . 3
⊢ 𝐶 = (toCyc‘𝐷) |
75 | | cycpm2.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
76 | 3, 4 | s2cld 14512 |
. . 3
⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
77 | 3, 4, 14 | s2f1 31121 |
. . 3
⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
78 | 74, 75, 76, 77 | tocycfv 31278 |
. 2
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽”〉) = (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉))) |
79 | | pr2nelem 9691 |
. . . 4
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) → {𝐼, 𝐽} ≈ 2o) |
80 | 3, 4, 14, 79 | syl3anc 1369 |
. . 3
⊢ (𝜑 → {𝐼, 𝐽} ≈ 2o) |
81 | | cycpm2tr.t |
. . . 4
⊢ 𝑇 = (pmTrsp‘𝐷) |
82 | 81 | pmtrval 18974 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥))) |
83 | 75, 26, 80, 82 | syl3anc 1369 |
. 2
⊢ (𝜑 → (𝑇‘{𝐼, 𝐽}) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥))) |
84 | 73, 78, 83 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽”〉) = (𝑇‘{𝐼, 𝐽})) |