Proof of Theorem fsuppssindlem2
Step | Hyp | Ref
| Expression |
1 | | fveq1 6773 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
2 | 1 | ifeq1d 4478 |
. . . . 5
⊢ (𝑓 = 𝐹 → if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 ) = if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) |
3 | 2 | mpteq2dv 5176 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 )) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 ))) |
4 | 3 | eleq1d 2823 |
. . 3
⊢ (𝑓 = 𝐹 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 )) ∈ 𝐻 ↔ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻)) |
5 | 4 | elrab 3624 |
. 2
⊢ (𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 )) ∈ 𝐻} ↔ (𝐹 ∈ (𝐵 ↑m 𝑆) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻)) |
6 | | fsuppssindlem2.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
7 | | fsuppssindlem2.v |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
8 | | fsuppssindlem2.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝐼) |
9 | 7, 8 | ssexd 5248 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ V) |
10 | 6, 9 | elmapd 8629 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m 𝑆) ↔ 𝐹:𝑆⟶𝐵)) |
11 | 10 | anbi1d 630 |
. . 3
⊢ (𝜑 → ((𝐹 ∈ (𝐵 ↑m 𝑆) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆⟶𝐵 ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻))) |
12 | | partfun 6580 |
. . . . . 6
⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) = ((𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) ∪ (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) |
13 | | sseqin2 4149 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ 𝐼 ↔ (𝐼 ∩ 𝑆) = 𝑆) |
14 | 8, 13 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 ∩ 𝑆) = 𝑆) |
15 | 14 | mpteq1d 5169 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝑆 ↦ (𝐹‘𝑥))) |
16 | 15 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → (𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝑆 ↦ (𝐹‘𝑥))) |
17 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → 𝐹:𝑆⟶𝐵) |
18 | 17 | feqmptd 6837 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → 𝐹 = (𝑥 ∈ 𝑆 ↦ (𝐹‘𝑥))) |
19 | 16, 18 | eqtr4d 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → (𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) = 𝐹) |
20 | | fconstmpt 5649 |
. . . . . . . . 9
⊢ ((𝐼 ∖ 𝑆) × { 0 }) = (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 ) |
21 | 20 | eqcomi 2747 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 ) = ((𝐼 ∖ 𝑆) × { 0 }) |
22 | 21 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 ) = ((𝐼 ∖ 𝑆) × { 0 })) |
23 | 19, 22 | uneq12d 4098 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → ((𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) ∪ (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) = (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) |
24 | 12, 23 | eqtrid 2790 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) = (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) |
25 | 24 | eleq1d 2823 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻 ↔ (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻)) |
26 | 25 | pm5.32da 579 |
. . 3
⊢ (𝜑 → ((𝐹:𝑆⟶𝐵 ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆⟶𝐵 ∧ (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
27 | 11, 26 | bitrd 278 |
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝐵 ↑m 𝑆) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆⟶𝐵 ∧ (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
28 | 5, 27 | syl5bb 283 |
1
⊢ (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆⟶𝐵 ∧ (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |