Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppssindlem2 Structured version   Visualization version   GIF version

Theorem fsuppssindlem2 42750
Description: Lemma for fsuppssind 42751. Write a function as a union. (Contributed by SN, 15-Jul-2024.)
Hypotheses
Ref Expression
fsuppssindlem2.b (𝜑𝐵𝑊)
fsuppssindlem2.v (𝜑𝐼𝑉)
fsuppssindlem2.s (𝜑𝑆𝐼)
Assertion
Ref Expression
fsuppssindlem2 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Distinct variable groups:   𝑓,𝐼,𝑥   𝑆,𝑓,𝑥   𝑓,𝐹,𝑥   0 ,𝑓,𝑥   𝑓,𝐻   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑥)   𝐻(𝑥)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem fsuppssindlem2
StepHypRef Expression
1 fveq1 6830 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21ifeq1d 4496 . . . . 5 (𝑓 = 𝐹 → if(𝑥𝑆, (𝑓𝑥), 0 ) = if(𝑥𝑆, (𝐹𝑥), 0 ))
32mpteq2dv 5189 . . . 4 (𝑓 = 𝐹 → (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) = (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )))
43eleq1d 2818 . . 3 (𝑓 = 𝐹 → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻 ↔ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
54elrab 3643 . 2 (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
6 fsuppssindlem2.b . . . . 5 (𝜑𝐵𝑊)
7 fsuppssindlem2.v . . . . . 6 (𝜑𝐼𝑉)
8 fsuppssindlem2.s . . . . . 6 (𝜑𝑆𝐼)
97, 8ssexd 5266 . . . . 5 (𝜑𝑆 ∈ V)
106, 9elmapd 8773 . . . 4 (𝜑 → (𝐹 ∈ (𝐵m 𝑆) ↔ 𝐹:𝑆𝐵))
1110anbi1d 631 . . 3 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻)))
12 partfun 6636 . . . . . 6 (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 ))
13 sseqin2 4172 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝐼𝑆) = 𝑆)
148, 13sylib 218 . . . . . . . . . 10 (𝜑 → (𝐼𝑆) = 𝑆)
1514mpteq1d 5185 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
1615adantr 480 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
17 simpr 484 . . . . . . . . 9 ((𝜑𝐹:𝑆𝐵) → 𝐹:𝑆𝐵)
1817feqmptd 6899 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → 𝐹 = (𝑥𝑆 ↦ (𝐹𝑥)))
1916, 18eqtr4d 2771 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = 𝐹)
20 fconstmpt 5683 . . . . . . . . 9 ((𝐼𝑆) × { 0 }) = (𝑥 ∈ (𝐼𝑆) ↦ 0 )
2120eqcomi 2742 . . . . . . . 8 (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 })
2221a1i 11 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 }))
2319, 22uneq12d 4118 . . . . . 6 ((𝜑𝐹:𝑆𝐵) → ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2412, 23eqtrid 2780 . . . . 5 ((𝜑𝐹:𝑆𝐵) → (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2524eleq1d 2818 . . . 4 ((𝜑𝐹:𝑆𝐵) → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻 ↔ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻))
2625pm5.32da 579 . . 3 (𝜑 → ((𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
2711, 26bitrd 279 . 2 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
285, 27bitrid 283 1 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  ifcif 4476  {csn 4577  cmpt 5176   × cxp 5619  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761
This theorem is referenced by:  fsuppssind  42751
  Copyright terms: Public domain W3C validator