Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppssindlem2 Structured version   Visualization version   GIF version

Theorem fsuppssindlem2 42625
Description: Lemma for fsuppssind 42626. Write a function as a union. (Contributed by SN, 15-Jul-2024.)
Hypotheses
Ref Expression
fsuppssindlem2.b (𝜑𝐵𝑊)
fsuppssindlem2.v (𝜑𝐼𝑉)
fsuppssindlem2.s (𝜑𝑆𝐼)
Assertion
Ref Expression
fsuppssindlem2 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Distinct variable groups:   𝑓,𝐼,𝑥   𝑆,𝑓,𝑥   𝑓,𝐹,𝑥   0 ,𝑓,𝑥   𝑓,𝐻   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑥)   𝐻(𝑥)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem fsuppssindlem2
StepHypRef Expression
1 fveq1 6816 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21ifeq1d 4490 . . . . 5 (𝑓 = 𝐹 → if(𝑥𝑆, (𝑓𝑥), 0 ) = if(𝑥𝑆, (𝐹𝑥), 0 ))
32mpteq2dv 5180 . . . 4 (𝑓 = 𝐹 → (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) = (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )))
43eleq1d 2816 . . 3 (𝑓 = 𝐹 → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻 ↔ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
54elrab 3642 . 2 (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
6 fsuppssindlem2.b . . . . 5 (𝜑𝐵𝑊)
7 fsuppssindlem2.v . . . . . 6 (𝜑𝐼𝑉)
8 fsuppssindlem2.s . . . . . 6 (𝜑𝑆𝐼)
97, 8ssexd 5257 . . . . 5 (𝜑𝑆 ∈ V)
106, 9elmapd 8759 . . . 4 (𝜑 → (𝐹 ∈ (𝐵m 𝑆) ↔ 𝐹:𝑆𝐵))
1110anbi1d 631 . . 3 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻)))
12 partfun 6623 . . . . . 6 (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 ))
13 sseqin2 4168 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝐼𝑆) = 𝑆)
148, 13sylib 218 . . . . . . . . . 10 (𝜑 → (𝐼𝑆) = 𝑆)
1514mpteq1d 5176 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
1615adantr 480 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
17 simpr 484 . . . . . . . . 9 ((𝜑𝐹:𝑆𝐵) → 𝐹:𝑆𝐵)
1817feqmptd 6885 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → 𝐹 = (𝑥𝑆 ↦ (𝐹𝑥)))
1916, 18eqtr4d 2769 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = 𝐹)
20 fconstmpt 5673 . . . . . . . . 9 ((𝐼𝑆) × { 0 }) = (𝑥 ∈ (𝐼𝑆) ↦ 0 )
2120eqcomi 2740 . . . . . . . 8 (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 })
2221a1i 11 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 }))
2319, 22uneq12d 4114 . . . . . 6 ((𝜑𝐹:𝑆𝐵) → ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2412, 23eqtrid 2778 . . . . 5 ((𝜑𝐹:𝑆𝐵) → (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2524eleq1d 2816 . . . 4 ((𝜑𝐹:𝑆𝐵) → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻 ↔ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻))
2625pm5.32da 579 . . 3 (𝜑 → ((𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
2711, 26bitrd 279 . 2 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
285, 27bitrid 283 1 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  ifcif 4470  {csn 4571  cmpt 5167   × cxp 5609  wf 6472  cfv 6476  (class class class)co 7341  m cmap 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747
This theorem is referenced by:  fsuppssind  42626
  Copyright terms: Public domain W3C validator