Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppssindlem2 Structured version   Visualization version   GIF version

Theorem fsuppssindlem2 42587
Description: Lemma for fsuppssind 42588. Write a function as a union. (Contributed by SN, 15-Jul-2024.)
Hypotheses
Ref Expression
fsuppssindlem2.b (𝜑𝐵𝑊)
fsuppssindlem2.v (𝜑𝐼𝑉)
fsuppssindlem2.s (𝜑𝑆𝐼)
Assertion
Ref Expression
fsuppssindlem2 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Distinct variable groups:   𝑓,𝐼,𝑥   𝑆,𝑓,𝑥   𝑓,𝐹,𝑥   0 ,𝑓,𝑥   𝑓,𝐻   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑥)   𝐻(𝑥)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem fsuppssindlem2
StepHypRef Expression
1 fveq1 6860 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21ifeq1d 4511 . . . . 5 (𝑓 = 𝐹 → if(𝑥𝑆, (𝑓𝑥), 0 ) = if(𝑥𝑆, (𝐹𝑥), 0 ))
32mpteq2dv 5204 . . . 4 (𝑓 = 𝐹 → (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) = (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )))
43eleq1d 2814 . . 3 (𝑓 = 𝐹 → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻 ↔ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
54elrab 3662 . 2 (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻))
6 fsuppssindlem2.b . . . . 5 (𝜑𝐵𝑊)
7 fsuppssindlem2.v . . . . . 6 (𝜑𝐼𝑉)
8 fsuppssindlem2.s . . . . . 6 (𝜑𝑆𝐼)
97, 8ssexd 5282 . . . . 5 (𝜑𝑆 ∈ V)
106, 9elmapd 8816 . . . 4 (𝜑 → (𝐹 ∈ (𝐵m 𝑆) ↔ 𝐹:𝑆𝐵))
1110anbi1d 631 . . 3 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻)))
12 partfun 6668 . . . . . 6 (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 ))
13 sseqin2 4189 . . . . . . . . . . 11 (𝑆𝐼 ↔ (𝐼𝑆) = 𝑆)
148, 13sylib 218 . . . . . . . . . 10 (𝜑 → (𝐼𝑆) = 𝑆)
1514mpteq1d 5200 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
1615adantr 480 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = (𝑥𝑆 ↦ (𝐹𝑥)))
17 simpr 484 . . . . . . . . 9 ((𝜑𝐹:𝑆𝐵) → 𝐹:𝑆𝐵)
1817feqmptd 6932 . . . . . . . 8 ((𝜑𝐹:𝑆𝐵) → 𝐹 = (𝑥𝑆 ↦ (𝐹𝑥)))
1916, 18eqtr4d 2768 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) = 𝐹)
20 fconstmpt 5703 . . . . . . . . 9 ((𝐼𝑆) × { 0 }) = (𝑥 ∈ (𝐼𝑆) ↦ 0 )
2120eqcomi 2739 . . . . . . . 8 (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 })
2221a1i 11 . . . . . . 7 ((𝜑𝐹:𝑆𝐵) → (𝑥 ∈ (𝐼𝑆) ↦ 0 ) = ((𝐼𝑆) × { 0 }))
2319, 22uneq12d 4135 . . . . . 6 ((𝜑𝐹:𝑆𝐵) → ((𝑥 ∈ (𝐼𝑆) ↦ (𝐹𝑥)) ∪ (𝑥 ∈ (𝐼𝑆) ↦ 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2412, 23eqtrid 2777 . . . . 5 ((𝜑𝐹:𝑆𝐵) → (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) = (𝐹 ∪ ((𝐼𝑆) × { 0 })))
2524eleq1d 2814 . . . 4 ((𝜑𝐹:𝑆𝐵) → ((𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻 ↔ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻))
2625pm5.32da 579 . . 3 (𝜑 → ((𝐹:𝑆𝐵 ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
2711, 26bitrd 279 . 2 (𝜑 → ((𝐹 ∈ (𝐵m 𝑆) ∧ (𝑥𝐼 ↦ if(𝑥𝑆, (𝐹𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
285, 27bitrid 283 1 (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  ifcif 4491  {csn 4592  cmpt 5191   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804
This theorem is referenced by:  fsuppssind  42588
  Copyright terms: Public domain W3C validator