Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpm2tr Structured version   Visualization version   GIF version

Theorem cycpm2tr 33139
Description: A cyclic permutation of 2 elements is a transposition. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cycpm2.c 𝐶 = (toCyc‘𝐷)
cycpm2.d (𝜑𝐷𝑉)
cycpm2.i (𝜑𝐼𝐷)
cycpm2.j (𝜑𝐽𝐷)
cycpm2.1 (𝜑𝐼𝐽)
cycpm2tr.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
cycpm2tr (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))

Proof of Theorem cycpm2tr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 partfun 6715 . . . 4 (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
21a1i 11 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
3 cycpm2.i . . . . . . 7 (𝜑𝐼𝐷)
4 cycpm2.j . . . . . . 7 (𝜑𝐽𝐷)
5 cshw1s2 32945 . . . . . . 7 ((𝐼𝐷𝐽𝐷) → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
63, 4, 5syl2anc 584 . . . . . 6 (𝜑 → (⟨“𝐼𝐽”⟩ cyclShift 1) = ⟨“𝐽𝐼”⟩)
76coeq1d 5872 . . . . 5 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩))
8 0nn0 12541 . . . . . . . 8 0 ∈ ℕ0
98a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
10 1nn0 12542 . . . . . . . 8 1 ∈ ℕ0
1110a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ0)
12 0ne1 12337 . . . . . . . 8 0 ≠ 1
1312a1i 11 . . . . . . 7 (𝜑 → 0 ≠ 1)
14 cycpm2.1 . . . . . . 7 (𝜑𝐼𝐽)
159, 4, 11, 3, 13, 3, 4, 14coprprop 32708 . . . . . 6 (𝜑 → ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
16 s2prop 14946 . . . . . . . 8 ((𝐽𝐷𝐼𝐷) → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
174, 3, 16syl2anc 584 . . . . . . 7 (𝜑 → ⟨“𝐽𝐼”⟩ = {⟨0, 𝐽⟩, ⟨1, 𝐼⟩})
18 s2prop 14946 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷) → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
193, 4, 18syl2anc 584 . . . . . . . . 9 (𝜑 → ⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
2019cnveqd 5886 . . . . . . . 8 (𝜑⟨“𝐼𝐽”⟩ = {⟨0, 𝐼⟩, ⟨1, 𝐽⟩})
21 cnvprop 32705 . . . . . . . . 9 (((0 ∈ ℕ0𝐼𝐷) ∧ (1 ∈ ℕ0𝐽𝐷)) → {⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
229, 3, 11, 4, 21syl22anc 839 . . . . . . . 8 (𝜑{⟨0, 𝐼⟩, ⟨1, 𝐽⟩} = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2320, 22eqtrd 2777 . . . . . . 7 (𝜑⟨“𝐼𝐽”⟩ = {⟨𝐼, 0⟩, ⟨𝐽, 1⟩})
2417, 23coeq12d 5875 . . . . . 6 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = ({⟨0, 𝐽⟩, ⟨1, 𝐼⟩} ∘ {⟨𝐼, 0⟩, ⟨𝐽, 1⟩}))
253, 4, 4, 3, 14mptprop 32707 . . . . . . 7 (𝜑 → {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩} = (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)))
263, 4prssd 4822 . . . . . . . . . 10 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
27 dfss2 3969 . . . . . . . . . 10 ({𝐼, 𝐽} ⊆ 𝐷 ↔ ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
2826, 27sylib 218 . . . . . . . . 9 (𝜑 → ({𝐼, 𝐽} ∩ 𝐷) = {𝐼, 𝐽})
29 incom 4209 . . . . . . . . 9 ({𝐼, 𝐽} ∩ 𝐷) = (𝐷 ∩ {𝐼, 𝐽})
3028, 29eqtr3di 2792 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} = (𝐷 ∩ {𝐼, 𝐽}))
31 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼)
3231sneqd 4638 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → {𝑥} = {𝐼})
3332difeq2d 4126 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
3433unieqd 4920 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐼}))
35 difprsn1 4800 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3635unieqd 4920 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
3714, 36syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = {𝐽})
38 unisng 4925 . . . . . . . . . . . . 13 (𝐽𝐷 {𝐽} = 𝐽)
394, 38syl 17 . . . . . . . . . . . 12 (𝜑 {𝐽} = 𝐽)
4037, 39eqtrd 2777 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4140ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐼}) = 𝐽)
4234, 41eqtr2d 2778 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ 𝑥 = 𝐼) → 𝐽 = ({𝐼, 𝐽} ∖ {𝑥}))
43 vex 3484 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
4443elpr 4650 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝐼, 𝐽} ↔ (𝑥 = 𝐼𝑥 = 𝐽))
45 df-or 849 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝐼𝑥 = 𝐽) ↔ (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4644, 45sylbb 219 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐼, 𝐽} → (¬ 𝑥 = 𝐼𝑥 = 𝐽))
4746imp 406 . . . . . . . . . . . . . 14 ((𝑥 ∈ {𝐼, 𝐽} ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4847adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝑥 = 𝐽)
4948sneqd 4638 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → {𝑥} = {𝐽})
5049difeq2d 4126 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
5150unieqd 4920 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝑥}) = ({𝐼, 𝐽} ∖ {𝐽}))
52 difprsn2 4801 . . . . . . . . . . . . . 14 (𝐼𝐽 → ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5352unieqd 4920 . . . . . . . . . . . . 13 (𝐼𝐽 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
5414, 53syl 17 . . . . . . . . . . . 12 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = {𝐼})
55 unisng 4925 . . . . . . . . . . . . 13 (𝐼𝐷 {𝐼} = 𝐼)
563, 55syl 17 . . . . . . . . . . . 12 (𝜑 {𝐼} = 𝐼)
5754, 56eqtrd 2777 . . . . . . . . . . 11 (𝜑 ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5857ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → ({𝐼, 𝐽} ∖ {𝐽}) = 𝐼)
5951, 58eqtr2d 2778 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝐼, 𝐽}) ∧ ¬ 𝑥 = 𝐼) → 𝐼 = ({𝐼, 𝐽} ∖ {𝑥}))
6042, 59ifeqda 4562 . . . . . . . 8 ((𝜑𝑥 ∈ {𝐼, 𝐽}) → if(𝑥 = 𝐼, 𝐽, 𝐼) = ({𝐼, 𝐽} ∖ {𝑥}))
6130, 60mpteq12dva 5231 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝐼, 𝐽} ↦ if(𝑥 = 𝐼, 𝐽, 𝐼)) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
6225, 61eqtr2d 2778 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) = {⟨𝐼, 𝐽⟩, ⟨𝐽, 𝐼⟩})
6315, 24, 623eqtr4d 2787 . . . . 5 (𝜑 → (⟨“𝐽𝐼”⟩ ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
647, 63eqtrd 2777 . . . 4 (𝜑 → ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) = (𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})))
653, 4s2rn 15002 . . . . . . 7 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
6665difeq2d 4126 . . . . . 6 (𝜑 → (𝐷 ∖ ran ⟨“𝐼𝐽”⟩) = (𝐷 ∖ {𝐼, 𝐽}))
6766reseq2d 5997 . . . . 5 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = ( I ↾ (𝐷 ∖ {𝐼, 𝐽})))
68 mptresid 6069 . . . . 5 ( I ↾ (𝐷 ∖ {𝐼, 𝐽})) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)
6967, 68eqtrdi 2793 . . . 4 (𝜑 → ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) = (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥))
7064, 69uneq12d 4169 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = ((𝑥 ∈ (𝐷 ∩ {𝐼, 𝐽}) ↦ ({𝐼, 𝐽} ∖ {𝑥})) ∪ (𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽}) ↦ 𝑥)))
71 uncom 4158 . . . 4 (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩))
7271a1i 11 . . 3 (𝜑 → (((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩) ∪ ( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩))) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
732, 70, 723eqtr2rd 2784 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
74 cycpm2.c . . 3 𝐶 = (toCyc‘𝐷)
75 cycpm2.d . . 3 (𝜑𝐷𝑉)
763, 4s2cld 14910 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
773, 4, 14s2f1 32929 . . 3 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
7874, 75, 76, 77tocycfv 33129 . 2 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (( I ↾ (𝐷 ∖ ran ⟨“𝐼𝐽”⟩)) ∪ ((⟨“𝐼𝐽”⟩ cyclShift 1) ∘ ⟨“𝐼𝐽”⟩)))
79 enpr2 10042 . . . 4 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
803, 4, 14, 79syl3anc 1373 . . 3 (𝜑 → {𝐼, 𝐽} ≈ 2o)
81 cycpm2tr.t . . . 4 𝑇 = (pmTrsp‘𝐷)
8281pmtrval 19469 . . 3 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8375, 26, 80, 82syl3anc 1373 . 2 (𝜑 → (𝑇‘{𝐼, 𝐽}) = (𝑥𝐷 ↦ if(𝑥 ∈ {𝐼, 𝐽}, ({𝐼, 𝐽} ∖ {𝑥}), 𝑥)))
8473, 78, 833eqtr4d 2787 1 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) = (𝑇‘{𝐼, 𝐽}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  cdif 3948  cun 3949  cin 3950  wss 3951  ifcif 4525  {csn 4626  {cpr 4628  cop 4632   cuni 4907   class class class wbr 5143  cmpt 5225   I cid 5577  ccnv 5684  ran crn 5686  cres 5687  ccom 5689  cfv 6561  (class class class)co 7431  2oc2o 8500  cen 8982  0cc0 11155  1c1 11156  0cn0 12526   cyclShift ccsh 14826  ⟨“cs2 14880  pmTrspcpmtr 19459  toCycctocyc 33126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-csh 14827  df-s2 14887  df-pmtr 19460  df-tocyc 33127
This theorem is referenced by:  trsp2cyc  33143  cyc3evpm  33170  cyc3genpmlem  33171  cyc3conja  33177
  Copyright terms: Public domain W3C validator