Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpm2tr Structured version   Visualization version   GIF version

Theorem cycpm2tr 31382
Description: A cyclic permutation of 2 elements is a transposition. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cycpm2.c 𝐶 = (toCyc‘𝐷)
cycpm2.d (𝜑𝐷𝑉)
cycpm2.i (𝜑𝐼𝐷)
cycpm2.j (𝜑𝐽𝐷)
cycpm2.1 (𝜑𝐼𝐽)
cycpm2tr.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
cycpm2tr (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))

Proof of Theorem cycpm2tr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 partfun 6578 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
21a1i 11 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
3 cycpm2.i . . . . . . 7 (𝜑𝐼𝐷)
4 cycpm2.j . . . . . . 7 (𝜑𝐽𝐷)
5 cshw1s2 31228 . . . . . . 7 ((𝐼𝐷𝐽𝐷) → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
63, 4, 5syl2anc 584 . . . . . 6 (𝜑 → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
76coeq1d 5769 . . . . 5 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩))
8 0nn0 12248 . . . . . . . 8 0 ∈ ℕ0
98a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
10 1nn0 12249 . . . . . . . 8 1 ∈ ℕ0
1110a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ0)
12 0ne1 12044 . . . . . . . 8 0 ≠ 1
1312a1i 11 . . . . . . 7 (𝜑 → 0 ≠ 1)
14 cycpm2.1 . . . . . . 7 (𝜑𝐼𝐽)
159, 4, 11, 3, 13, 3, 4, 14coprprop 31028 . . . . . 6 (𝜑 → ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
16 s2prop 14618 . . . . . . . 8 ((𝐽𝐷𝐼𝐷) → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
174, 3, 16syl2anc 584 . . . . . . 7 (𝜑 → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
18 s2prop 14618 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
193, 4, 18syl2anc 584 . . . . . . . . 9 (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
2019cnveqd 5783 . . . . . . . 8 (𝜑⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
21 cnvprop 31025 . . . . . . . . 9 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
229, 3, 11, 4, 21syl22anc 836 . . . . . . . 8 (𝜑{⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2320, 22eqtrd 2780 . . . . . . 7 (𝜑⟨“𝐼𝐽”⟩ = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2417, 23coeq12d 5772 . . . . . 6 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}))
253, 4, 4, 3, 14mptprop 31027 . . . . . . 7 (𝜑 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)))
263, 4prssd 4761 . . . . . . . . . 10 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
27 df-ss 3909 . . . . . . . . . 10 ({𝐼, 𝐽} ⊆ 𝐷 ↔ ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
2826, 27sylib 217 . . . . . . . . 9 (𝜑 → ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
29 incom 4140 . . . . . . . . 9 ({𝐼, 𝐽} ∩ 𝐷) = (𝐷 ∩ {𝐼, 𝐽})
3028, 29eqtr3di 2795 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} = (𝐷 ∩ {𝐼, 𝐽}))
31 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼)
3231sneqd 4579 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → {𝑥} = {𝐼})
3332difeq2d 4062 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
3433unieqd 4859 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
35 difprsn1 4739 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3635unieqd 4859 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3714, 36syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
38 unisng 4866 . . . . . . . . . . . . 13 (𝐽𝐷 {𝐽} = 𝐽)
394, 38syl 17 . . . . . . . . . . . 12 (𝜑 {𝐽} = 𝐽)
4037, 39eqtrd 2780 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4140ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4234, 41eqtr2d 2781 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝐽 = ({𝐼, 𝐽} ∖ {𝑥}))
43 vex 3435 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
4443elpr 4590 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝐼, 𝐽} ↔ (𝑥 = 𝐼𝑥 = 𝐽))
45 df-or 845 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐼𝑥 = 𝐽) ↔ (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4644, 45sylbb 218 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐼, 𝐽} → (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4746imp 407 . . . . . . . . . . . . . 14 ((𝑥 ∈ {𝐼, 𝐽} ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4847adantll 711 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4948sneqd 4579 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → {𝑥} = {𝐽})
5049difeq2d 4062 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
5150unieqd 4859 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
52 difprsn2 4740 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5352unieqd 4859 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5414, 53syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
55 unisng 4866 . . . . . . . . . . . . 13 (𝐼𝐷 {𝐼} = 𝐼)
563, 55syl 17 . . . . . . . . . . . 12 (𝜑 {𝐼} = 𝐼)
5754, 56eqtrd 2780 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5857ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5951, 58eqtr2d 2781 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝐼 = ({𝐼, 𝐽} ∖ {𝑥}))
6042, 59ifeqda 4501 . . . . . . . 8 ((𝜑𝑥 ∈ {𝐼, 𝐽}) → if(𝑥 = 𝐼, 𝐽, 𝐼) = ({𝐼, 𝐽} ∖ {𝑥}))
6130, 60mpteq12dva 5168 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
6225, 61eqtr2d 2781 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
6315, 24, 623eqtr4d 2790 . . . . 5 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
647, 63eqtrd 2780 . . . 4 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
653, 4s2rn 31214 . . . . . . 7 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
6665difeq2d 4062 . . . . . 6 (𝜑 → (𝐷 ∖ ran ⟨“𝐼𝐽”⟩) = (𝐷 ∖ {𝐼, 𝐽}))
6766reseq2d 5890 . . . . 5 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = ( I ↾ (𝐷 ∖ {𝐼, 𝐽})))
68 mptresid 5957 . . . . 5 ( I ↾ (𝐷 ∖ {𝐼, 𝐽})) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)
6967, 68eqtrdi 2796 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
7064, 69uneq12d 4103 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
71 uncom 4092 . . . 4 (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩))
7271a1i 11 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
732, 70, 723eqtr2rd 2787 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
74 cycpm2.c . . 3 𝐶 = (toCyc‘𝐷)
75 cycpm2.d . . 3 (𝜑𝐷𝑉)
763, 4s2cld 14582 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
773, 4, 14s2f1 31215 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
7874, 75, 76, 77tocycfv 31372 . 2 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
79 pr2nelem 9761 . . . 4 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
803, 4, 14, 79syl3anc 1370 . . 3 (𝜑 → {𝐼, 𝐽} ≈ 2o)
81 cycpm2tr.t . . . 4 𝑇 = (pmTrsp‘𝐷)
8281pmtrval 19057 . . 3 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8375, 26, 80, 82syl3anc 1370 . 2 (𝜑 → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8473, 78, 833eqtr4d 2790 1 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1542  wcel 2110  wne 2945  cdif 3889  cun 3890  cin 3891  wss 3892  ifcif 4465  {csn 4567  {cpr 4569  cop 4573   cuni 4845   class class class wbr 5079  cmpt 5162   I cid 5489  ccnv 5589  ran crn 5591  cres 5592  ccom 5594  cfv 6432  (class class class)co 7271  2oc2o 8282  cen 8713  0cc0 10872  1c1 10873  0cn0 12233   cyclShift ccsh 14499  ⟨“cs2 14552  pmTrspcpmtr 19047  toCycctocyc 31369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-rp 12730  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-hash 14043  df-word 14216  df-concat 14272  df-s1 14299  df-substr 14352  df-pfx 14382  df-csh 14500  df-s2 14559  df-pmtr 19048  df-tocyc 31370
This theorem is referenced by:  trsp2cyc  31386  cyc3evpm  31413  cyc3genpmlem  31414  cyc3conja  31420
  Copyright terms: Public domain W3C validator