Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpm2tr Structured version   Visualization version   GIF version

Theorem cycpm2tr 33083
Description: A cyclic permutation of 2 elements is a transposition. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cycpm2.c 𝐶 = (toCyc‘𝐷)
cycpm2.d (𝜑𝐷𝑉)
cycpm2.i (𝜑𝐼𝐷)
cycpm2.j (𝜑𝐽𝐷)
cycpm2.1 (𝜑𝐼𝐽)
cycpm2tr.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
cycpm2tr (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))

Proof of Theorem cycpm2tr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 partfun 6668 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
21a1i 11 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
3 cycpm2.i . . . . . . 7 (𝜑𝐼𝐷)
4 cycpm2.j . . . . . . 7 (𝜑𝐽𝐷)
5 cshw1s2 32889 . . . . . . 7 ((𝐼𝐷𝐽𝐷) → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
63, 4, 5syl2anc 584 . . . . . 6 (𝜑 → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
76coeq1d 5828 . . . . 5 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩))
8 0nn0 12464 . . . . . . . 8 0 ∈ ℕ0
98a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
10 1nn0 12465 . . . . . . . 8 1 ∈ ℕ0
1110a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ0)
12 0ne1 12264 . . . . . . . 8 0 ≠ 1
1312a1i 11 . . . . . . 7 (𝜑 → 0 ≠ 1)
14 cycpm2.1 . . . . . . 7 (𝜑𝐼𝐽)
159, 4, 11, 3, 13, 3, 4, 14coprprop 32629 . . . . . 6 (𝜑 → ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
16 s2prop 14880 . . . . . . . 8 ((𝐽𝐷𝐼𝐷) → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
174, 3, 16syl2anc 584 . . . . . . 7 (𝜑 → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
18 s2prop 14880 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
193, 4, 18syl2anc 584 . . . . . . . . 9 (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
2019cnveqd 5842 . . . . . . . 8 (𝜑⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
21 cnvprop 32626 . . . . . . . . 9 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
229, 3, 11, 4, 21syl22anc 838 . . . . . . . 8 (𝜑{⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2320, 22eqtrd 2765 . . . . . . 7 (𝜑⟨“𝐼𝐽”⟩ = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2417, 23coeq12d 5831 . . . . . 6 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}))
253, 4, 4, 3, 14mptprop 32628 . . . . . . 7 (𝜑 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)))
263, 4prssd 4789 . . . . . . . . . 10 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
27 dfss2 3935 . . . . . . . . . 10 ({𝐼, 𝐽} ⊆ 𝐷 ↔ ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
2826, 27sylib 218 . . . . . . . . 9 (𝜑 → ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
29 incom 4175 . . . . . . . . 9 ({𝐼, 𝐽} ∩ 𝐷) = (𝐷 ∩ {𝐼, 𝐽})
3028, 29eqtr3di 2780 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} = (𝐷 ∩ {𝐼, 𝐽}))
31 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼)
3231sneqd 4604 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → {𝑥} = {𝐼})
3332difeq2d 4092 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
3433unieqd 4887 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
35 difprsn1 4767 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3635unieqd 4887 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3714, 36syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
38 unisng 4892 . . . . . . . . . . . . 13 (𝐽𝐷 {𝐽} = 𝐽)
394, 38syl 17 . . . . . . . . . . . 12 (𝜑 {𝐽} = 𝐽)
4037, 39eqtrd 2765 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4140ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4234, 41eqtr2d 2766 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝐽 = ({𝐼, 𝐽} ∖ {𝑥}))
43 vex 3454 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
4443elpr 4617 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝐼, 𝐽} ↔ (𝑥 = 𝐼𝑥 = 𝐽))
45 df-or 848 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐼𝑥 = 𝐽) ↔ (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4644, 45sylbb 219 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐼, 𝐽} → (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4746imp 406 . . . . . . . . . . . . . 14 ((𝑥 ∈ {𝐼, 𝐽} ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4847adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4948sneqd 4604 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → {𝑥} = {𝐽})
5049difeq2d 4092 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
5150unieqd 4887 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
52 difprsn2 4768 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5352unieqd 4887 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5414, 53syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
55 unisng 4892 . . . . . . . . . . . . 13 (𝐼𝐷 {𝐼} = 𝐼)
563, 55syl 17 . . . . . . . . . . . 12 (𝜑 {𝐼} = 𝐼)
5754, 56eqtrd 2765 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5857ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5951, 58eqtr2d 2766 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝐼 = ({𝐼, 𝐽} ∖ {𝑥}))
6042, 59ifeqda 4528 . . . . . . . 8 ((𝜑𝑥 ∈ {𝐼, 𝐽}) → if(𝑥 = 𝐼, 𝐽, 𝐼) = ({𝐼, 𝐽} ∖ {𝑥}))
6130, 60mpteq12dva 5196 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
6225, 61eqtr2d 2766 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
6315, 24, 623eqtr4d 2775 . . . . 5 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
647, 63eqtrd 2765 . . . 4 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
653, 4s2rn 14936 . . . . . . 7 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
6665difeq2d 4092 . . . . . 6 (𝜑 → (𝐷 ∖ ran ⟨“𝐼𝐽”⟩) = (𝐷 ∖ {𝐼, 𝐽}))
6766reseq2d 5953 . . . . 5 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = ( I ↾ (𝐷 ∖ {𝐼, 𝐽})))
68 mptresid 6025 . . . . 5 ( I ↾ (𝐷 ∖ {𝐼, 𝐽})) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)
6967, 68eqtrdi 2781 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
7064, 69uneq12d 4135 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
71 uncom 4124 . . . 4 (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩))
7271a1i 11 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
732, 70, 723eqtr2rd 2772 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
74 cycpm2.c . . 3 𝐶 = (toCyc‘𝐷)
75 cycpm2.d . . 3 (𝜑𝐷𝑉)
763, 4s2cld 14844 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
773, 4, 14s2f1 32873 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
7874, 75, 76, 77tocycfv 33073 . 2 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
79 enpr2 9962 . . . 4 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
803, 4, 14, 79syl3anc 1373 . . 3 (𝜑 → {𝐼, 𝐽} ≈ 2o)
81 cycpm2tr.t . . . 4 𝑇 = (pmTrsp‘𝐷)
8281pmtrval 19388 . . 3 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8375, 26, 80, 82syl3anc 1373 . 2 (𝜑 → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8473, 78, 833eqtr4d 2775 1 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  cdif 3914  cun 3915  cin 3916  wss 3917  ifcif 4491  {csn 4592  {cpr 4594  cop 4598   cuni 4874   class class class wbr 5110  cmpt 5191   I cid 5535  ccnv 5640  ran crn 5642  cres 5643  ccom 5645  cfv 6514  (class class class)co 7390  2oc2o 8431  cen 8918  0cc0 11075  1c1 11076  0cn0 12449   cyclShift ccsh 14760  ⟨“cs2 14814  pmTrspcpmtr 19378  toCycctocyc 33070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-csh 14761  df-s2 14821  df-pmtr 19379  df-tocyc 33071
This theorem is referenced by:  trsp2cyc  33087  cyc3evpm  33114  cyc3genpmlem  33115  cyc3conja  33121
  Copyright terms: Public domain W3C validator