Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppssindlem2 Structured version   Visualization version   GIF version

Theorem fsuppssindlem2 41653
Description: Lemma for fsuppssind 41654. Write a function as a union. (Contributed by SN, 15-Jul-2024.)
Hypotheses
Ref Expression
fsuppssindlem2.b (𝜑𝐵𝑊)
fsuppssindlem2.v (𝜑𝐼𝑉)
fsuppssindlem2.s (𝜑𝑆𝐼)
Assertion
Ref Expression
fsuppssindlem2 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Distinct variable groups:   𝑓,𝐼,𝑥   𝑆,𝑓,𝑥   𝑓,𝐹,𝑥   0 ,𝑓,𝑥   𝑓,𝐻   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑥)   𝐻(𝑥)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem fsuppssindlem2
StepHypRef Expression
1 fveq1 6880 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21ifeq1d 4539 . . . . 5 (𝑓 = 𝐹 → if(𝑥𝑆, (𝑓𝑥), 0 ) = if(𝑥𝑆, (𝐹𝑥), 0 ))
32mpteq2dv 5240 . . . 4 (𝑓 = 𝐹 → (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) = (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )))
43eleq1d 2810 . . 3 (𝑓 = 𝐹 → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻 ↔ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
54elrab 3675 . 2 (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
6 fsuppssindlem2.b . . . . 5 (𝜑𝐵𝑊)
7 fsuppssindlem2.v . . . . . 6 (𝜑𝐼𝑉)
8 fsuppssindlem2.s . . . . . 6 (𝜑𝑆𝐼)
97, 8ssexd 5314 . . . . 5 (𝜑𝑆 ∈ V)
106, 9elmapd 8830 . . . 4 (𝜑 → (𝐹 ∈ (𝐵m 𝑆) ↔ 𝐹:𝑆𝐵))
1110anbi1d 629 . . 3 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻)))
12 partfun 6687 . . . . . 6 (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 ))
13 sseqin2 4207 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝐼𝑆) = 𝑆)
148, 13sylib 217 . . . . . . . . . 10 (𝜑 → (𝐼𝑆) = 𝑆)
1514mpteq1d 5233 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
1615adantr 480 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
17 simpr 484 . . . . . . . . 9 ((𝜑𝐹:𝑆𝐵) → 𝐹:𝑆𝐵)
1817feqmptd 6950 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → 𝐹 = (𝑥𝑆 ↦ (𝐹𝑥)))
1916, 18eqtr4d 2767 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = 𝐹)
20 fconstmpt 5728 . . . . . . . . 9 ((𝐼𝑆) × { 0 }) = (𝑥 ∈ (𝐼𝑆) ↦ 0 )
2120eqcomi 2733 . . . . . . . 8 (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 })
2221a1i 11 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 }))
2319, 22uneq12d 4156 . . . . . 6 ((𝜑𝐹:𝑆𝐵) → ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2412, 23eqtrid 2776 . . . . 5 ((𝜑𝐹:𝑆𝐵) → (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2524eleq1d 2810 . . . 4 ((𝜑𝐹:𝑆𝐵) → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻 ↔ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻))
2625pm5.32da 578 . . 3 (𝜑 → ((𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
2711, 26bitrd 279 . 2 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
285, 27bitrid 283 1 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {crab 3424  Vcvv 3466  cdif 3937  cun 3938  cin 3939  wss 3940  ifcif 4520  {csn 4620  cmpt 5221   × cxp 5664  wf 6529  cfv 6533  (class class class)co 7401  m cmap 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8818
This theorem is referenced by:  fsuppssind  41654
  Copyright terms: Public domain W3C validator