Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpm2tr Structured version   Visualization version   GIF version

Theorem cycpm2tr 30814
Description: A cyclic permutation of 2 elements is a transposition. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cycpm2.c 𝐶 = (toCyc‘𝐷)
cycpm2.d (𝜑𝐷𝑉)
cycpm2.i (𝜑𝐼𝐷)
cycpm2.j (𝜑𝐽𝐷)
cycpm2.1 (𝜑𝐼𝐽)
cycpm2tr.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
cycpm2tr (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))

Proof of Theorem cycpm2tr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 partfun 6471 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
21a1i 11 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
3 cycpm2.i . . . . . . 7 (𝜑𝐼𝐷)
4 cycpm2.j . . . . . . 7 (𝜑𝐽𝐷)
5 cshw1s2 30663 . . . . . . 7 ((𝐼𝐷𝐽𝐷) → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
63, 4, 5syl2anc 587 . . . . . 6 (𝜑 → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
76coeq1d 5700 . . . . 5 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩))
8 0nn0 11904 . . . . . . . 8 0 ∈ ℕ0
98a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
10 1nn0 11905 . . . . . . . 8 1 ∈ ℕ0
1110a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ0)
12 0ne1 11700 . . . . . . . 8 0 ≠ 1
1312a1i 11 . . . . . . 7 (𝜑 → 0 ≠ 1)
14 cycpm2.1 . . . . . . 7 (𝜑𝐼𝐽)
159, 4, 11, 3, 13, 3, 4, 14coprprop 30462 . . . . . 6 (𝜑 → ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
16 s2prop 14264 . . . . . . . 8 ((𝐽𝐷𝐼𝐷) → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
174, 3, 16syl2anc 587 . . . . . . 7 (𝜑 → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
18 s2prop 14264 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
193, 4, 18syl2anc 587 . . . . . . . . 9 (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
2019cnveqd 5714 . . . . . . . 8 (𝜑⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
21 cnvprop 30459 . . . . . . . . 9 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
229, 3, 11, 4, 21syl22anc 837 . . . . . . . 8 (𝜑{⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2320, 22eqtrd 2836 . . . . . . 7 (𝜑⟨“𝐼𝐽”⟩ = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2417, 23coeq12d 5703 . . . . . 6 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}))
253, 4, 4, 3, 14mptprop 30461 . . . . . . 7 (𝜑 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)))
26 incom 4131 . . . . . . . . 9 ({𝐼, 𝐽} ∩ 𝐷) = (𝐷 ∩ {𝐼, 𝐽})
273, 4prssd 4718 . . . . . . . . . 10 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
28 df-ss 3901 . . . . . . . . . 10 ({𝐼, 𝐽} ⊆ 𝐷 ↔ ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
2927, 28sylib 221 . . . . . . . . 9 (𝜑 → ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
3026, 29syl5reqr 2851 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} = (𝐷 ∩ {𝐼, 𝐽}))
31 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼)
3231sneqd 4540 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → {𝑥} = {𝐼})
3332difeq2d 4053 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
3433unieqd 4817 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
35 difprsn1 4696 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3635unieqd 4817 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3714, 36syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
38 unisng 4822 . . . . . . . . . . . . 13 (𝐽𝐷 {𝐽} = 𝐽)
394, 38syl 17 . . . . . . . . . . . 12 (𝜑 {𝐽} = 𝐽)
4037, 39eqtrd 2836 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4140ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4234, 41eqtr2d 2837 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝐽 = ({𝐼, 𝐽} ∖ {𝑥}))
43 vex 3447 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
4443elpr 4551 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝐼, 𝐽} ↔ (𝑥 = 𝐼𝑥 = 𝐽))
45 df-or 845 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐼𝑥 = 𝐽) ↔ (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4644, 45sylbb 222 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐼, 𝐽} → (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4746imp 410 . . . . . . . . . . . . . 14 ((𝑥 ∈ {𝐼, 𝐽} ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4847adantll 713 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4948sneqd 4540 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → {𝑥} = {𝐽})
5049difeq2d 4053 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
5150unieqd 4817 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
52 difprsn2 4697 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5352unieqd 4817 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5414, 53syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
55 unisng 4822 . . . . . . . . . . . . 13 (𝐼𝐷 {𝐼} = 𝐼)
563, 55syl 17 . . . . . . . . . . . 12 (𝜑 {𝐼} = 𝐼)
5754, 56eqtrd 2836 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5857ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5951, 58eqtr2d 2837 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝐼 = ({𝐼, 𝐽} ∖ {𝑥}))
6042, 59ifeqda 4463 . . . . . . . 8 ((𝜑𝑥 ∈ {𝐼, 𝐽}) → if(𝑥 = 𝐼, 𝐽, 𝐼) = ({𝐼, 𝐽} ∖ {𝑥}))
6130, 60mpteq12dva 5117 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
6225, 61eqtr2d 2837 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
6315, 24, 623eqtr4d 2846 . . . . 5 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
647, 63eqtrd 2836 . . . 4 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
653, 4s2rn 30649 . . . . . . 7 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
6665difeq2d 4053 . . . . . 6 (𝜑 → (𝐷 ∖ ran ⟨“𝐼𝐽”⟩) = (𝐷 ∖ {𝐼, 𝐽}))
6766reseq2d 5822 . . . . 5 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = ( I ↾ (𝐷 ∖ {𝐼, 𝐽})))
68 mptresid 5889 . . . . 5 ( I ↾ (𝐷 ∖ {𝐼, 𝐽})) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)
6967, 68eqtrdi 2852 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
7064, 69uneq12d 4094 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
71 uncom 4083 . . . 4 (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩))
7271a1i 11 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
732, 70, 723eqtr2rd 2843 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
74 cycpm2.c . . 3 𝐶 = (toCyc‘𝐷)
75 cycpm2.d . . 3 (𝜑𝐷𝑉)
763, 4s2cld 14228 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
773, 4, 14s2f1 30650 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
7874, 75, 76, 77tocycfv 30804 . 2 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
79 pr2nelem 9419 . . . 4 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
803, 4, 14, 79syl3anc 1368 . . 3 (𝜑 → {𝐼, 𝐽} ≈ 2o)
81 cycpm2tr.t . . . 4 𝑇 = (pmTrsp‘𝐷)
8281pmtrval 18574 . . 3 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8375, 27, 80, 82syl3anc 1368 . 2 (𝜑 → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8473, 78, 833eqtr4d 2846 1 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2112  wne 2990  cdif 3881  cun 3882  cin 3883  wss 3884  ifcif 4428  {csn 4528  {cpr 4530  cop 4534   cuni 4803   class class class wbr 5033  cmpt 5113   I cid 5427  ccnv 5522  ran crn 5524  cres 5525  ccom 5527  cfv 6328  (class class class)co 7139  2oc2o 8083  cen 8493  0cc0 10530  1c1 10531  0cn0 11889   cyclShift ccsh 14145  ⟨“cs2 14198  pmTrspcpmtr 18564  toCycctocyc 30801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-csh 14146  df-s2 14205  df-pmtr 18565  df-tocyc 30802
This theorem is referenced by:  trsp2cyc  30818  cyc3evpm  30845  cyc3genpmlem  30846  cyc3conja  30852
  Copyright terms: Public domain W3C validator