Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppssindlem2 Structured version   Visualization version   GIF version

Theorem fsuppssindlem2 40281
Description: Lemma for fsuppssind 40282. Write a function as a union. (Contributed by SN, 15-Jul-2024.)
Hypotheses
Ref Expression
fsuppssindlem2.b (𝜑𝐵𝑊)
fsuppssindlem2.v (𝜑𝐼𝑉)
fsuppssindlem2.s (𝜑𝑆𝐼)
Assertion
Ref Expression
fsuppssindlem2 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Distinct variable groups:   𝑓,𝐼,𝑥   𝑆,𝑓,𝑥   𝑓,𝐹,𝑥   0 ,𝑓,𝑥   𝑓,𝐻   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑥)   𝐻(𝑥)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem fsuppssindlem2
StepHypRef Expression
1 fveq1 6773 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21ifeq1d 4478 . . . . 5 (𝑓 = 𝐹 → if(𝑥𝑆, (𝑓𝑥), 0 ) = if(𝑥𝑆, (𝐹𝑥), 0 ))
32mpteq2dv 5176 . . . 4 (𝑓 = 𝐹 → (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) = (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )))
43eleq1d 2823 . . 3 (𝑓 = 𝐹 → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻 ↔ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
54elrab 3624 . 2 (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
6 fsuppssindlem2.b . . . . 5 (𝜑𝐵𝑊)
7 fsuppssindlem2.v . . . . . 6 (𝜑𝐼𝑉)
8 fsuppssindlem2.s . . . . . 6 (𝜑𝑆𝐼)
97, 8ssexd 5248 . . . . 5 (𝜑𝑆 ∈ V)
106, 9elmapd 8629 . . . 4 (𝜑 → (𝐹 ∈ (𝐵m 𝑆) ↔ 𝐹:𝑆𝐵))
1110anbi1d 630 . . 3 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻)))
12 partfun 6580 . . . . . 6 (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 ))
13 sseqin2 4149 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝐼𝑆) = 𝑆)
148, 13sylib 217 . . . . . . . . . 10 (𝜑 → (𝐼𝑆) = 𝑆)
1514mpteq1d 5169 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
1615adantr 481 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
17 simpr 485 . . . . . . . . 9 ((𝜑𝐹:𝑆𝐵) → 𝐹:𝑆𝐵)
1817feqmptd 6837 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → 𝐹 = (𝑥𝑆 ↦ (𝐹𝑥)))
1916, 18eqtr4d 2781 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = 𝐹)
20 fconstmpt 5649 . . . . . . . . 9 ((𝐼𝑆) × { 0 }) = (𝑥 ∈ (𝐼𝑆) ↦ 0 )
2120eqcomi 2747 . . . . . . . 8 (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 })
2221a1i 11 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 }))
2319, 22uneq12d 4098 . . . . . 6 ((𝜑𝐹:𝑆𝐵) → ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2412, 23eqtrid 2790 . . . . 5 ((𝜑𝐹:𝑆𝐵) → (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2524eleq1d 2823 . . . 4 ((𝜑𝐹:𝑆𝐵) → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻 ↔ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻))
2625pm5.32da 579 . . 3 (𝜑 → ((𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
2711, 26bitrd 278 . 2 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
285, 27syl5bb 283 1 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  ifcif 4459  {csn 4561  cmpt 5157   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617
This theorem is referenced by:  fsuppssind  40282
  Copyright terms: Public domain W3C validator