Proof of Theorem fsuppssindlem2
| Step | Hyp | Ref
| Expression |
| 1 | | fveq1 6860 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 2 | 1 | ifeq1d 4511 |
. . . . 5
⊢ (𝑓 = 𝐹 → if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 ) = if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) |
| 3 | 2 | mpteq2dv 5204 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 )) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 ))) |
| 4 | 3 | eleq1d 2814 |
. . 3
⊢ (𝑓 = 𝐹 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 )) ∈ 𝐻 ↔ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻)) |
| 5 | 4 | elrab 3662 |
. 2
⊢ (𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 )) ∈ 𝐻} ↔ (𝐹 ∈ (𝐵 ↑m 𝑆) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻)) |
| 6 | | fsuppssindlem2.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 7 | | fsuppssindlem2.v |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 8 | | fsuppssindlem2.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝐼) |
| 9 | 7, 8 | ssexd 5282 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ V) |
| 10 | 6, 9 | elmapd 8816 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m 𝑆) ↔ 𝐹:𝑆⟶𝐵)) |
| 11 | 10 | anbi1d 631 |
. . 3
⊢ (𝜑 → ((𝐹 ∈ (𝐵 ↑m 𝑆) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆⟶𝐵 ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻))) |
| 12 | | partfun 6668 |
. . . . . 6
⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) = ((𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) ∪ (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) |
| 13 | | sseqin2 4189 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ 𝐼 ↔ (𝐼 ∩ 𝑆) = 𝑆) |
| 14 | 8, 13 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼 ∩ 𝑆) = 𝑆) |
| 15 | 14 | mpteq1d 5200 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝑆 ↦ (𝐹‘𝑥))) |
| 16 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → (𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝑆 ↦ (𝐹‘𝑥))) |
| 17 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → 𝐹:𝑆⟶𝐵) |
| 18 | 17 | feqmptd 6932 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → 𝐹 = (𝑥 ∈ 𝑆 ↦ (𝐹‘𝑥))) |
| 19 | 16, 18 | eqtr4d 2768 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → (𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) = 𝐹) |
| 20 | | fconstmpt 5703 |
. . . . . . . . 9
⊢ ((𝐼 ∖ 𝑆) × { 0 }) = (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 ) |
| 21 | 20 | eqcomi 2739 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 ) = ((𝐼 ∖ 𝑆) × { 0 }) |
| 22 | 21 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 ) = ((𝐼 ∖ 𝑆) × { 0 })) |
| 23 | 19, 22 | uneq12d 4135 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → ((𝑥 ∈ (𝐼 ∩ 𝑆) ↦ (𝐹‘𝑥)) ∪ (𝑥 ∈ (𝐼 ∖ 𝑆) ↦ 0 )) = (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) |
| 24 | 12, 23 | eqtrid 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) = (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 }))) |
| 25 | 24 | eleq1d 2814 |
. . . 4
⊢ ((𝜑 ∧ 𝐹:𝑆⟶𝐵) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻 ↔ (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻)) |
| 26 | 25 | pm5.32da 579 |
. . 3
⊢ (𝜑 → ((𝐹:𝑆⟶𝐵 ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆⟶𝐵 ∧ (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
| 27 | 11, 26 | bitrd 279 |
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝐵 ↑m 𝑆) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝐹‘𝑥), 0 )) ∈ 𝐻) ↔ (𝐹:𝑆⟶𝐵 ∧ (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |
| 28 | 5, 27 | bitrid 283 |
1
⊢ (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝑆) ∣ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑆, (𝑓‘𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆⟶𝐵 ∧ (𝐹 ∪ ((𝐼 ∖ 𝑆) × { 0 })) ∈ 𝐻))) |