| Step | Hyp | Ref
| Expression |
| 1 | | partfun 6668 |
. . . 4
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))) |
| 3 | | cycpm2.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| 4 | | cycpm2.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| 5 | | cshw1s2 32889 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → (〈“𝐼𝐽”〉 cyclShift 1) =
〈“𝐽𝐼”〉) |
| 6 | 3, 4, 5 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (〈“𝐼𝐽”〉 cyclShift 1) =
〈“𝐽𝐼”〉) |
| 7 | 6 | coeq1d 5828 |
. . . . 5
⊢ (𝜑 → ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) = (〈“𝐽𝐼”〉 ∘ ◡〈“𝐼𝐽”〉)) |
| 8 | | 0nn0 12464 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
| 9 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℕ0) |
| 10 | | 1nn0 12465 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 11 | 10 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℕ0) |
| 12 | | 0ne1 12264 |
. . . . . . . 8
⊢ 0 ≠
1 |
| 13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ≠ 1) |
| 14 | | cycpm2.1 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| 15 | 9, 4, 11, 3, 13, 3, 4, 14 | coprprop 32629 |
. . . . . 6
⊢ (𝜑 → ({〈0, 𝐽〉, 〈1, 𝐼〉} ∘ {〈𝐼, 0〉, 〈𝐽, 1〉}) = {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}) |
| 16 | | s2prop 14880 |
. . . . . . . 8
⊢ ((𝐽 ∈ 𝐷 ∧ 𝐼 ∈ 𝐷) → 〈“𝐽𝐼”〉 = {〈0, 𝐽〉, 〈1, 𝐼〉}) |
| 17 | 4, 3, 16 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐽𝐼”〉 = {〈0, 𝐽〉, 〈1, 𝐼〉}) |
| 18 | | s2prop 14880 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷) → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) |
| 19 | 3, 4, 18 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → 〈“𝐼𝐽”〉 = {〈0, 𝐼〉, 〈1, 𝐽〉}) |
| 20 | 19 | cnveqd 5842 |
. . . . . . . 8
⊢ (𝜑 → ◡〈“𝐼𝐽”〉 = ◡{〈0, 𝐼〉, 〈1, 𝐽〉}) |
| 21 | | cnvprop 32626 |
. . . . . . . . 9
⊢ (((0
∈ ℕ0 ∧ 𝐼 ∈ 𝐷) ∧ (1 ∈ ℕ0 ∧
𝐽 ∈ 𝐷)) → ◡{〈0, 𝐼〉, 〈1, 𝐽〉} = {〈𝐼, 0〉, 〈𝐽, 1〉}) |
| 22 | 9, 3, 11, 4, 21 | syl22anc 838 |
. . . . . . . 8
⊢ (𝜑 → ◡{〈0, 𝐼〉, 〈1, 𝐽〉} = {〈𝐼, 0〉, 〈𝐽, 1〉}) |
| 23 | 20, 22 | eqtrd 2765 |
. . . . . . 7
⊢ (𝜑 → ◡〈“𝐼𝐽”〉 = {〈𝐼, 0〉, 〈𝐽, 1〉}) |
| 24 | 17, 23 | coeq12d 5831 |
. . . . . 6
⊢ (𝜑 → (〈“𝐽𝐼”〉 ∘ ◡〈“𝐼𝐽”〉) = ({〈0, 𝐽〉, 〈1, 𝐼〉} ∘ {〈𝐼, 0〉, 〈𝐽, 1〉})) |
| 25 | 3, 4, 4, 3, 14 | mptprop 32628 |
. . . . . . 7
⊢ (𝜑 → {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉} = (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼))) |
| 26 | 3, 4 | prssd 4789 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
| 27 | | dfss2 3935 |
. . . . . . . . . 10
⊢ ({𝐼, 𝐽} ⊆ 𝐷 ↔ ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽}) |
| 28 | 26, 27 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽}) |
| 29 | | incom 4175 |
. . . . . . . . 9
⊢ ({𝐼, 𝐽} ∩ 𝐷) = (𝐷 ∩ {𝐼, 𝐽}) |
| 30 | 28, 29 | eqtr3di 2780 |
. . . . . . . 8
⊢ (𝜑 → {𝐼, 𝐽} = (𝐷 ∩ {𝐼, 𝐽})) |
| 31 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) |
| 32 | 31 | sneqd 4604 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → {𝑥} = {𝐼}) |
| 33 | 32 | difeq2d 4092 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼})) |
| 34 | 33 | unieqd 4887 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝑥}) = ∪ ({𝐼, 𝐽} ∖ {𝐼})) |
| 35 | | difprsn1 4767 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ≠ 𝐽 → ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽}) |
| 36 | 35 | unieqd 4887 |
. . . . . . . . . . . . 13
⊢ (𝐼 ≠ 𝐽 → ∪ ({𝐼, 𝐽} ∖ {𝐼}) = ∪ {𝐽}) |
| 37 | 14, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐼}) = ∪ {𝐽}) |
| 38 | | unisng 4892 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ 𝐷 → ∪ {𝐽} = 𝐽) |
| 39 | 4, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ {𝐽}
= 𝐽) |
| 40 | 37, 39 | eqtrd 2765 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐼}) = 𝐽) |
| 41 | 40 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝐼}) = 𝐽) |
| 42 | 34, 41 | eqtr2d 2766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝐽 = ∪ ({𝐼, 𝐽} ∖ {𝑥})) |
| 43 | | vex 3454 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V |
| 44 | 43 | elpr 4617 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝐼, 𝐽} ↔ (𝑥 = 𝐼 ∨ 𝑥 = 𝐽)) |
| 45 | | df-or 848 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝐼 ∨ 𝑥 = 𝐽) ↔ (¬ 𝑥 = 𝐼 → 𝑥 = 𝐽)) |
| 46 | 44, 45 | sylbb 219 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝐼, 𝐽} → (¬ 𝑥 = 𝐼 → 𝑥 = 𝐽)) |
| 47 | 46 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ {𝐼, 𝐽} ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽) |
| 48 | 47 | adantll 714 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽) |
| 49 | 48 | sneqd 4604 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → {𝑥} = {𝐽}) |
| 50 | 49 | difeq2d 4092 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽})) |
| 51 | 50 | unieqd 4887 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝑥}) = ∪ ({𝐼, 𝐽} ∖ {𝐽})) |
| 52 | | difprsn2 4768 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ≠ 𝐽 → ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼}) |
| 53 | 52 | unieqd 4887 |
. . . . . . . . . . . . 13
⊢ (𝐼 ≠ 𝐽 → ∪ ({𝐼, 𝐽} ∖ {𝐽}) = ∪ {𝐼}) |
| 54 | 14, 53 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐽}) = ∪ {𝐼}) |
| 55 | | unisng 4892 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝐷 → ∪ {𝐼} = 𝐼) |
| 56 | 3, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ {𝐼}
= 𝐼) |
| 57 | 54, 56 | eqtrd 2765 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ ({𝐼,
𝐽} ∖ {𝐽}) = 𝐼) |
| 58 | 57 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ∪
({𝐼, 𝐽} ∖ {𝐽}) = 𝐼) |
| 59 | 51, 58 | eqtr2d 2766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝐼 = ∪ ({𝐼, 𝐽} ∖ {𝑥})) |
| 60 | 42, 59 | ifeqda 4528 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽}) → if(𝑥 = 𝐼, 𝐽, 𝐼) = ∪ ({𝐼, 𝐽} ∖ {𝑥})) |
| 61 | 30, 60 | mpteq12dva 5196 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥}))) |
| 62 | 25, 61 | eqtr2d 2766 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) = {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}) |
| 63 | 15, 24, 62 | 3eqtr4d 2775 |
. . . . 5
⊢ (𝜑 → (〈“𝐽𝐼”〉 ∘ ◡〈“𝐼𝐽”〉) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥}))) |
| 64 | 7, 63 | eqtrd 2765 |
. . . 4
⊢ (𝜑 → ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥}))) |
| 65 | 3, 4 | s2rn 14936 |
. . . . . . 7
⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
| 66 | 65 | difeq2d 4092 |
. . . . . 6
⊢ (𝜑 → (𝐷 ∖ ran 〈“𝐼𝐽”〉) = (𝐷 ∖ {𝐼, 𝐽})) |
| 67 | 66 | reseq2d 5953 |
. . . . 5
⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) = ( I ↾ (𝐷 ∖ {𝐼, 𝐽}))) |
| 68 | | mptresid 6025 |
. . . . 5
⊢ ( I
↾ (𝐷 ∖ {𝐼, 𝐽})) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥) |
| 69 | 67, 68 | eqtrdi 2781 |
. . . 4
⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)) |
| 70 | 64, 69 | uneq12d 4135 |
. . 3
⊢ (𝜑 → (((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) ∪ ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉))) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ∪
({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))) |
| 71 | | uncom 4124 |
. . . 4
⊢
(((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) ∪ ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉))) = (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉)) |
| 72 | 71 | a1i 11 |
. . 3
⊢ (𝜑 → (((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉) ∪ ( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉))) = (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉))) |
| 73 | 2, 70, 72 | 3eqtr2rd 2772 |
. 2
⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉)) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥))) |
| 74 | | cycpm2.c |
. . 3
⊢ 𝐶 = (toCyc‘𝐷) |
| 75 | | cycpm2.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 76 | 3, 4 | s2cld 14844 |
. . 3
⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
| 77 | 3, 4, 14 | s2f1 32873 |
. . 3
⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| 78 | 74, 75, 76, 77 | tocycfv 33073 |
. 2
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽”〉) = (( I ↾ (𝐷 ∖ ran 〈“𝐼𝐽”〉)) ∪ ((〈“𝐼𝐽”〉 cyclShift 1) ∘ ◡〈“𝐼𝐽”〉))) |
| 79 | | enpr2 9962 |
. . . 4
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) → {𝐼, 𝐽} ≈ 2o) |
| 80 | 3, 4, 14, 79 | syl3anc 1373 |
. . 3
⊢ (𝜑 → {𝐼, 𝐽} ≈ 2o) |
| 81 | | cycpm2tr.t |
. . . 4
⊢ 𝑇 = (pmTrsp‘𝐷) |
| 82 | 81 | pmtrval 19388 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥))) |
| 83 | 75, 26, 80, 82 | syl3anc 1373 |
. 2
⊢ (𝜑 → (𝑇‘{𝐼, 𝐽}) = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ∪ ({𝐼, 𝐽} ∖ {𝑥}), 𝑥))) |
| 84 | 73, 78, 83 | 3eqtr4d 2775 |
1
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽”〉) = (𝑇‘{𝐼, 𝐽})) |